SIEGFRIED LOCALE Developer Guide

SIEGFRIED LOCALE LIBRARY
Developer Guide

Copyright by Siegfried Soft

Siegfried Soft
Hauff-Weingirtner GbR
Reichenberger Str. 12
D-34246 Vellmar

SIEGFRIED LOCALE Developer Guide 2

General
What is the Siegfried Locale Library?

The sfliblocale.so library enable BeOS software developers to include multi- language support to their applications.
This is realized by collecting all needed text of an appliction in an external file. The evaluation of those files
(loading data, get text, etc.) will be done by the sfliblocale.so library. By using ID numbers for every text, the library
can quickly and easily access the data.

For every language supported a ("locale") file including the translated text is needed. The "locale" files will be
created by using the Siegfried Locale Editor.

Terms of use

The sfliblocale.so library, the source code examples and the documentation are copyright by Siegfried Soft.

BeOS software developers reserve the right to use the sfliblocale.so library and the source code example in their
own projects without obligation to pay any royalty fees. This is valid for private as well as for commercial usage and
their give away in compiled form.

Warranty

Siegfried Soft has made every effort to insure the quality and reliability of this product. Siegfried Soft does not
accept any liability for damage created by the use or misuse of this product.

Notice / Trademarks

In this manual, we mention several registered trademarks which are not marked as such in the body of the text.
Hence you cannot conclude from the missing identification that the corresponding product name is free from rights
of third parties:

e Be, BeOS is a trademark of the company Be Inc.

System requirements

The Siegfried Locale Library need BeOS RS or higher. Siegfried Locale Library supports the x86 plattform as well
as the PPC.

Error reports, critizism, suggestions

If you should stumble over any error while using the Siegfried Locale Library or if you should have any suggestions
for improvement: please write to us! We are open to positive and negative critizism as well as to suggestions. We
will try to incorporate your ideas in the Siegfried Locale Library as far as possible. If you should find any error,
please specify your computer configuration. Please write to the following address:

Siegfried Soft
Hauff-Weingértner GbR
Reichenbergerstrafie 12
D-34246 Vellmar (Germany)

WEB: http://www.siegfried-soft.de
E-Mail: hauff@siegfried-soft.de

http://www.siegfried-soft.de/
mailto:hauff@siegfried-soft.de

SIEGFRIED LOCALE Developer Guide 3

Are you aware of Siegfried Backup? If not, take this opportunity to correct
this.

Siegfried Backup is a powerful and easy-to-use application to backup and restore all your software and data. It is the
optimal tool for beginners and experts wishing to backup and restore any kind of data speedily and smoothly.

Siegfried Backup contains all the functions demanded of a top quality backup application.
Furthermore, special attention has been paid to sophisticated graphic user guidance.

The idea behind the tool is to make work with Siegfried Backup as easy and efficient as possible for
beginners as well as for experts. You will appreciate the manifold features offered, long after your
initial steps with the tool. A large number of specific functions (such as filters, scheduler,
compression, add-ons and many others) will turn your daily work with Siegfried Backup into a
genuine pleasure.

Get a demo version of Siegfried Backup now: http://www.siegfried-soft.de

Siegfried Backup, your ticket to modern data management technology!!

http://www.siegfried-soft.de/

SIEGFRIED LOCALE Developer Guide 4

Using the sfliblocale.so library

This chapter contains information about how to include the sfliblocale.so library in projects und how to use the
functions of the library.

The priciple of localization

The kind of localization for the sfliblocale.so library is quiet simple. Every text which should be localized is
included in a table. The text is identified by the position in the table (the table row). The main function of the library
returns a pointer to the text by using the row number as parameter. A Table must be created for every language that
should be supported. Corresponding to the row number the text will be translated to the approriated language. Every
table is saved as a single file. To get multi language support only the approriated table ("locale" file) is to be loaded
and used. By adding "locale" files an application can be easy expand for new languages, without any additional
development effort!

Inserting the library into a project

To use the library in a project, two files are needed:

File Folder Comment
sfliblocale.so develop/1ib/x86 Locale Library for x86 plattform
sfliblocale.so develop/lib/ppc Locale Library for PPC plattform
SFLocale.h develop/include Class/function defintion for the sfliblocale.so

Insert both files simply to the project (by using "Add Files" command of the BeIDE).

Adding the library to an application

The sfliblocale.so library isn't a static link library, it's a dynamic link library. That means that the library is linked to
the application during the startup of the program. By this, the library must be accessible. BeOS defines two folders
for third party libraries. The first one is a local path "1ib™" at the folder where the application resides. The second
pathis " /boot /home/config/1lib". That's the folder for shared libraries. If BeOS can't find the library in both
folders an error message appears and the application terminates.

Which place for the library is the best can be decided by the developer. We recommended to use the local folder,
because of an easier deinstallation. The user has only to delete the application folder to remove all files, he doesn't
need to remember where to find other parts of the application.

Preparation/Organisation

For an optimal usage of the library all needed text of an application is to collect in a single (Include) file. A second
(include) file should manage the text IDs (symbolic representation of the table row numbers).

The collected text is used as default (built-in) text for the application. If an application can't get an specific text from
the "locale" file the built-in default text is used by the library automatically. This can be the case if the application is
updated and the "locale" files are not. If an error occurs, the application is usable without "locale" files using the
built-in text automatically. Simply the default built-in text is used. To get an application international running it's
strongly recommend to use English for the default built-in text.

The naming convention of both files is free. For the example provide by us, we have named the text file
"SFTexts.h" and the ID file "SFTextIDs.h".

The files should be have the following structure:

SIEGFRIED LOCALE Developer Guide 5

#ifndef SFTEXTS
#define SFTEXTS

#include "SFTextIDs.h" // The text IDs

/=== =
static const char *mText [SF_LAST ID] =

{

nok" , //SFOK

"Cancel", //SFCANCEL

"Continue", //SFCONTINUE

"ERROR: There is no text to savel!", //SFERRNOTEXT

"Font", //SFFONT

"Size", //SFSIZE

}i

/ /===
#endif

If a new text is needed, it is appended to the end of the list and the corresponding ID is inserted to
"SFTextIDs.h".

The file "SFTextIDs.h"looks like below:

#ifndef SFTEXTIDS
#define SFTEXTIDS

#define SF DEFAULT LANGUAGE "English"
#define SF TEXT APP_ID "siegfried localeeditor locale™

#define MSG_SFLANGUAGE 'sflg’

enum gSFTextID

{

SFOK,
SFCANCEL,
SFCONTINUE,

SFERRNOTEXT,
SFFONT,
SFSIZE,

SF_LAST ID // MUST be always the last ID!!!

}i

#endif

For every new text that is appended to the list of "SFTexts.h" the corresponding symbolic identifier (ID) is
insert to "SFTextIDs.h". The ID is to be included at the end of the identifier list (but before label

"SF_LAST ID"), because the text position at the list and the position of the identfier must remain the same!

By inserting before the identifier "SF_LAST ID" we automatically get the number of text list entries.

SIEGFRIED LOCALE Developer Guide 6

IMPORTANT: It's strictly to check that the position of the text and the position of the identifiers are the same.
Differences will be result in very strange text outputs of the application :-)

The ID file defines two additional constants:

"SF DEFAULT LANGUAGE" is the name of the used default build-in language. Normally this should be
"English".

The second one is "SF_TEXT_ APP_ ID". The application ID is a unique identifier for an application that is using
"locale" files. The ID shows whether a "locale" file can be used by the application or not. Nothing brings up more
strange effects than a "locale" file that isn't directed to the application ;-). The application ID is created by the
developer of an application. All "locale" files of an application must have the same ID. Files with other IDs are
ignored by the application. The developer is free to decide what kind of string is used for the application ID. It's a
good idea if there is a reference to the application. For example, the Siegfried Locale Editor is using as application
ID "siegfried localeeditor locale".

It's possible to use as ID the BApplication object signature of the application, because it's suffice unique.

Include the sfliblocale functionality to an application

To use the sfliblocale.so library in applications, at first there is some initializiation needed. The best place for this
initialization is the startup function of the application, the inherited BApplication class. The initialization need
only be done once.

The job of the initialization is to set the built-in text, the name of the build-in language and the application ID for the
"locale" files. Thereby that text data and the text IDs are separated into different (Include) files the initiliazation is
simple to realize.

Example:

#include "SuperApp.h"
#include "SFTextIDs.h"
#include "SFTexts.h"
int main()

{

SuperApp *myApplication;

myApplication = new SuperApp() ; // create/init application
myApplication->Run() ; // run application

delete (myApplication) ; // delete application
return(0) ; // see youl!!l!

}

SuperApp: : SuperApp ()
BApplication("application/x-vnd.siegfriedsoft-superapp")

{

SFLocale *lang;

lang = SFLocale::GetInstance() ; // get text data access
lang->SetAppID (SF_TEXT APP_ ID); // set application ID
// --- Set build-in text data ---
lang->SetDefaultText (mText, SF_LAST ID, SF_DEFAULT LANGUAGE) ;
// --- Now it's possible to access the text data.

// --- Initialization finished.

SIEGFRIED LOCALE Developer Guide 7

At this point it's a good idea to load/set the last used language by using the function "Setlanguage () ".
After the initialization is finished at every point within the application it's possible to access the text data. Access
can be get by the following call:

SFLang *lang;
lang = SFLocale::GetInstance(); // Get text data access

It's recommend for classes that need access to the SFLocale object to declare a class private or for base classes a
protected variable. To inititialize the variable use "Get Instance () " at the constructor function of the class (see
chapter "Function overview / GetInstance()" for more information).

Usage of the text funtions

Without doubt "Text () " is the most used function of the sfliblocale.so library. Every text for output that an
application needs is delivered by "Text () ". As a parameter the function needs the ID number of the appropriated
text data. The result of the function call is a pointer to a text string. if there was no text data for the used language,
the pointer contain the english build-in text.

To localize a "BButton" the label must be replaced by the "Text () " function.

Example:

BButton *button;

button = new BButton (BRect (0, 200, 200, 225), "btn quit",
cLang->Text (SFQUIT), new Message (B QUIT REQUESTED),
B_FOLLOW_HCENTER+B_FOLLOW_BOTTOM) ;

In the example above the "SFLocale" object (cLang) is a class private variable and was initialized at the
constructor of the class by "GetInstance () ". The text ID "SFQUIT" is a user defined constant declared and
managed in the file "SFTextIDs.h".

The resulting text pointers of "Text () " can be used in many ways. There is no problem to expand the text:

Example:

BButton *button;
BString string;

string = cLang->Text (SFSAVE) ;

string += "...";

button = new BButton (BRect (300, 10, 400, 30), "btn filesave",
string.String (), new BMessage (MSG_SAVEFILE PANEL),
B_FOLLOW RIGHT+B_FOLLOW_ TOP) ;

This kind of adding has the advantage that the amount of needed text will be reduced. The example above shows
only that text "Save" is needed and not "Save" and "Save...".

Another kind of expanding text is to include numbers. This is simplified through the use of the the C library function
"sprintf () ".

Example:

// Text "You have saved %1d files to\n'%s'!" // SFSAVECOUNT
char buf [128];

long count = 6587;

char *dest = "/boot/home/savefolder";

sprintf (buf, cLang->Text (SFSAVECOUNT), count, dest);

SIEGFRIED LOCALE Developer Guide

Output:

You have saved 6587 files to
' /boot /home/savefolder'!

SIEGFRIED LOCALE Developer Guide 9

Changing the language

To change the language the best user guidance is to use a menu. A sub menu contains all available languages with
the current one marked. In addition it's a good idea to react to changes in the folder of the "locale" files (e.g. if a new
language is added).

Example:

BMenu *smenu;
const char *last language;

smenu = new BMenu (cLang->Text (SFLANGUAGE)); // create language menu

// get the name of the last used language

last Language = GetAppPreferences(....);

// create items for menu

BuildLanguageMenu (smenu, last language) ;

cLocaleMenu = smenu; // save pointer to langauge menu

The function "BuildLanguageMenu () " creates the sub menu. The function walks through the language folder
and adds all files with the correct application ID to the menu list. The last used language is also marked. Every menu
item corresponds to a BMessage. The "what " field is set to "MSG_ SFLANGUAGE". The message inlcudes an
entry that contains the name of the language.

The setting of a new language is done by the inherited "MessageReceive () " function of the application
window.

void SuperAppWin::MessageReceived (BMessage *msg)

{

entry ref ref;

app_info info;
BPath path;

BEntry entry;

switch (msg->what)

{

//---- Sprache setzen ----

case MSG SFLANGUAGE:
be app->GetAppInfo (&info) ; // get program info
entry.SetTo (&info.ref) ; // get access to program
entry.GetPath (&path) ; // path + filename
path.GetParent (&path) ; // Programmpfad ermitteln
path.Append ("locale") ; // get only application path

cLang->SetLanguage (&path, msg->FindString("language")) ;
// save here the name of the language to the preferences
// SetAppPreferences(....);
break;

//---- Default message management ----

default:
BWindow: :MessageReceived (msg) ;

}

}

To change a language the function "SetLanguage () " is used. The function needs the path where the "locale"
file is found and the name of the new language.

SIEGFRIED LOCALE Developer Guide 10
Managing "locale" files

In general it doesn't care where the "locale" files reside. The library checks if the file is a "locale" file for the
application or not. It's a good idea to collect the "locale" files in a single folder. At best it's recommended to use a
folder inside of the application folder. If the application resides in " /boot /home/superapp", as path for the
"locale" files " /boot /home/superapp/locale" can be used. By this all files will be collected in one place
enabling the user to easily de-install the application. One only has to remove the application folder, without the need
to remember if there are other folders or files to remove. The name "locale" isn't a prescription. But we recommend
the use of its name, because it's very intuitive for the user.

The node watching of BeOS is used to watch the folder where the "locale" files reside. The best place to activate the
node watching is the constructor function of the application window:

SuperAppWin: : SuperAppWin (... .)

BWindow (.. .)
{
app_info info;
BEntry entry;
BPath path;

node_ref nref;

// --- activate node watching for the "locale" folde ---

be app->GetAppInfo (&info) ; // get program info
entry.SetTo (&info.ref) ; // get access to program
entry.GetPath (&path) ; // path + filename
path.GetParent (&path) ; // only application path is needed
path.Append ("locale") ; // append language folder
if (entry.SetTo(path.Path()) == B_OK) // get access to the folder

{

entry.GetNodeRef (&nref) ; // get node ref for folder

// Uberwachung aktivieren
watch node (&nref, B WATCH DIRECTORY, this);

}

entry.Unset () ;

}

By using node watching it's simple to detect changes at the language folder (e.g. files added or removed). If the
application detects changes the language sub menu is updated. The interpretation of the node watching message will
be done in the "MessageReceived () " function of the window class.

SIEGFRIED LOCALE Developer Guide 11

void SuperAppWin: :MessageReceived (BMessage *msg)

BMenultem *item;
BString string;
int32 opcode;

switch (msg->what)

{

case B NODE MONITOR:
if (msg->FindInt32 ("opcode", &opcode) == B_OK)

switch (opcode)

{

//---- file/folder deleted ----
case B _ENTRY REMOVED:

//---- file/folder moved -----
case B_ENTRY MOVED:

//---- file/folder created ----

case B _ENTRY CREATED:
if (cLocaleMenu)

{

while ((item = cLocaleMenu->RemovelItem((int32)0))>

{

if (item->IsMarked())
string = item->Label () ;
delete item;

}

BuildLanguageMenu (cLocaleMenu, string.String()) ;

}

break;

(BMenuItem *)NULL)

Scripting for the Siegfried Locale Editor

To get an easy translation of the text data for an application, it's a good idea to copy the built-in text data to the
Siegfried Locale Editor as a reference. Normaly the file that contains the built-in text ("SFTexts.h") is loaded to
the editor. This is only possible for the developer(s) of the application. All other users can do a translation only if
they acquire text data from the developer.

It's possible to simplfy this by using the scripting capabilities of BeOS. Scripting enables every user to directly
acquire the built-in text, the language name and the application ID. The Siegfried Locale Editor uses these scripting
capabilities to receive the data from every application that supports the sfliblocale.so library correctly.

To make an application locale scripting aware only the inherited "BApplication" class needs to be extended a
little bit.

SIEGFRIED LOCALE Developer Guide 12

To interpret scripting commands the "MessageRecived () " function must be extended by
"B_GET_PROPERTY":

void SuperApp: :MessageReceived (BMessage *msg)

{

BMessage spec, reply;
bool found;
int32 index, what;

const char *prop;

switch (msg->what)
{
//---- Scripting ----
case B_GET_PROPERTY:
found = false;
if (msg->GetCurrentSpecifier(&index, &spec, &what, &prop) == B OK)
{
reply.what = B REPLY;
if (strcmp (prop, "DefaultLanguage") == 0 && what ==
B_DIRECT_SPECIFIER)
{
found = true;
reply.AddString("result", SF _DEFAULT LANGUAGE) ;
}
if (strcmp (prop, "DefaultText") == 0 && what ==
B_DIRECT_SPECIFIER)
{
found = true;
for (index = 0; index < SF _LAST ID; index++)
reply.AddString ("result", mText [index]) ;

if (strcmp(prop, "TextAppID") == 0 && what == B DIRECT SPECIFIER)

found = true;
reply.AddString ("result", SF_TEXT APP ID);

}
}
if (found)
msg->SendReply (&reply) ;

else
BApplication: :MessageReceived (msg) ;
break;
//---- Default message management ----
default:

BApplication: :MessageReceived (msg) ;

}

The function will be extended by three scripting commands:

e "DefaultLanguage" returns the Name of the built-in language ("English", "Deutsch").
e "DefaultText" returns the built-in text data as a field.
e "TextAppID" returns the application ID of the "locale" files.

Theﬂmweu%dconﬁmﬁs"SF_LAST_ID","SF_DEFUALT_LANGUAGE"and"SF_TEXT_APP_ID"canbe
found in the user defined files "SFTexts.h" and "SFTextIDs.h".

In addition, to implement scripting correct the BeOS hook functions "Get SupportedSuites () " and
"ResolveSpecifier () " need to be implemented:

SIEGFRIED LOCALE Developer Guide 13

static property info mPropList[] = {

{ "DefaultText", {B_GET PROPERTY, 0}, {B DIRECT SPECIFIER, 0}, "get the
default texts for localization", 0},

{ "DefaultLanguage", {B_GET PROPERTY, 0}, {B DIRECT SPECIFIER, 0}, "get the
default language name for localization", 0},

{ "TextAppID", {B_GET PROPERTY, 0}, {B DIRECT SPECIFIER, 0}, "get the id
for locale files", 0},

0 // terminate list

}i

status_t SuperApp::GetSupportedSuites (BMessage *msg)

{

BPropertyInfo PropInfo (mPropList) ;

msg->AddString ("suites", "suite/vnd.SiegfriedSoft-locale");
msg->AddFlat ("messages", &PropInfo);

return BApplication::GetSupportedSuites (msg) ;

}

BHandler *SuperApp::ResolveSpecifier (BMessage *msg, int32 index, BMessage
*spec, int32 form, const char *prop)

{

BPropertyInfo PropInfo (mPropList) ;

if (PropInfo.FindMatch(msg, index, spec, form, prop) >= 0)
return this;

return BApplication::ResolveSpecifier (msg, index, spec, form, prop);

}

SIEGFRIED LOCALE Developer Guide 14

Function overview

SFLocale *GetInstance()

By using the function "GetInstance () " an application receives access to the text data of the loaded "locale"
file. As opposed to other classes the creation of an "SFLocale" object isn't needed (and not possible). Access to
the class will be done in every instance by a pointer returned from "Get Instance () ". The class

"SFLocale () " is a so called "Singleton design pattern”. A Singleton design pattern create one (and only one)
instance of a class. This behaviour saves memory and if a language change is done the text data remains consistent.

Example:

SFLocale *lang;

lang = SFLocale::GetInstance() ; // get access to text data

Now at every point within the application it's possible to access the text data. Only one instance of the class exists.

The pointer to the instance can be a global variable. But that's not the fine art of programming, because the priciple
of encapsulation is broken. It's better to declare the pointer as class private or for base classes as protected:

xyz {
xyz () ;
~XYZ;

private:
SFLocale *cLang;

Xyz::xXyz()

cLang = SFLocale: :GetInstance () ;

int32 SetLanguage(BDirectory *folder, const char *language)
int32 SetLanguage(BEntry *folder, const char *language)
int32 SetLanguage(BPath *folder, const char *language)
int32 SetLanguage(const char *folder, const char *language)
int32 SetLanguage(entry_ref *folder, const char *language)

Loading the language text. As first parameter the path to the "locale" files of the application is used. The second
parameter is the native name of the language that should be set. It isn't the name of the "locale" file! The name of the
language is saved as the string attribute "sf : Language" to the file. This will be checked by

"SetLanguage () " to grant the independence of the filename.

If the "locale" file is not found, the library will use the built-in default text (English) automatically.
The following results can be returned by the function:

0 = Ok, new language loaded and set

1 = Error, can't read file

2 = Error, file isn't a "locale" file

3 = Error, wrong "locale" file (application ID incorrect)
4 = Error, file has no language name

5 = Error, invalid folder

SIEGFRIED LOCALE Developer Guide 15
Example:

BPath path;
BEntry entry;
app_info info;

be app->GetAppInfo (&info) ; // get program info

entry.SetTo (&info.ref) ; // get access to program
entry.GetPath (&path) ; // path + filename

path.GetParent (&path) ; // get application path
path.Append ("locale") ; // append language folder
cLang->SetLanguage (&path, "Deutsch"); // load and set language "Deutsch"

void SetDefaultText(const char *deftext[], int32 count, const char *language)

Set default language data. As parameter the default text field, the count of text lines and the name of the default
language (mostly english) is used. The text field and the language name are internally copied by the function.

"SetDefaultText () " is normally called once at the application start up.

static const char *mText [SF_LAST ID] =

{

"ok", //SFOK
"Cancel", //SFCANCEL
"Continue", //SFCONTINUE
"ERROR: There is no text to save!", //SFERRNOTEXT
"Font", //SFFONT
"Size", //SFSIZE

}i
The default text should be collected in a single Include file.
Example:

SuperApp: : SuperApp ()
BApplication("application/x-vnd.siegfriedsoft-superapp")

SFLocale *lang;

lang = SFLocale::GetInstance() ; // get access for language data
lang->SetAppID (SF_TEXT APP_ID); // set applicaation ID
// --- set build-in text ---

lang->SetDefaultText (mText, SF_LAST ID, SF DEFAULT LANGUAGE) ;

void SetAppID(const char *app _id)

Setting of the application ID to identfy "locale" files correctly. The string is used to identify the "locale" file that will
be loaded by "SetLanguage () ". It's the same ID string used at the Siegfried Locale Editor for the "locale" files.
Only those "locale" files will be loaded that have the exact same string. The ID string will be copied internaly by the
function.

Like "SetDefaultText () " the function is to be called once at application start-up.

Example: see example of "SetDefaultText () " above.

SIEGFRIED LOCALE Developer Guide 16
const char *AppID()

Returns the application ID set by "SetAppID () ".

const char *Language()

Returns a pointer to the language name currently used. The name is always written in the native language. For the
language german the string "Deutsch" is returned, or for french "Francais" is returned. The name of the language is
set during the function call of "SetLanguage () ".

const char *Text(int32 id)

The main function of the sfliblocale library. By a given ID number the function returns a text string of the language
that was set by "SetLanguage () ". The ID number must alwaysbe 0 <= ID < SF_LAST ID. Ifnotthe
result NULL is returned. When the function can't find a localized text for a given (correct) ID, the built-in default
text is returned automatically.

Example:
BAlert *alert
alert = new BAlert ("Locale", cLang->Text (SFERRNOTEXT), cLang-

>Text (SFCANCEL)) ;
alert->Go() ;

SIEGFRIED LOCALE Developer Guide 17

Quick reference
Alphabetically ordered quick reference of all library functions.

AppID()

Return the application identification of the program.

Usage: const char *add id;
app_id = AppID() ;

Parameter: -

Returns: app_id Pointer to a string, the application ID set by SetDefaultText()

Comment: Every application set it's own unique identifaction. The ID is included by all "locale" files. Only those files
would be loaded that have the same ID as returned by the funciton.

Getlnstance()

Get access to the "locale" data.

Usage: SFLocale *lang;
lang = SFLocale::GetInstance() ;

Parameter: -

Returns: lang Pointer to the instance of the class "SFLocale"

Comment: During the whole lifetime of a running application always the same instance of the class is used. The class
"SFLocale" create one (and only one) instance of the class (Singleton desing pattern).

Language()

Returns the native name of the current used language.

Usage: const char *land;
land = Language () ;

Parameter: -

Returns: land Pointer to the native name of the current language (e.g. "Deutsch", "English")

Comment: -

SetAppID(const char *app_id)

Set application ID for the program

Usage: const char *app id = "siegfried backup locale";
SetAppID (app id);

Parameter: app_id String pointer to an ID

Returns: -

Comment:

Every application has it's own unique identifier for the "locale" files. All "locale" files include the ID. By this an
application can easy check if the file can be used or not. The ID is set at the application start up (before the first
call of "SetLanguage()"). The ID used during the function call of "SetLanguage()"). If the application ID loaded
from the "locale" file is incorrect the file is rejected.

SIEGFRIED LOCALE Developer Guide

18

SetDefaultText(const char *mText[], int32 n, const char *name)

Set default text and language name.

Usage: const char *mText [SF_LAST ID] = { ...};
inst32 n = SF_LAST ID;
const char *name = "English";
SetDefaultText (mText, n, name) ;
Parameter: ~ mText Default text field (table)
n amount of text (table) lines
name Native language name default text
Returns: -
Comment: -

SetLanguage(BDirectory *folder, const char *language)

Set language. Load data from "locale" file.

Usage: BDirectory *folder = new BDirectory(...);
const char *language = "Deutsch";
long ret;
ret = SetLanguage (folder, language) ;

Parameter: folder Pointer to folder where the "locale" files are.
language Native name of the language to load and set.
Returns: ret 0 = Ok, data load and set

1 = Error, can't read file
2 = Error, no "locale" file
3 = Error, wrong "locale" file (incorrect application ID)
4 = Error, file didn't include language name
5 = Error, invalid folder
Comment: -

SetLanguage(BEntry *folder, const char *language)

Set language. Load data from "locale" file.

Usage: BEntry *folder = new BEntry(...);
const char *language = "Deutsch";
long ret;
ret = SetlLanguage (folder, language) ;

Parameter: folder Pointer to folder where the "locale" files are.
language Native name of the language to load and set.
Returns: ret 0 = Ok, data load and set

1 = Error, can't read file

2 = Error, no "locale" file

3 = Error, wrong "locale" file (incorrect application ID)
4 = Error, file didn't include language name

5 = Error, invalid folder

Comment: -

SIEGFRIED LOCALE Developer Guide

19

SetLanguage(BPath *folder, const char *language)

Set language. Load data from "locale" file.

Usage: BPath *folder = new BPath(...);
const char *language = "Deutsch";
long ret;
ret = SetlLanguage (folder, language) ;

Parameter: folder Pointer to folder where the "locale" files are.
language Native name of the language to load and set.
Returns: ret 0 = Ok, data load and set

1 = Error, can't read file

2 = Error, no "locale" file

3 = Error, wrong "locale" file (incorrect application ID)
4 = Error, file didn't include language name

5 = Error, invalid folder

Comment: -

SetLanguage(const char *folder, const char *language)

Set language. Load data from "locale" file.

Usage: const char *folder = "...";
const char *language = "Deutsch";
long ret;
ret = SetlLanguage (folder, language) ;

Parameter: folder Pointer to folder where the "locale" files are.
language Native name of the language to load and set.
Returns: ret 0 = Ok, data load and set

1 = Error, can't read file
2 = Error, no "locale" file
3 = Error, wrong "locale" file (incorrect application ID)
4 = Error, file didn't include language name
5 = Error, invalid folder
Comment: -

SetLanguage(entry_ref *folder, const char *language)

Set language. Load data from "locale" file.

Usage: entry ref *folder = ...;
const char *language = "Deutsch";
long ret;
ret = SetlLanguage (folder, language) ;

Parameter: folder Pointer to folder where the "locale" files are.
language Native name of the language to load and set.
Returns: ret 0 = Ok, data load and set

1 = Error, can't read file
2 = Error, no "locale" file
3 = Error, wrong "locale" file (incorrect application ID)
4 = Error, file didn't include language name
5 = Error, invalid folder
Comment: -

SIEGFRIED LOCALE Developer Guide 20

Text(int32 id)

Returns a localized text string to a given text id.
Usage: const char *text;
int32 id = SF _OK;
text = Text (id);
Parameter: id Identification number of a text (0 <= id < SF_LAST ID)

Returns: text Pointer to a localized text.

NULL, ifid is out of range.

Comment: poeqnt exist the localized text for an given id, the fuction returns a pointer to the default built-in text. If the id
number is out of range NULL is returned.

	SIEGFRIED LOCALE LIBRARY
	General
	What is the Siegfried Locale Library?
	Terms of use
	Warranty
	Notice / Trademarks
	System requirements
	Error reports, critizism, suggestions
	Are you aware of Siegfried Backup? If not, take this opportunity to correct this.

	Using the sfliblocale.so library
	The priciple of localization
	Inserting the library into a project
	Adding the library to an application
	Preparation/Organisation
	Include the sfliblocale functionality to an application
	Usage of the text funtions
	Changing the language
	Managing "locale" files
	Scripting for the Siegfried Locale Editor

	Function overview
	SFLocale *GetInstance()
	int32 SetLanguage(BDirectory *folder, const char *language)�int32 SetLanguage(BEntry *folder, const char *language)�int32 SetLanguage(BPath *folder, const char *language)�int32 SetLanguage(const char *folder, const char *language)�int32 SetLanguage(entry
	void SetDefaultText(const char *deftext[], int32 count, const char *language)
	void SetAppID(const char *app_id)
	const char *AppID()
	const char *Language()
	const char *Text(int32 id)

	Quick reference

