

 Analysis Tools Construction Kit 2 Copyright 2001 Metrowerks Corp. All Rights Reserved

Analysis Tools Construction Kit

Lesson 01: Introduction and Overview _________________________________01-1

Why ATtaCK?__ 01-1

Course Materials __ 01-2

Analyzing Applications ___ 01-4

The Analysis Tools Construction Kit _____________________________________ 01-6

The ATtaCK Process___ 01-7

Developing ATtaCK Tools__ 01-10
Creating Stationery ___ 01-11

BareBones: The World’s Least-Useful ATtaCK Tool _______________________ 01-18

Lesson 01 Quiz___ 01-22

Lesson 02: Examining an Application_________________________________02-23

Anatomy of an Application ___ 02-23

ATtaCK Types: Objects__ 02-26

ATtaCK Types: Data Types___ 02-29

Startup and Shutdown___ 02-31

Navigating with Iterators ___ 02-33

Finding Code Structures ___ 02-36

Querying Code Attributes __ 02-40

A Static Analysis Tool ___ 02-47
Lesson 02 Assignment ___ 02-53

Lesson 02 Quiz___ 02-54

Lesson 03: Instrumenting an Application ______________________________03-56

Instrumentation Concepts __ 03-56

Instrumentation Calls ___ 03-58

Instrumenting an Application ___ 03-60

Instrumentation Sequencing __ 03-63

Instrumentation Sequencing—Instructions _______________________________ 03-65

Creating Analysis Code __ 03-67

Declaring Analysis Code ___ 03-69

A Minimal ATtaCK Tool___ 03-71

ProcCount: Navigation and Instrumentation______________________________ 03-72

ProcCount: Analysis and Output_______________________________________ 03-74

Lesson 03 Assignment ___ 03-76

Lesson 03 Quiz___ 03-78

Lesson 04: Running and Analyzing an Application ______________________04-79

Execution Concepts ___ 04-79

Executing an Application___ 04-81

Configuration Objects ___ 04-83
ATtaCK Events __ 04-86

Controlling the Application___ 04-88

Critical Sections __ 04-90

Communicating with the Application ___________________________________ 04-93

Arrays and Structures ___ 04-94

A Simple Profiler___ 04-99

SimpProf: Navigation __ 04-100

SimpProf: Instrumentation and Analysis________________________________ 04-101
SimpProf: Execution and Output______________________________________ 04-103

Lesson 04 Assignment __ 04-105

Lesson 04 Quiz__ 04-107

Lesson 05: Designing Analysis Tools_________________________________05-109

The Road Ahead __ 05-109

Principles of Code Analysis __ 05-109

Designing Analysis Tools __ 05-112

Dynamic Arguments ___ 05-114

Working with Registers ___ 05-118

Measuring Performance Counter Events________________________________ 05-121

PS2Counter: Analysis Code __ 05-124
PS2Counter: Instrumentation __ 05-127

PS2Counter: Navigation, Execution and Output __________________________ 05-129

Lesson 05 Assignment __ 05-131

Lesson 05 Quiz__ 05-133

Lesson 06: Profiling Applications ___________________________________06-135

Verifying Code Compliance __ 06-135

TRC: Initialization and Navigation ____________________________________ 06-136

TRC: Analysis and Reporting __ 06-139

Analyzing Branch Prediction___ 06-141
Branch: Improvement __ 06-143

BranchPred: Analysis __ 06-146

Looking for Inlining Opportunities ____________________________________ 06-149

Inliner: Instrumenation and Analysis __________________________________ 06-151

Inliner: Output, Interpretation and Improvements ________________________ 06-154

Detecting Load Delays __ 06-157

Lesson 07: Analyzing Memory and Cache Usage _______________________07-162

Catching Misaligned Memory Accesses _________________________________ 07-162

Hunting Down Memory Leaks__ 07-164

Plumber: Execution and Output ______________________________________ 07-167

Monitoring Stack Depth___ 07-170

Analyzing Cache Usage ___ 07-174
PS2Cache__ 07-176

How To Contact Metrowerks__07-181

Quiz Answer Key ___07-182

 Analysis Tools Construction Kit 01-1

Lesson 01: Introduction and Overview

Why ATtaCK?

Why You Need This Course
Metrowerks’ Analysis Tools Construction Kit, ATtaCK, is a powerful new framework
for developing custom profiling and debugging tools. The robust API enables you to
develop anything from a disassembler to a cache simulator, while the simple
programming model lets you write quick "throw-away" tools tailored to answer specific
questions. This course will cover both ends of that spectrum, teaching you how to write
sophisticated, general-purpose analyzers as well as simple, one-off tools.

You should take this course if you are planning on using ATtaCK to analyze your
PlayStation2 application’s performance. You will get the most out of this course if you
have experience using profiling tools on other platforms, plus an extensive knowledge of
EE assembly programming. However, part of the power of ATtaCK is its simplicity—
you don’t have to be an expert to use it. As long as you’re comfortable with C
programming, you can learn how to create ATtaCK tools.

There are seven lessons in this course. The first lesson introduces the concepts behind
ATtaCK, walks you through its installation and configuration, and generally gives you
the "big picture." The next four lessons cover the complete ATtaCK API, from opening
an application all the way to running it on the target system. The final two lessons are
labs, each examining four "real-world" analysis tools for you to adopt, adapt and
improve.

How to Take This Course
In an ideal world, people are constantly profiling and optimizing their applications as
they program. In the real world, most people don’t bother to profile their applications
until they hit a performance problem, at which point they need answers right away. If
you’re in that situation, take heart: You’re the exact person I’ve designed this course for.

By dedicating yourself full-time to the subject, you can become proficient in ATtaCK in
just a few days, and can master it within a week. In a classroom environment with a live
teacher, each lesson should take half a day. Online classes tend to go at a slower pace, but
even then, you can cover all seven lessons within a single work-week without quite
abandoning all your other responsibilities.

And trust me, that week will be well spent. I strongly recommend doing all the classes in
this course in sequence, in as short a timeframe as possible.

Everything you need to learn is in this course. Reading the documentation as well is
certainly a good idea, but it’s not necessary. There are, of course, a few places where I
cop out and point you to the docs, rather than copy six pages of tables into the course. But

 Analysis Tools Construction Kit 01-2

for the most part, you’ll only need to crack the manual for obscure details, precise
definitions or other background information.

Prerequisites
Obviously, to get the full benefit from this course you’ll need the ATtaCK Framework
for PlayStation 2. That in turn requires Metrowerks CodeWarrior Professional for
Windows/x86 (R6 or higher) and Metrowerks CodeWarrior for Sony PlayStation 2 (R2.5
or higher). ATtaCK lets you get a lot of information out of your application without ever
actually running the program, but if you want to try all the sample programs in the course
you’ll need access to a T10000.

To take this course, you should:

• Be comfortable with C programming

• Be familiar with the use of the CodeWarrior IDE

• Be familiar with PS2 development

To get the maximum benefit out of the course, you should also:

• Be comfortable with analysis tools on other platforms, such as VTune for Intel
x86

• Be familiar with EE assembly language

• Have a PS2 application that you want to profile

Course Materials

Lessons
If you’re reading this, you obviously know where the lessons are. You can proceed at
your own pace through the course—you’ve got full access to all the lessons. If you skip
ahead, though, be prepared to back up and review, because I generally only cover a
subject once!

Examples
After the lessons themselves, the examples are the most important part of this course. The
example programs are all usable as tools in their own right, and they make great starting
points for building your own custom tools.

Many of the example programs are included as part of your ATtaCK installation. (If you
haven’t installed ATtaCK yet, don’t worry—that’s coming later in this lesson.) The other
examples can be found in the "supplemental material" folder.

 Analysis Tools Construction Kit 01-3

Documentation
Online documentation should be part of your ATtaCK distribution. However, this course
is designed to give you a basic understanding of ATtaCK for the PlayStation 2 without
reading the documentation at all. We’ll cover every function in the entire API, but not in
the level of detail the docs give—instead, we’ll just look at how the functions are usually
used. If you find yourself working on advanced tools later on, you’ll probably want to
read the docs to pick up the subtleties I’m skipping.

Also, note that this course is written specifically for PlayStation 2. When ATtaCK
becomes available for another platform, the course will most likely be adapted to that
platform. If not, then you can still use this course—most of ATtaCK is platform-
independent, after all. Just be sure to read the platform-specific API docs alongside the
lessons, so that you can see where they diverge.

Quizzes
The first five lessons include interactive multiple-choice tests at the end. These are
"graded," in the sense that there are right answers you’re expected to give. Aim for a
perfect score—if you get a question wrong, it probably indicates a topic you should look
at again.

Exercises
Unlike quizzes, the exercises aren’t graded. They’re sample problems, real-world (or at
least realistic) situations you might face. As such, they don’t really have "right" answers.
Instead, I explain how I would approach the problem, which can give you ideas for your
own tools.

Only Lessons 02 through 05 have exercises. There’s not much point in having exercises
in this lesson—we’re just getting started, so you’re not ready to tackle real-world
problems yet. The last two lessons, on the other hand, are labs, in which we’ll examine
many sample programs. In a sense, those lessons are nothing but exercises!

Instructor Interaction
Depending on when you take the course, you may have the opportunity for live chats,
access to web message boards, email Q and A, and other instructor interaction. If this is
available, the main course website will give the schedule and links. If not, though, don’t
worry—the course has been written to stand alone.

By the way, the person writing this course is Stephen Beeman. While I hope to also teach
this course, the person teaching the course may be someone else entirely. Please don’t
give him or her a hard time over my lessons!

 Analysis Tools Construction Kit 01-4

Course Conventions
Many lessons have notes, text running in an indented paragraph. Notes are information
tangential to the main text, but still useful or at least interesting. You should read the
notes after you finish reading the rest of the lesson, or when the text says "see notes."

Oh, and literal code and other text that should be typed as written follows the standard
practice of appearing in Courier, like this.

Analyzing Applications

Analysis is defined as "an examination of a complex, its elements, and their relations."
That pretty much sums up the role of analysis in programming: an examination of an
application, its functions and their relationships. Specifically, code analysis answers two
questions: "Is everything working as expected? If not, why not?" The first question is
detection. The second is diagnosis.

Detection
The most common method of detection is human testing: simply having a human run the
program and see what breaks. A more sophisticated method is regression testing, where a
program’s output is automatically compared to expected output. However, that is not so
easy for game programming: Most problems are aesthetic, and require a playtester to
spot.

Relying so much on human-monitored testing, detection often doesn’t use any tools. That
however, is a mistake: People don’t use tools because they’re unaware of what’s
available, because for the longest time there simply weren’t good analysis tools available
for game programming and especially for game platforms.

However, computer assistance can greatly amplify the power of human testing. In some
cases, it can replace the need for testing.

Regression testing we’ve already mentioned. It’s hard to do with games, but still possible.
For example, physics routines, AI routines and similar code often produce output that can
be predicted (either deterministically or statistically). This allows a regression analysis
tool to compare the program’s output with the expected output; if they don’t match, then
you’ve detected a problem.

Unfortunately, while a powerful technique, this almost always requires custom tools.
More to the point, it almost always requires special changes to the application, breaking
subsystems out into standalone testbeds and so forth. So we won’t cover this subject
much in this course, but you should keep it in mind—you might figure out a way to apply
the ideas to your code.

More relevant are bounds checkers and memory-leak detectors. In a way, these are
regression analysis tools too. Bounds checkers test the app against the expected behavior
that arrays bounds won’t be overstepped and memory won’t be trashed. Leak detectors

 Analysis Tools Construction Kit 01-5

test for the expectation that all the memory allocated gets released before the end of the
program.

Code validation tools operate the same way. They test the app against the expected
behavior that no illegal parameters get passed to functions, or no illegal API routines get
called.

One code validation tool that works on source code is called lint. I strongly recommend
using this program, which is available in several versions... some freeware, some not.
This program looks for source errors, ranging from obvious, such as saying "if (x = 3)"
rather than "if (x == 3)", to subtle errors, such as misplaced semicolons and the like.

But code validation can work on compiled code, too. One of the programs we will look at
looks for trashed registers. If you write in assembly, this can be handy. If you write in
C/C++, you might not see much use for this, but it can catch compiler bugs. I’ve found
three genuine compiler errors in my programming career (never in Metrowerks
compilers, I must add!), and in each case a tool like this would have saved me days of
searching.

Detection tools can also help human testers do their jobs. A code coverage tool like
VisualCoverage, for instance, simply checks to see what functions (or what lines within
functions) have been executed. This lets the tester know when every part of the app has
been exercised, so that he can feel confident he’s given the app a thorough test.

Diagnosis
If detection is playtesting, then diagnosis is debugging: Once we know a problem exists,
we track down the cause. Of course, the line between detection and debugging can be
fuzzy, because often when we detect a problem we diagnose it at the same time.

For instance, you might put an assert in your code so that, when a function fails, it
generates an error message. That’s detection. If that error message contained information
about what the program was trying to do—that is, if it contained diagnostic
information—then the assert would be a diagnostic tool as well.

Diagnosis presents a special challenge with large, complicated programs like games,
because you cannot always recreate the exact problem. Detection tools are thus very
important: Every time the problem occurs, the tool will give information to the playtester,
and (hopefully!) the playtester notes it for you. Diagnostic tools that can be used quickly,
or even all the time, are also important—if the playtester can immediately gather some
diagnostic information, that makes intermittent problems much easier to find and fix.

But generally, diagnosis is a separate process performed by the programmer with separate
tools. A debugger is the most familiar diagnostic tool, for instance.

Another diagnostic tool is a memory allocation tracker. A leak detector just tells you that
memory has leaked, or might tell you that an allocation of 16 bytes leaked. An allocation
tracker tells you "the memory allocated on line 146 of gameloop.c never gets released."
Armed with that kind of info, fixing the problem is usually pretty easy.

 Analysis Tools Construction Kit 01-6

A profiler is another diagnostic tool. Speed problems are, after all, just another kind of
bug. A good profiler diagnoses these bugs, telling you why—or at least where—they’re
happening.

This discussion is by no means exhaustive. The point is to get you thinking about tools.
Game developers are used to making do with poor tools and, in my experience, need
some reeducation as we enter the age of better tools.

The Analysis Tools Construction Kit

Okay, now that I’ve told you stuff you probably already knew, we’re going to get to the
stuff you don’t know.

What is ATtaCK?
ATtaCK, the Analysis Tools Construction Kit, is an application framework to create
custom analysis tools. The previous page gave you a pretty good idea of what analysis
tools are, so now all you need to know is what an application framework is.

A framework is simply a library of code that provides a specific set of related features. If
the features supported by the framework include facilities for initializing, quitting and
other application-specific activities, you have an application framework.

In this case, the ATtaCK framework provides functions not only for initializing and
quitting, but also for loading and examining target applications, defining analysis code,
adding instrumentation calls into the target, and controlling a remote development
system.

What Does ATtaCK Do?
ATtaCK tools can be used for both detection and diagnosis. They perform analysis two
ways, by observing the application run on the target platform and by simulating the
application’s behavior.

Running on the target platform means adding analysis code. Asserts are analysis code—
code that doesn’t contribute to your program, but simply gathers and reports data.
ATtaCK lets you add analysis code without recompiling—you write and compile the
code separately, and then use ATtaCK (in a process called instrumentation) to insert that
code into the target application.

Simulating the target’s behavior means looking at the code and figuring out what the
CPU will do with it. You do this on a trivial level all the time—when you look at your
source code and see the line "x = x + 1," you know that the CPU is going to increment the
value of x by 1. ATtaCK does the same thing, just on a bigger scale.

But in all this discussion of what ATtaCK does, the important thing to remember is that
ATtaCK is a construction kit—it doesn’t do anything unless you tell it to! To get the most
out of ATtaCK, you will have to design and build your own analysis tools. This requires

 Analysis Tools Construction Kit 01-7

you to understand not only the mechanics of ATtaCK, but also the principles of code
analysis and the specifics of your application. In Lesson 05, we’ll spend some time
talking about this concept.

This is an unusual approach—most analysis tools, including Metrowerks’ own
CodeWarrior Analysis Tools package—come ready-to-use, with generic interfaces able
to handle any application. The ATtaCK approach requires more effort on your part, but it
offers greater rewards: ATtaCK can handle any analysis task, even ones unique to your
application—and we all know how unique game code can be!

Another advantage is subtle but important. Other analysis tools have an interface that you
must learn. The interface for ATtaCK is essentially C, which you already know. You
know how to describe sequences of activity in C; ATtaCK does all the work, so that
description is all you really need to perform the analysis.

A "ready-to-use" tool with the power and flexibility of ATtaCK would certainly have to
incorporate some kind of scripting language to drive its behavior. Once you have to learn
a scripting language, why not make that language C? And once you’re writing a program
in C, why not compile that program into a stand-alone tool that you can give to your
programmers and playtesters? The ATtaCK approach truly rewards the effort.

And, truth be told, many analysis tasks are common across all applications, and for some
of those tasks we provide you with pre-built tools. ATtaCK comes with five tools itself,
and this course includes five more. Best of all, since these tools are built with ATtaCK
and we provide you the source code, you can adapt and extend them all you want.

And really, developing ATtaCK tools is not that difficult—a junior programmer can do it,
although analysis is important enough that it merits the attention of your team’s senior
coders. The ATtaCK framework does almost all the work for you. All you have to do is
figure out what information you want to collect from your application and write code to
do that.

Of course, with a seven-lesson course dedicated to the subject, ATtaCK may not seem
simple. But this one course will teach you how to use ATtaCK as a debugger, a profiler, a
code-coverage tool, a code validation tool, a memory leak detector, and more. It’s much
easier than learning six different tools in a week, none of which might be compatible with
each other!

The ATtaCK Process

The typical ATtaCK tool comprises two programs, an instrumentation tool and analysis
code. The instrumentation tool is a simple Windows command-line program that opens a
target application, examines it, inserts instrumentation calls and runs the application on
the target system. The analysis code is a limited PlayStation 2 program that ATtaCK
merges with the target application; the instrumentation calls invoke functions in the
analysis code to gather data.

 Analysis Tools Construction Kit 01-8

Although every ATtaCK tool is different, each one has to perform certain steps in its
instrumentation tool and analysis code:

1. Read in user options. At a minimum, the tool needs to know the name of the
target application. How you accomplish this is completely up to you—you can
hard-code them if you feel like it, but better practice is to read them in from the
command line.

2. Initialize an ATtaCK session. ATtaCK manages all its resources using a session
object. All your tool has to do is call one simple function to create and initialize a
session; ATtaCK handles the rest invisibly. Initialization is covered in Lesson 02.

3. Open application. ATtaCK loads the application in from the disk and prepares it
for analysis. If you’re going to add instrumentation code, the tool will eventually
create a new application; the filename for that new program is specified here at
this step. The open function is covered in Lesson 02.

4. Step through code using iterators. Most analysis tools will need to process
every function in the target application. This is done using iterators, special
objects ATtaCK creates to let your tool step through every code element one at a
time. Code iteration is perhaps the most important concept in this entire course, so
we’ll be beating the subject to death in Lesson 02.

5. Declare analysis routines and data structures. Analysis routines are functions
you write to gather data from the target application at run-time. Your
instrumentation tool will use ATtaCK to modify the target application to call
these routines, and so you must tell ATtaCK the names and definitions of the
routines. Likewise, you must declare to ATtaCK the layout of any data structures
that you want to pass back and forth to the analysis code. Analysis routines are
covered in Lesson 03; data structures are discussed in Lesson 04.

6. Add instrumentation calls and/or perform static analysis. Instrumentation
calls are code inserted into the target application to gather data at run-time, and
are covered in Lesson 03. Static analysis consists of examining the application
code directly, without running it, and is covered in Lesson 02. But really, this step
is the entire point of ATtaCK, and one way or another all the remaining lessons
will cover it!

7. Write out or close the application. The instrumentation calls added to the target
application create a new version of that application. This is saved to disk, either to
run later or into a temporary file to download and run immediately. If you’re just
doing static analysis, you won’t be writing anything; instead you simply close the
application. Writing is covered in Lesson 03; closing is covered in Lesson 02.

8. Download and run instrumented application. ATtaCK handles all
communication with the target system, downloading and launching your
instrumented application. You have a small measure of interactive control from
the host—you can pause, resume or halt the target—but for the most part you just

 Analysis Tools Construction Kit 01-9

run your instrumented application the way you’d run any other program on the
target system. We’ll come back to this in Lesson 04.

9. Analysis code gathers data in instrumented application. As the instrumented
application runs on the target system, your original code executes calls to the
analysis code added by ATtaCK. The analysis code performs three "subtasks":

9A Allocate space for analysis data. The data your analysis code collects has to
go somewhere until the host system is ready to receive it. That somewhere is
memory on the target system, which the analysis code must allocate
somehow. Usually you allow ATtaCK to handle this for you. We’ll look at
this subject briefly in Lesson 03, and in more detail in Lesson 04.

9B Initialize analysis data. Once you’ve got a buffer allocated for the data, you
need to initialize the data before collection begins. You may also want to re-
initialize the data. Again, there are ways to let ATtaCK handle this for you,
or you can do it by hand. This is also covered in Lesson 04.

9C Gather analysis data. At its simplest, analyses code just increments
counters. Since you want to keep your analysis code as lightweight as
possible, "simplest" is usually how things wind up being. This is covered in
Lesson 03, to the extent that you need me to teach you how to increment a
variable...

10. Read data from instrumented application. As the application runs on the target
system, the instrumentation code you added captures data and stores it in a buffer
on the target. When you’ve compiled enough data for analysis, you use ATtaCK
to read that buffer back into your analysis tool. This is covered in Lesson 04.

11. Analyze and output results. At this point, you’ve compiled a set of data about
the target application, by capturing data from a live application and/or by
statically examining the application’s machine code. All that remains is for you to
analyze, store and display your results. The bad news is, this is something
ATtaCK can’t help you with. The good news is, hey, that’s why you get paid the
big bucks. I’ve done my share of profiling and optimization over my dozen years
in the games business, and in Lessons 05 through 07, I’ll share some of what I’ve
learned.

12. Close ATtaCK. Being a good citizen of the programming world, you always free
what you’ve allocated, destroy what you’ve created and otherwise clean up after
yourself. Right? ATtaCK makes this as easy as possible and we’ll cover it in
Lesson 02.

 Analysis Tools Construction Kit 01-10

Developing ATtaCK Tools

Installing ATtaCK
The first step toward developing ATtaCK tools is, of course, to install it. Whether you
received ATtaCK by download or on a CD, the installation package should have come
with instructions, so start with those.

Make a note of whatever folder you install ATtaCK into, because you’ll need it often
through the rest of this lesson. By default, this will be something like C:\Program
Files\Metrowerks\ATtaCK for PS2. I’ll refer to it as "your ATtaCK folder."

Once that’s done, you need to make sure that your PATH environment variable is set
properly. ATtaCK uses this variable to search for atck.dll, which is where the ATtaCK
libraries live. This file is found in the bin\ps2 subdirectory of your ATtaCK folder, so
you need to add the full path to that subdirectory to your PATH variable.

Figure 01-01: Setting the Search Path on Windows 2000

On Windows 98/Me, PATH is set in autoexec.bat. On Windows 2000, this variable is
much harder to get to: Right-click on My Computer and select Properties... Then click
on the Advanced tab and hit Environment Variables... Finally, select the Path variable
and hit Edit.

Using the CodeWarrior IDE
Each ATtaCK tool is composed of an instrumentation tool and a set of analysis code. The
instrumentation tool is a standard Windows application built with any Windows C/C++
compiler (preferably CodeWarrior!), while the analysis code is a limited PlayStation 2
program that must be compiled with CodeWarrior for PlayStation 2.

 Analysis Tools Construction Kit 01-11

If you’re not familiar with the CodeWarrior for Windows IDE, there’s a
CodeWarriorU.com course on the subject you should take. Go to
http://www.codewarrioru.com for more information.

Really, though, if you need ATtaCK, then you’ve probably already built a PlayStation 2
application using CodeWarrior, so I feel pretty safe in assuming that you know how the
IDE works. Besides, it’s just an IDE—I’m sure you’ve dealt with these before.

Nevertheless, there are a number of project settings that have to be "just right" to make
ATtaCK work. You might not have ever dealt with some of these settings before, so that
is a subject we need to cover. While we’re at it, we’ll look at project stationery,
CodeWarrior’s mechanism for setting up new projects with default settings.

This is very important for ATtaCK—because ATtaCK apps, especially the analysis code,
have some special features, they require a lot of changes from the normal project defaults.
Stationery will let you make those changes just a single time, then duplicate them in all
your future projects. That’s a tremendous time-saver, so let’s go ahead and create
ATtaCK project stationery now.

Creating Stationery

Stationery is just a normal project located in the Stationery folder below your
CodeWarrior installation. You create stationery by creating new projects in the stationery
folder. Each new project, of course, is itself created with stationery, which we’ll specify.

Creating the Project
A single CodeWarrior project can have multiple targets. Normally, each of these targets
is just a different configuration of the program for one platform. For example, I’m sure
you’re familiar with "debug" and "release" builds.

However, CodeWarrior is designed for cross-platform development. Beyond just having
different settings, each target can use a different compiler and be built for a different
platform. This is tremendously convenient for ATtaCK tool development, because it
means our instrumentation tool and analysis code can share the same project.

Open up CodeWarrior. Go to New... Select Empty Project. Give it a name—ATtaCK
Tool will do—and hit OK. It doesn’t matter where this project is, because once we’re
finished creating the stationery, we’re going to move it.

Creating the Folders
Use Explorer, File Manager or a plain old DOS prompt to go to the new folder containing
your project. Create the following subfolders:

• Inst, which will hold the instrumentation tool

• Anal, which will hold the analysis code

 Analysis Tools Construction Kit 01-12

• Shared, which will contain any project-specific include files shared between the
instrumentation tool and analysis code

• And Bin, which is where each target’s output will be placed

Now go back to CodeWarrior.

Creating the Targets
All projects must have at least one target. We need two, so we’ll have to add one. From
the menu, select Project > Create Target... In the dialog box that comes up type
Analysis Code and hit ENTER.

Click on the project window’s Targets tab to see our two targets. Double-click on the
original target, the one called "ATtaCK Tool." This brings up the "Target Settings" dialog
box, which we’ll be seeing a lot of for the next few pages. Right now, change the target
name to Instrumentation Tool, and make sure the linker is set to Win32 x86 Linker.
Hit OK. Now double-click on the new "Analysis Code" target, change its linker to MIPS
PS2 Linker and hit OK.

Figure 01-02: Changing the "Analysis Code" Target’s Linker

Which other target settings are available depends entirely on the target’s linker. Thus,
when you change the "Analysis Code" target from Windows to PlayStation 2, you can
see that the settings available change as well. For instance, the "Windows RC" language
settings get replaced with settings for the "GNU DVP Assembler" and "MW GAS
Assembler."

Now that the two targets have the proper settings available, we need to, well, set them.
We’ll start with the easier of the two, the "Instrumentation Tool" project.

 Analysis Tools Construction Kit 01-13

Using Two Separate CodeWarriors

The main text describes the ideal situation, in which your CodeWarrior for Windows and
CodeWarrior for PlayStation 2 installations share the same folder. This lets you combine the
instrumentation tool and analysis code into a single project.

If you have two separate installations of CodeWarrior, your ATtaCK tools will have to be
split into two separate projects, too. You can still follow this lesson’s instructions—just put
each target in its own project.

Setting the Instrumentation-Tool Target
Double-click on the "Instrumentation Tool" target again. The target settings are grouped
into "panels" of related options. You pick which panel to view and modify by clicking in
the list in the left-hand pane. After modifying a panel, it’s a good idea to save your
changes by hitting the Apply button. (Hitting OK closes the dialog, so don’t do that until
we’re completely done.)

The "Target Settings" panel only needs one modification: Click on the Choose... button to
change the output directory from the project folder to the Bin subfolder. When you hit
OK, the directory will now appear as {Project}Bin.

Next, select the "Access Paths" panel. This has two "sub-panels," one for user paths and
one for system paths—the latter are the ones referenced by #include <filename.h>.
Make sure the User Paths radio button is selected and hit Add... Use the folder list to
browse for your project’s Shared folder and hit OK. Then hit Add... again to find and add
the ATtaCK library folder, Lib\ps2. (If you have a default ATtaCK installation, this
folder will be C:\Program Files\Metrowerks\ATtaCK for PS2\Lib\ps2.) Before you
hit OK, though, change the droplist at the top of the dialog from Project Relative to
Compiler Relative.

Now change the radio button to System Paths. Add three more compiler-relative paths:
Win32-x86 Support\Headers, Win32-x86 Support\Libraries and MSL. Then add
the ATtaCK include folder (C:\Program Files\Metrowerks\ATtaCK for
PS2\Include), also compiler-relative. The figure below shows how the paths should
look:

 Analysis Tools Construction Kit 01-14

Figure 01-03: Setting the "Instrumentation Tool" Target’s Access Paths

The "Build Extras" panel is fine. On "Runtime Settings," change the working directory to
Bin. On "File Mappings," add a new file extension by entering .lib in the "Extension"
edit field, changing the "Compiler" droplist to Lib Import x86, and hitting Add.

 "File Mappings" and "Source Trees" are also fine. On "x86 Target," make sure the
project type is Application (EXE). On the "C/C++ Language" panel, make sure
everything is off except Enable bool Support. Now skip all the way down to the "x86
Linker" panel. Change the "SubSystem" from Windows GUI to Windows CUI—this is a
command-line tool, not a GUI tool.

That’s all the settings that need to change for this target, so hit OK to close the "Target
Settings" dialog.

 Analysis Tools Construction Kit 01-15

Using ATtaCK without CodeWarrior

The ATtaCK library uses the standard format, so you can build ATtaCK tools with any
Windows C/C++ compiler. However, you’ll have to deal with two separate IDEs, and you
lose all the advantages of a dual Windows/PlayStation 2 installation—your instrumentation
tool and analysis code will have to live in separate projects. You’re really much better off
using CodeWarrior for both halves of your ATtaCK tools.

No matter what, you’ll have to use CodeWarrior for PlayStation 2 to build analysis code.

Adding Instrumentation - Tool Files
From the menu, select Project > Create Group... and create a file group called ATtaCK
Libraries. Select that new group and go to Project > Add Files... Browse for the file
atck.lib (located in your Lib\ps2 folder). Note that you’ll have to change the "show
files of type" droplist from source files to library files.

Using the same process, create a group called MSL ANSI Libraries. This folder will
hold the standard C libraries, so that we’ve got access to functions like printf(). Add
the library files ansicx86d.lib (found in the MSL\MSL_C\MSL_Win32\Lib\x86
subdirectory of your CodeWarrior installation) and mwcrtld.lib (found in Win32-x86
Support\Libraries\Runtime).

Now create a Win32 SDK Libraries group, which will—you guessed it!—hold the
Win32 SDK libraries. (Even if you don’t think your application uses any Win32
functions, it actually does—the standard C libraries use them "behind the scenes," so you
have to link to the Win32 libraries no matter what). To this group add gdi32.lib,
kernel32.lib and user32.lib, all found in the Win32-x86
Support\Libraries\Win32 SDK subdirectory.

Finally, create a group called Instrumentation Tool, to hold the source files for the
instrumentation tool. With that group highlighted, select File > New... from the menu,
click on the "File" tab and select "Text File" from the list. Give the new file the name
insttool.c, and click on Set... to place it in the Inst folder. Check the "Add to project"
box, and make sure that the "Instrumentation Tool" target is checked but that the
"Analysis Code" target is not. Hit OK.

We’re basically done with this target, but let’s do one more thing for polish. The
insttool.c file should now be open. This file will get copied into every new project we
create with this stationery, so we might as well save ourselves a little bit of work. Add the
following code to the top of the file:

#include <atck.h>

#include <atckps2.h>

Close and save insttool.c.

 Analysis Tools Construction Kit 01-16

Setting the Analysis-Code Target
The steps to get the analysis-code target set properly are basically the same as for the
instrumentation-tool target. Start by double-clicking the "Analysis Code" target.

Once again, on the "Target Settings" panel, change the output directory from the project
folder to the Bin subfolder. Next, select the "Access Paths" panel, and add the same two
folders to the user paths as were added for the instrumentation tool: {Project}Shared
and {Compiler}...\ATtaCK for PS2\Lib\ps2.

Now change the radio button to System Paths. Here you only need to add two compiler-
relative paths: the ATtaCK include folder ({Compiler}ATtaCK for PS2\Include) and
the PS2 Support subdirectory of your CodeWarrior installation ({Compiler}PS2
Support).

The "Build Extras" and "Runtime Settings" panels are fine, but "File Mappings" isn’t.
Add a new file extension by entering .o in the "Extension" edit field, changing the
"Compiler" droplist to Lib Import MIPS, and hitting Add.

On the "MIPS Bare Target" panel, change the "Project Type" to Application, the "File
Name" to analcode.elf, the "Byte Ordering" to Little Endian, and the "Small Data"
threshold to 0.

On the "C/C++ Language" panel, make sure everything is off except Enable bool
Support. Now skip all the way down to the "MIPS Bare Linker" panel. Make sure
"Generate ELF Symbol Table" is checked, and change "Entry Point" from __start to
atcktarg_start. That’s the last of the target settings, so hit OK.

Adding Analysis-Code Files
In the "Files" tab, select the "ATtaCK Libraries" group and go to Project > Add
Files... Browse for the Lib\ps2 folder and add the files atcktarg.lcf and atcktarg.o
to the "Analysis Code" target. (Again, remember that you will have to change the "show
files of type" droplist to "all files" in order to see these files.)

 Analysis Tools Construction Kit 01-17

Figure 01-04: Adding Files to the Analysis-Code Project

As we did with the instrumentation tool, we’ll set up a source file to be created along
with the project, ready to add code. Create a group called Analysis Code. With that
group highlighted, select File > New... from the menu, click on the "File" tab and select
"Text File" from the list. Give the new file the name analcode.c, and click on Set... to
place it in the Anal folder. Check the "Add to project" box, and make sure that the
"Analysis Code" target is checked but that the "Instrumentation Tool" target is not. Hit
OK.

The new file will open for editing, so give it these contents:
#include <atcktarg.h>

#include <atcktargps2.h>

#pragma force_active on

You don’t have to include any other headers for libraries—indeed you can’t include
them, because analysis code cannot access the Sony libraries. Likewise, you can’t have a
main() function in this file, because that’s provided by ATtaCK. (You’re free to call a
function main() if you want, but it won’t be the entry point for your analysis code.)

 Analysis Tools Construction Kit 01-18

The #pragma directive is there to keep the linker from "optimizing away" all our code:
Since it’s the target application, not the analysis code, that calls the routines in this file,
the linker doesn’t think any of them are used, and will save space by throwing them
away!

Close and save analcode.c, then close and save the entire project.

Finishing the Stationery
To turn this project file into stationery, we have to clean up the project folder and move it
to the CodeWarrior stationery folder. Use your favorite file shell to open the project
folder. In addition to the folders you created, it should contain a folder CodeWarrior
created called ATtaCK_Tool_Data. Delete that folder and all its contents, but leave the
other folders alone.

Now move the ATtaCK Tool project folder in its entirety into your CodeWarrior
stationery folder. This folder is just off the main directory containing CodeWarrior, and
will be named something like C:\Program
Files\Metrowerks\CodeWarrior\Stationery.

And that’s it! The next time you select File > New... in the CodeWarrior IDE, ATtaCK
Tool will be available as stationery for the new project. But don’t take my word for it—
go to the next section and we’ll try it out!

BareBones: The World’s Least-Useful ATtaCK Tool
We’re going to jump right into some code, mostly to test your installation. Don’t be
intimidated! I’m not going to take the time right now to explain what each line does,
except to say that every ATtaCK library routine begins with atck_, and every ATtaCK-
supplied typedef begins with atck_ and ends with _t. Just walk with me on how each of
the steps discussed earlier is represented in the code below.

This tool is very simple, and its behavior is easy to describe. It iterates through every
procedure in the target application, adding an instrumentation call to each one. The
instrumentation call simply increments a counter. Thus, the program counts the number
of function calls your target application makes.

Like I said, this is the least-useful ATtaCK tool in the world. But it’ll establish whether
you’ve got everything installed properly, and also give you an initial sample app so that
you can see the basics of an ATtaCK tool.

Creating BareBones
Let’s make a project to make sure everything works. Select File > New... , highlighting
the ATtaCK Tool stationery, and name the new project barebones.

 Analysis Tools Construction Kit 01-19

Open analcode.c. Replace its contents with that of barebones-anal.c in the
"supplemental material" folder. Then open insttool.c and replace its contents with that
of barebones-inst.c .

Now open the "Target Settings" dialog for the instrumentation-tool target, go to the "x86
Target" panel and change the name from noname.exe to something a little more
appropriate, such as barebones.exe.

Save all that, and we’re ready to see whether everything works.

Compile-Time Troubleshooting
Select the barebones.mcp project window and hit F7. It should build one of the two
targets, most likely the instrumentation tool. Once that target compiles properly, select
the other target from the droplist at the top of the project window and build it. If errors
occur during either of these builds, a window will open up. Don’t worry about
warnings—you’ll get at least two warnings in your analysis-code project, but they don’t
matter. Here are some errors you may see:

Undefined Symbols/Header File Not Found

Your access paths are wrong—check Access Paths under Target Settings for each
project. If you’re having trouble with relative paths, just cop out and use absolute paths.

License Error

Your CodeWarrior for PlayStation 2 installation must be licensed to compile the analysis
code. If you receive a license error, refer to your CodeWarrior documentation for more
details.

Anything Else

Check for typos in your code, although if you just copied what we gave you, it should be
fine—we’ve checked! Also check to make sure that none of the standard PlayStation 2
libraries are included in your analysis-code project—the only files you should be linking
to are ones you write yourself, and ATtaCK files (which all begin with "atck," naturally
enough).

If you still have problems, you can reach Metrowerks tech support at
ps2_support@metrowerks.com, or call (800) 377-5416 in the U.S. - for customers outside
the U.S. call +1(512) 997-4700.

Instrumentation Troubleshooting
Now that you’ve successfully built the program, let’s try it out! Open a DOS window and
change to the project’s Bin subdirectory, where you’ll find barebones.exe. First, run it
without an application at all, to make sure your environment is properly set.

 Analysis Tools Construction Kit 01-20

Next, pick a PlayStation 2 application and type barebones filename—be sure to
include the full path to your application! This should simply report a count of the number
of procedures in the application. Note that this count will be higher than the number of
routines in your code—even a simple "Hello, World!" program will have about 300
functions in it, thanks to the C runtime code, startup functions and other library routines.

Here are some errors you might encounter:

‘barebones’ is Not Recognized

The file barebones.exe can’t be found. Either you’re in the wrong directory—you need
to be in the Instrumentation Tool subdirectory of your Barebones project folder—or
you compiled the analysis-code target rather than the instrumentation-tool target.

Unable to Locate DLL

This error means your DOS PATH variable either hasn’t been set or is pointing to the
wrong directory. Type just PATH at the command prompt and make sure the bin\ps2
subdirectory of your ATtaCK folder is included properly.

Unable to Open Analcode.elf

You probably compiled just the instrumentation-tool target without also building the
analysis-code target, or you’re running barebones.exe from somewhere other than the
Bin directory.

License Error

ATtaCK will only function when licensed. This information should have come with
you’re your ATtaCK installation package; if not, contact Metrowerks License
Department at license@metrowerks.com.

Run-Time Troubleshooting
Now, using the same application, type barebones -r filename. This will give the same
function count as before, but will also download the application to your T10000 and run
it. Let the application run on the target for a while, and then hit any key to end the
program. Your final output should look something like this:

 Analysis Tools Construction Kit 01-21

Figure 01-05: Sample Output of Barebones.exe

Hangs

If the program seems to hang, it cannot find the T10000. Refer to CWComUtil and its
documentation for debugging.

What’s Next

That’s it for Lesson 01. In the next lesson, we’ll start covering the ATtaCK API, and
you’ll experiment more with the capabilities of this powerful framework.

Debugging Analysis Code
The analysis code won’t be part of the symbolic debugging info so normal debugging isn’t
possible. The code can’t communicate with the target application or send messages to the
host, so "printf debugging" is out. All you can do is step through the disassembly.

Moral: Keep your analysis code simple. Write as little code as possible, and make sure the
code you do write is so straightforward that it can’t conceal any bugs.

 Analysis Tools Construction Kit 01-22

Lesson 01 Quiz

This quiz will be a breeze, because this lesson mostly covered introductory
material. You can expect there to be more questions in the next lesson!

1. The lessons are the most important part of this course. What’s the
second most important part of the course?

A The documentation.

B The example programs.

C Instructor interaction.

D A PlayStation 2 development system.

2. True or false: Regression testing is the most common method of
detecting code errors.

A True

B False

3. What’s the difference between using ATtaCK and simply writing
analysis code directly into your program, for instance by using asserts?

A ATtaCK doesn’t modify your program

B ATtaCK works with the binary image rather than the source code.

C ATtaCK doesn’t require any work on your part.

D There is no difference.

4. Which team member should develop ATtaCK tools, and why?

A A senior programmer, because ATtaCK tools are very
complicated.

B A junior programmer, because ATtaCK tools are very easy.

C A senior programmer, because analysis and optimization are
critical.

5. True or false: ATtaCK analysis code is written and compiled just like
any other PlayStation 2 program.

A True

B False

 Analysis Tools Construction Kit 02-23

Lesson 02: Examining an Application

In our second lesson, you'll learn how to use ATtaCK to break your application
down into its basic elements. We'll then look at our first real ATtaCK tool.

Anatomy of an Application

Lesson Objectives
If you'll remember our discussion of the ATtaCK process in the last lesson, you’ll
see that I promised we’d cover five steps in this lesson: initialization, reading
system options, opening target applications, stepping through code using iterators,
and closing ATtaCK.

I know, I know, five out of eleven sounds like a lot for one lesson. Really, though,
we’re going to spend most of our time walking through code. The rest, from
initialization to shutdown, are just boilerplate housekeeping tasks that will take
you about ten minutes to learn. You can’t have an ATtaCK tool without that stuff,
but studying it isn’t very edifying, so we’ll cover it as briefly as possible.

Code navigation, on the other hand, is the heart and soul of ATtaCK. At a
minimum, your tools will need to step through the target program just to examine
it, disassemble it and otherwise reveal its inner workings to you. "Real" tools, the
kind your boss expects to justify ATtaCK’s price tag, do more: They actually
modify your application to insert analysis code.

That doesn’t just happen by itself—you have to tell ATtaCK what code goes
where. The "what code" part comes in Lesson 03. First, you need to become an
expert on "where." And the first step toward that is to learn how ATtaCK models
your application.

Anatomy of an Application
Any analysis tool must model the target application in some logical way, so that
you can examine it and identify the code you want to monitor. The IDE, for
instance, models an application as a collection of files and lines. When you want
to insert a breakpoint into your code, you do so by marking a particular line of a
particular file.

The IDE presents your application as files and lines ultimately because that’s the
way you see it. The IDE is a tool for getting information out of your head and into
the computer. ATtaCK, on the other hand, isn’t particularly concerned with how
you see things (sorry!). As a tool for getting information out of the CPU, ATtaCK
models your application the way the CPU sees it: as a series of instructions.

Now, a large application might have hundreds of thousands of instructions, which
would get tedious to step through. Fortunately, there’s a shortcut: As long as a
sequence of instructions is only entered at the beginning and only exited at the
end, you can just treat it as one mega-instruction—a basic block. Apart from the
handful of instructions that take a variable number of cycles to execute, you can

 Analysis Tools Construction Kit 02-24

assume that a single basic block will always consume the same amount of time
and have the same potential side effects every time it runs.

Let’s pause here for me to point out that ATtaCK can break down your
application into basic blocks reliably only because it looks at every branch and
call in the entire program. ATtaCK is omniscient and infallible. It’s not possible
for your program to ever jump into the middle of a basic block, because if any
jump in the entire application targeted the middle of that block, ATtaCK would
have split the block in two. This is just one small example of the very extensive
processing that ATtaCK does behind the scenes. ATtaCK tools are easy to write;
ATtaCK itself most assuredly was not!

ATtaCK’s Limitations

ATtaCK is designed to be language-agnostic, but it’s really most comfortable with C
or assembly language. C++ presents a few "gotchas" to watch out for.

First of all, whenever you use ATtaCK to read the name of a C++ function, you’ll
have to unmangle the name yourself.

Second, C++ virtual methods are called indirectly, using vtables—ATtaCK knows
where indirect calls take place, but can’t tell what methods are getting called.

Procedures

Moving up the hierarchy, basic blocks can themselves be grouped together. Your
application is almost certainly structured into functions or procedures. ATtaCK
defines a procedure as a collection of basic blocks that, once entered, is only left
via one or more known exit points. The procedure includes all the basic blocks
that are branched to, but not those that are called. (Just to review the distinction:
A call transfers execution with the expectation that the program will return to the
instruction following the call; a branch transfers execution with no expectation of
coming back.)

Their entry points define procedures. An entry point is ATtaCK’s term for the
target of a procedure call. Every procedure must have at least one entry point; if it
didn’t, it wouldn’t be a procedure. ATtaCK finds procedures by reading the
symbol table and looking at the target of every call in the program. This means
that a procedure in the symbol table will show up in ATtaCK even if it’s never
called. Conversely, a procedure with no entry in the symbol table—for instance, a
relative call within an assembly module—will also show up in ATtaCK, although
it won’t have a symbolic name, of course.

If your application is written in C/C++, each procedure has one and only one
entry point, at the opening curly brace. The situation in assembly is more
complicated: A procedure could have multiple entry points, and might not even
have an entry point at the beginning. How? Well, it depends on your definition of
the word "beginning." The execution of a procedure must always begin at an entry
point. However, when ATtaCK gathers together all the basic blocks of that
procedure, it sorts them by ascending address. If the procedure branches to a

 Analysis Tools Construction Kit 02-25

block with a lower address than the entry point, that block will be the beginning
of the sorted list.

Assembly procedures present other opportunities for confusion. Let’s say your
program has two functions that perform the same basic clean-up tasks before
returning. To save space, you end each of those functions not with a return but
with a branch to the common final code, which performs the clean-up and then
executes the actual return. From your point of view, these are two separate
procedures. ATtaCK, on the other hand, sees them as one single procedure with
two entry points. The rule is that each basic block belongs to one and only one
procedure; any time two or more procedures can reach a basic block, ATtaCK
folds those together into one.

The Rest of the Story

There are just a few ATtaCK terms left before the model is complete.

A call site is just a function call. Most of these will be to procedures within your
program, in which case there will be an ATtaCK-identified entry point at the
target of the call. When you call OS code that lives outside your application, there
won’t be an entry point, although you will be able to query for the target address.
When you call a virtual function, ATtaCK doesn’t even know the target address.

An image comprises all the basic blocks that share a single address space. For
example, in a Windows program, the application itself would be one image, while
each .DLL it loaded would be another. On the PlayStation2, each code overlay
would be a separate image. However, the current version of ATtaCK doesn’t
support code overlays, so you’ll only see one image per program.

Finally, the program is your application itself. As mentioned before, on the
PlayStation 2 there’s a one-to-one relationship between programs and images, but
ATtaCK still treats the two separately.

Top-Down Review

It’s easier to define each part of the ATtaCK model by starting at the bottom and
working up. On the other hand, it’s easier to get the big picture by starting at the
top and working down, so let’s review that way:

Your application is a program.

Each program is made up of one or more images; on the PlayStation 2, there can
be only one.

Each image is made up of procedures, which are defined by the presence of one
or more entry points. Entry points are usually the targets of call sites.

Each procedure is made up of basic blocks.

Each basic block is made up of instructions.

This top-down structure is exactly how you’ll use ATtaCK to step through your
application: First you get a handle to the program, then you use that to get a
handle to an image, then you use that to get a handle to a procedure, and so forth.

 Analysis Tools Construction Kit 02-26

ATtaCK Types: Objects

ATtaCK Objects
ATtaCK uses objects internally to maintain its state information. Every ATtaCK
function either acts upon one or more of these objects, or creates and returns a
new object; most do both!

Pointers to opaque types represent these objects. For example, a session object is
represented by a pointer to type atck_sesn_t, not by a variable or structure of
type atck_sesn_t. Your program should never try to instantiate the underlying
type directly, nor should it ever de-reference, delete or free() one of these
pointers. Always use the specific ATtaCK functions to manipulate objects. To
emphasize this, we’ll always refer to these pointers as handles.

You might want to create a small header file that defines an opaque type for each
handle. For example:

typedef atck_sesn_t* HSESSION;

will allow you to subsequently declare variables such as
HSESSION hSession;

Depending on your personal coding style, this may be clearer to you. It certainly
is to me, but then my mind has been warped by a decade’s worth of Windows
programming. Remember that the purpose of ATtaCK is to enable you to create
new, custom analysis tools quickly. If wrapping the ATtaCK handles in your own
types, obeying your own naming convention, helps you do that then by all means,
go right ahead!

"Methods" and "Attributes"

Conceptually, ATtaCK objects have methods, functions that operate on their data.
They also have attributes, data they expose to your program. Since the ATtaCK
API is written in straight C, however, these methods and attributes aren’t
implemented as members of the objects themselves, but are instead separate,
global functions.

Almost every ATtaCK function takes, as its first argument, a handle to an
ATtaCK object. For example, the function to open a new application,
atck_open(), takes as its first argument a handle to a session object.
atck_open() is thus "a method of the session object," even though as far as the
compiler’s concerned it’s not a member of anything.

Similarly, object attributes are not exposed as C-style structure member variables.
Instead, each attribute has an access method. For example, the number of images
contained within a program is an "attribute" of the program object. This value is
returned from the access function atck_nimg(), which takes as its first (and only)
argument handle to a program object.

At the risk of some short-term confusion, we’ll continue to call these functions
"methods" and "attributes," even though from the compiler’s perspective they’re

 Analysis Tools Construction Kit 02-27

nothing of the kind. As you learn more about the ATtaCK API, you’ll see how
this concept makes it much easier to remember each function’s name and
arguments.

Code Objects

Code objects represent the "anatomical elements" we discussed in the previous
section: program, image, procedure, entry point, call site, basic block and
instruction. These objects have attributes, which are used to examine your
application. For instance, the atck_ent_t object contains the address, symbolic
name, file name and line number of a given entry point, and the handle of the
procedure object that contains the entry point.

These objects are created invisibly as needed as you step through the code. You
do not need to release them—they are owned by their parent object, and freed
when it is freed. The program is the parent of each image, while the images are
the parents of every other object.

Handles are unique and consistent. You can never have two different handles for
the same object at the same time. For example, if you use two iterators to step
through the basic blocks in a procedure, both iterators will return the same
sequence of handles. This means that you can simply test two handles for equality
to see whether they reference the same underlying structure in the application.
Handles are not persistent, however. If you run the tool twice in a row, you will
get different handles for each run.

Code objects will be covered in detail later in this lesson.

Code Object Abbreviation Object Type

Program None (see below) atck_prog_t

Image img atck_img_t

Procedure proc atck_proc_t

Entry Point ent atck_ent_t

Call Site call atck_call_t

Basic Block bb atck_bb_t

Instruction inst atck_inst_t

Table 02-01: Code Objects

The abbreviation listed for each object is used throughout ATtaCK, such as in the
object’s type name. The abbreviation is also used to identify that object’s
methods. For example, every method of the call site object is of the form
atck_call_methodname(). The program object is a special case here: It is the
"default" for methods, so methods of the program object are of the form
atck_methodname(), not atck_prog_methodname().

 Analysis Tools Construction Kit 02-28

State Objects

These objects maintain the state information for ATtaCK. You must create and
destroy them yourself, using the ATtaCK functions provided.

Type Definition Covered In

atck_sesn_t Session, the top-level ATtaCK
object

Lesson 02

atck_run_t A program downloaded to the
target system Lesson 04

atck_reg_t A set of registers referenced by an
instruction

Lesson 05

atck_imgit_t

atck_procit_t

atck_entit_t

atck_callit_t

atck_bbit_t

atck_instit_t

Iterators to step through images,
procedures, entities, call sites,
basic blocks and instructions,
respectively

Lesson 02

Table 02-02: State Objects

Other Objects

These objects are, like code objects, maintained by ATtaCK. You don’t have to
destroy them, although in some cases you have the option of doing so.

Type Definition Covered In

atck_cfg_t A set of system configuration
options Lesson 02

atck_dev_t A device connection, through which
you control the target system Lesson 04

atck_iprog_t An instrumented program ready to
download and execute Lesson 04

atck_tevt_t An event raised on the target
machine and sent to the host Lesson 04

Table 02-03: Other Objects

What About C++?
I’m sure the C++ programmers out there are already jumping up and down,
asking "Why aren’t these real objects?!" The answer is "No reason why not—be
our guest."

Seriously, there would be a lot of advantages to wrapping the ATtaCK API in a
set of C++ objects. For one thing, you’d get much stronger type checking, which

 Analysis Tools Construction Kit 02-29

would help prevent mistakes. The API would also be much cleaner:
entry.GetAddress() is easier to understand than atck_ent_addr(pent). The
API’s pretty simple and consistent now, though, so those aren’t killer advantages.

What would be killer is the convenience of constructors and destructors. Not only
would these simplify the API for the various cleanup functions, they’d also handle
the "boilerplate" code invisibly. For instance, the default ATCKSession
constructor could automatically load the default system configuration file, a bit of
code that basically never changes. A quickie set of wrapper classes I slapped
together reduced the size of Lesson 01’s BareBones.c by 20%, and the more
complex your iteration tasks the more savings you’d see.

Wrapping ATtaCK in C++ isn’t all peaches and cream. Not everyone is
comfortable with C++, so you might be reducing the pool of programmers able to
write and maintain your ATtaCK tools. More to the point, creating a proper, well-
conceived set of C++ wrappers would take time away from actually using the
tools. Quickie classes like the ones I slapped together will probably do you more
harm than good; C++ is not very forgiving of programmers who don’t plan ahead.

So what’s the bottom line? If your shop already uses C++, and you plan on using
ATtaCK for more than one project, then you should seriously think about creating
C++ wrappers. It’ll probably be a draw on the first project, and then pay for itself
every project after that. But ATtaCK really is easy to use even in its straight-C
incarnation; so don’t feel like you’re missing out if you stick to the plain vanilla
API.

Now, if you want something really bleeding-edge, consider this: By wrapping the
ATtaCK functions in a set of COM objects, you could write your analysis tools in
scripting languages such as Perl, Python, JavaScript—anything for which a
Windows Scripting Host interpreter exists. I’m not sure you really gain anything
by doing that, but it’d be cool!

ATtaCK Types: Data Types

Fundamental Types
ATtaCK is designed for cross-platform use. Obviously there are two platforms
right off the bat: the PC, where the instrumentation tool runs, and the PlayStation
2, where the target application runs. Beyond that, future versions of ATtaCK may
run on different host platforms, such as the Mac, or may analyze different target
platforms, such as next-generation consoles. By and large, any ATtaCK tools you
create today will run with little or no modification on future platforms.

Toward that end, ATtaCK provides the usual suspects: fundamental types to
represent ints, bools and floats of various sizes. There are also constants
defined to show the maximum ranges for these types. These types and constants
are summarized in the table below.

 Analysis Tools Construction Kit 02-30

Type Definition Range

atck_int16_t 16-bit signed integer ATCK_INT16MIN to
ATCK_INT16MAX

atck_int32_t 32-bit signed integer ATCK_INT32MIN to
ATCK_INT32MAX

atck_int64_t 64-bit signed integer ATCK_INT64MIN to
ATCK_INT64MAX

atck_uint64_t 16-bit unsigned
integer

0 to ATCK_UINT16MAX

atck_uint32_t 32-bit unsigned
integer 0 to ATCK_UINT32MAX

atck_uint64_t 64-bit unsigned
integer

0 to ATCK_UINT64MAX

atck_bool_t A boolean of
unspecified size

Either ATCK_TRUE or
ATCK_FALSE

atck_float32_t A four-byte float N/A

atck_float64_t An eight-byte float N/A

Table 02-04: Fundamental Types

Target Addresses

On the PlayStation 2, addresses are 32 bits, the same size as on the PC. However,
that might change for other targets and hosts in the future. To handle this
properly, always use the atck_addr_t type to hold target addresses; its value can
range from 0 to ATCK_ADDRMAX. Although atck_addr_t is essentially just an
atck_uint32_t, you should always use the special address type. Never use an
integer type, and especially never use a host pointer type, to store target
addresses; no good can come of it.

Target Mutex Variables

In order to protect critical sections on the target, and to handle multithreaded
target code in general, ATtaCK provides a mutual-exclusion lock system for
analysis code. These mutex variables are always of the type atcktarg_lock_t,
which should be treated as an opaque fundamental type. Mutex locks are covered
in Lesson 04.

Enumerated Types

Flags

Many ATtaCK functions take flag-like arguments or have flag-like return values.
ATtaCK stores these using enumerated types. One example of this is discussed in
the notes below, the atck_endian_t used by atck_byteorder(). Since these

 Analysis Tools Construction Kit 02-31

types really only have meaning in the context of their functions that’s where we’ll
discuss them. For a consolidated reference to them, see page ATK-45 of the
online documentation.

Endianism

The PlayStation 2 and PC are both little -endian, but some target/host combinations
may have different byte-ordering. It only matters for values that cross the host-target
boundary. The atck_addr_t type, for instance, is always stored in host byte order,
even when it holds an address on the target.

Your analysis code runs on the target, but its information gets uploaded to the host.
Even then, ATtaCK can automatically resolve any byte-order differences for you—
see Lesson 04.

Opcodes and Registers

You can query an instruction for its opcode and the registers that it uses. The
atck_op_t type represents a "pseudo opcode" value for an instruction, which
identifies the function performed by the instruction but doesn’t necessarily
correspond to an actual hardware opcode value for the target processor—although
for the PlayStation 2 they basically do. Similarly, atck_reg_t identifies a target
processor register.

These types will be discussed more when we look at instruction attributes later in
this lesson. They’re also described in the online documentation—see page ATK-
232 for opcodes and page ATK-50 for registers.

Startup and Shutdown

Now that you’ve got the big picture, we’ll talk about building an ATtaCK tool.
The very least you have to do is initialize ATtaCK at the beginning of the
program and close it down at the end, so we’ll start with that. You might want to
refer back to BareBones.c as we go.

Error Handling

A function that returns a handle will return NULL to indicate an error. A function
that returns a fundamental type will typically return 0 or ATCK_FALSE in case of an
error. In either case, the framework will also write a diagnostic message to
stderr. Since ATtaCK tools are just simple command-line programs written for
use by programmers, the most appropriate response to an error is usually just to
exit.

Startup Tasks

Initialize an ATtaCK Session
atck_sesn_t* atck_session(const char* ver, atck_flags_t
flags,...)

 Analysis Tools Construction Kit 02-32

This function must be called before any other ATtaCK functions. It initializes the
framework and returns the resulting session object. In the future, atck_session()
might take multiple parameters, but right now it accepts only two: ver, a text
string specifying the version of ATtaCK the tool expects, and flags, a bit-flags
integer that controls the behavior of the session. These arguments have only one
legal value each: ver must be the string "1.0", and flags must be the constant
ATCK_FLAGS_NONE.

Save off the returned handle, because as you’ll see, just about every other
function in ATtaCK requires it.

Open Application
atck_prog_t* atck_open(atck_sesn_t* session, const char*
appfile,
 const char* analysisfile, atck_cfg_t*
config,
 const char* outfile)

This function opens appfile, the target application. The returned program handle
can be used to iterate through the application’s code.

The parameter analysisfile is the filename of the compiled target analysis code
that will be used by the instrumented application. This topic is covered in Lesson
03. If you will not be adding any instrumentation code to the application, you may
pass in NULL instead.

The parameter outfile is the filename template to use when writing out the newly-
instrumented images. Since an application might have more than one image, the
template allows you to specify a naming scheme by which new image filenames
can be generated as necessary.

The format for this template is covered in the documentation on page ATK-69 of
the documentation that came with your ATtaCK installation. However, here’s a
boilerplate definition that will almost always work for you:

"<dir><base>_toolname<suf>"

This template, which is used by all the example programs, places the new
executable in the same directory as the original one, adding "_toolname" to the
end of the base name but keeping the file extension the same. Replace toolname
with your tool’s name, such as proccount.

If you intend to download and execute the instrumented program immediately,
and are content to throw the program away once the profiling session is done, you
may specify NULL for the output filename. ATtaCK will then use temporary files
to hold the instrumented program.

If you will not be adding any instrumentation code to the application, you may
pass in NULL instead. You may also pass NULL if you intend to immediately
download and run the application after instrumenting it. In this case, ATtaCK uses
temporary files to hold the instrumented program, deleting them after your tool
exits.

 Analysis Tools Construction Kit 02-33

Finally, the parameter config would be used to specify a set of configuration
options. However, the PlayStation 2 version of ATtaCK doesn’t recognize any
such options for use with atck_open()—there’s only one way to open a
program!—and so you should just pass NULL.

Shutdown Tasks

Write Out or Close the Application
void atck_img_release(atck_img_t* image)

This function closes the specified image, releasing all the procedures, entry
points, call sites, basic blocks and instructions it contained.

If you add instrumentation code to an image, close it with atck_img_write()
instead, discussed in Lesson 03.

Close ATtaCK
void atck_endsession(atck_sesn_t* session)

This function closes the active session, shutting down ATtaCK. After you call
this, you may still work with and display the data your tool has gathered, but no
ATtaCK functions will be available.

As discussed earlier in this lesson, any state objects you create—in particular,
iterators—must be freed individually. You must also close image objects
individually. You don’t have to worry about any other objects, though, because
they belong to and will be freed by the session.

Navigating with Iterators

Okay, you’ve successfully initialized ATtaCK and your application is open. Now
what? Well, mostly you iterate.

Step Through Code Using Iterators
The textbook definition of an iterator is "an object associated with a list that is
capable of traversing the list, accessing the elements one at a time." That pretty
much hits the nail on the head, so lets look at the definition one piece at a time.

• "an object associated with a list..." When ATtaCK loads the target
application, it runs through it and builds lists of its images, procedures, entry
points, call sites, basic blocks and instructions. There is an iterator type
associated with each one of these lists.

• "... that is capable of traversing the list..." ATtaCK iterator objects have
methods that move to the head or tail of the list, and that step forward and
backward.

• "... accessing the elements one at a time." The traversal methods each return a
handle to one code element from the list. For instance, every time you tell a

 Analysis Tools Construction Kit 02-34

procedure iterator to "move next," it returns a handle to the next procedure in
the list.

Iterator Types

There are iterator types for each of the six lists, as shown in the table below.
Remember that, as with all ATtaCK objects, you only deal with handles to these
objects, so to declare an iterator variable you’d use:

atck_procit_t* procedures;

Iterator types all follow a consistent naming convention, atck_objit_t, where
obj is the abbreviation for the object type returned by the iterator. The image
iterator, for instance, is atck_imgit_t.

Iterator Methods

The iterator objects have methods but not attributes. The function names all
follow a consistent pattern: atck_objit_action(). For example, the "move
next" method for a procedure ("proc") iterator is called atck_procit_next(),
while the same method for a basic-block ("bb") iterator is atck_bbit_next().

As methods, these functions always take a handle to the iterator object itself as
their first and only argument.

atck_obj_t* atck_objit_first(atck_objit_t* self)

atck_obj_t* atck_objit_last(atck_objit_t* self)

The _first() method returns the first element in the list, while _last() returns
the last element in the list. If and only if the list is empty, both functions will
return NULL.

atck_obj_t* atck_objit_next(atck_objit_t* self)

atck_obj_t* atck_objit_prev(atck_objit_t* self)

The _next() method returns the next element after the element most recently
returned by the iterator, or the first element if the iterator was just created. If the
most recent element returned was the last in the list, or if the list is empty,
_next() returns NULL.

The _prev() method returns the previous element before the element most
recently returned by the iterator. If the most recent element was the first in the list,
or if the iterator was just created, or if the list is empty, _prev() returns NULL.

You might be wondering how a list could be empty—after all, the target
application is pretty much guaranteed to have one of every code element, right?
Well, that’s true, but ATtaCK may not be able to read into every procedure in
your application. If, for example, a badly-formed call instruction wound up
pointing to your application’s global variable space rather than to actual code, the
resulting "procedure" would probably contain illegal instructions and general
nonsense.

ATtaCK’s a pretty no-nonsense framework, so faced with a situation like that it
just marks the procedure as "unreadable" (ATCK_ATTR_NOREAD) and moves on.

 Analysis Tools Construction Kit 02-35

The procedure object itself is still available, but many of its attributes will return
zero or NULL. If you request any iterator from that procedure, or a basic-block
iterator from an entry point contained in that procedure, the iterator will be empty.

Creating Iterators

Each list is an attribute of its containing object. For example, the list of images in
a program is an attribute of the program object. You’d thus expect that the
functions to create new iterators are methods of the containing objects—and
you’d be right!

atck_imgit_t* atck_imgit_new(atck_prog_t* self)

atck_procit_t* atck_img_procit_new(atck_img_t* self)

atck_entit_t* atck_proc_entit_new(atck_proc_t* self)

atck_callit_t* atck_proc_callit_new(atck_proc_t* self)

By now, these functions should be self-explanatory. The only question is sorting:

• Since PlayStation 2 applications only have one image, the list will only
have that one entry, so you don’t have to worry about how images are
sorted.

• Procedure, entry-point and call-site lists are sorted by starting address in
ascending order. Note that for call sites, the sort is done on the address of
the site, not the address of the target.

atck_bbit_t* atck_proc_bbit_new(atck_proc_t* self)

atck_bbit_t* atck_img_bbit_new(atck_img_t* self)

atck_bbit_t* atck_ent_bbit_new(atck_ent_t* self)

There are actually three ways to iterate across basic blocks. You can iterate
through all the blocks in a procedure, or all the blocks in an image. You can also
iterate through a range of the blocks in a procedure, starting at a specific entry
point and continuing to the end. (This allows you to trace execution from an entry
point; without it, you’d have to step out to the procedure and walk its block list, as
discussed in the next section.) In all three cases, the blocks are sorted by starting
address.

atck_instit_t* atck_bb_instit_new(atck_bb_t* self,
 atck_flags_t flags)

Because instruction lists can be quite large, ATtaCK only creates them when
necessary. This function will create and return an iterator for the list of
instructions in the specified basic block. If the flags parameter is
ATCK_FLAGS_ITLIFE, the instruction handles returned by the new iterator will
only last as long as the iterator itself does; when the iterator is released, the
instruction objects will also be released and their handles will no longer be valid.
If flags is ATCK_FLAGS_NONE, then the instruction objects will have the same
lifespan as all code elements, lasting until their containing image is released.

 Analysis Tools Construction Kit 02-36

Releasing Iterators
void atck_objit_free(atck_objit_t* self)

The "destructor" for an iterator object is the _free() method. You are always
responsible for releasing any iterators you create. When you release an image, all
the code objects it contains will be released, and their handles will become
invalid. The iterators are not released, however. Good practice is to release
iterators as soon as you’re done with them, and in any case to release them before
calling atck_img_write() or atck_img_release().

Finding Code Structures

Iteration is important, and just about every ATtaCK programming task involves
working with iterators. But to write any advanced tool, you’ll need to do more
than just iterate through the application from beginning to end. You might need to
find the target of a call, or look up a specific named routine, or follow an
execution path between two basic blocks.

Often, the information you need will be available as an attribute of some other
object—a handle to the target entry point of a call site, for instance, is stored as
part of the call site object.

Some tasks that require searching are nevertheless so common that ATtaCK
provides "lookup" methods to do the job for you. Finding a specific named
routine is of course one such task, and is handled by the functions
atck_ent_byname() and atck_img_ent_byname().

All other search tasks must be performed by hand, using a technique called
"iterate-and-query": Iterate across all the candidate objects, checking each one’s
attributes against some criteria until you find a match.

As you’ve guessed, "iterate and query" is just a more poetic term for "brute
force."

Link Attributes
Link attributes join one object to another. Like all attributes, they are retrieved
using attribute access methods, which follow a simple naming convention:
atck_obj_attribute(). The method to get the target entry point for a call site,
for example, is atck_call_targent().

Parent Handles

These attributes store the handle of an object’s parent.
atck_img_t* atck_proc_img(atck_proc_t* self)

atck_proc_t* atck_ent_proc(atck_ent_t* self)

atck_proc_t* atck_call_proc(atck_call_t* self)

atck_proc_t* atck_bb_proc(atck_bb_t* self)

atck_bb_t* atck_inst_bb(atck_inst_t* self)

 Analysis Tools Construction Kit 02-37

Every code object has as one of its attributes a handle to its parent. Well, okay,
not every code object contains a parent handle—there’s only one program object,
so you’re expected to be able to remember the parent of image objects yourself.
Below that, though, each procedure points to its containing image; each entry
point, call site and basic block points to its containing procedure; and each
instruction points to its containing basic block. These functions can never return
NULL, since each of these objects will always have one and only one parent.

Target Handles

These attributes store the handle of an object’s target.
atck_ent_t* atck_call_targent(atck_call_t* self)

This attribute stores a handle to the entry point in the target procedure called by
this call site. Some call sites don’t target entry points, either because they call
dynamic addresses (e.g, C++ virtual functions) or because they call addresses
outside the target application. If ATtaCK can’t determine the target of a call site
statically, this attribute will be NULL.

atck_bb_t* atck_inst_branchtarg(atck_inst_t* self)

If an instruction conditionally or unconditionally branches to another instruction
within the same image, this attribute will hold a handle to the basic block targeted
by the jump. As always, ATtaCK can’t see the future, so this attribute is NULL for
dynamic jump instructions (such as the MIPS JR). Note that calls are a special
kind of branch as far as ATtaCK is concerned, so this attribute is valid for
instructions that call other procedures as well as for branches within one
procedure.

This might seem like a useful method to walk through code: Iterate across a basic
block, then call atck_inst_branchtarg() to get the next block when the
instruction iterator returns NULL. But there’s a gotcha! Some chips—such as,
coincidentally enough, the EE—have delayed branches, where the instruction
immediately after a branch is executed while the chip performs the jump. On such
architectures, the instruction following a conditional branch is still part of the first
basic block. Thus, the last instruction of a basic block is not guaranteed to be
either a call or a branch.

This attribute is not guaranteed to be valid even for branch instructions. A
procedure marked ATCK_ATTR_NOREAD has no basic blocks. If the branch target
lies in such a procedure, this attribute will be NULL.

Alias Handles

These attributes store the handle of an object’s alias—that is, an object of a
different type with which it has a one-to-one relationship. An instruction object
that represents a procedure call, for instance, has a one-to-one relationship with
the call site object that also represents that call.

atck_ent_t* atck_bb_entry(atck_bb_t* self)

 Analysis Tools Construction Kit 02-38

If a basic block contains an entry point to a procedure, this attribute will hold a
handle to that entry point; otherwise it will be NULL. Remember that code will
never jump into the middle of a basic block, so if a block contains an entry point,
that point will be the first instruction in the block. For the same reason, a block
cannot contain more than one entry point.

As natural and handy as it might seem, there is no corresponding atck_ent_bb()
method: Entry points are children of procedures, not basic blocks, even though
each entry point is contained by one and only one basic block.

atck_call_t* atck_inst_callsite(atck_inst_t* self)

An instruction that conditionally or unconditionally calls another procedure is a
call site, and will keep a handle to that call site object in this attribute. For all
other instructions, this attribute will be NULL. As with basic blocks and entry
points, this relationship is one-way: A call site does not point to the instruction
that embodies it.

Even dynamic calls, where the target address cannot be determined by ATtaCK’s
static analysis, still have call sites, so this attribute will always contain a valid
handle as long as the instruction is a call.

Lookup Methods
These functions obey the naming convention atck_obj_what_how(). The
method of the image object that looks up an entry point by its address, for
instance, is called atck_img_ent_byaddr(). Remember that program is the
default object, so methods of the program object are named atck_what_how(),
not atck_prog_what_how().

Symbolic Lookups

ATtaCK gets its information two ways: examining the raw machine code directly,
and reading the debugging information ("symbol table") from the executable file.
You can run ATtaCK tools against "release builds" that don’t contain debugging
information, but you lose access to methods like these, which look up names in
the symbol table.

atck_ent_t* atck_img_ent_byname(atck_img_t* self, const char*
name)

atck_ent_t* atck_ent_byname(atck_prog_t* self, const char*
name)

These methods examine the symbol table of the program or image respectively to
find the entry point for the specified name. There might well be more than one
entry point with the same symbolic name. In that case, only one entry point will
be returned, in the following search order:

• The globally visible entry points are searched first, in the order that you’d
see them if you iterated across every image, then across every procedure,
then across every entry point. This means that the chosen entry point will

 Analysis Tools Construction Kit 02-39

be the one with the lowest address contained in the procedure with the
lowest starting address.

• If there are no globally visible entry points with the specified name, then
every entry point is searched, using the exact same process.

If there is no entry point with the specified name in the program or image, this
method returns NULL.

Address Lookups
atck_ent_t* atck_img_ent_byaddr(atck_img_t* self, atck_addr_t
addr)

atck_inst_t* atck_img_inst_byaddr(atck_img_t* self,
 atck_addr_t addr)

If addr corresponds to the start of an entry point or instruction respectively in the
specified image, this method returns that object’s handle; otherwise it returns
NULL.

Procedures marked ATCK_ATTR_NOREAD cannot have any instruction objects. If
addr falls within such a procedure, atck_img_inst_byaddr() will return NULL.
Even unreadable procedures have entry points, however, so
atck_img_ent_byaddr() will still work.

Symbol Translation
atck_addr_t atck_symaddr(atck_prog_t* self, const char* name)

atck_addr_t atck_img_symaddr(atck_img_t* self, const char*
name)

Rather than finding a code object handle, these methods return the address of the
specified symbol. The symbol might be a data variable or a procedure. If the
symbol can’t be found, these methods return zero.

Iterate and Query
ATtaCK is built around iteration. In fact, ATtaCK is really built around inward
iteration: It’s easy to go from an object to the objects it contains, but much less
easy to move from one object to one of its peers. For example, let’s suppose all
you have is an instruction handle. How do you get the next instruction?

One way would be to get the instruction’s address with atck_inst_addr(), add
its size from atck_inst_rawsize() to get the address of the next instruction,
then use atck_img_inst_byaddr() to get the handle. The problem is that you’re
not really following the flow of execution, you’re just reading the code blindly.

A better solution would be to use iterators. First, call atck_inst_bb() to get the
instruction’s basic block. Then use an instruction iterator to step through the block
until you find a handle that matches the one you already have. (Remember: Two
handles that point to the same object will always have the same value.)

Now when you call atck_instit_next(), you have the next instruction in the
flow of execution, and you can continue iterating. To continue walking once

 Analysis Tools Construction Kit 02-40

you’ve reached the end of this iterator, you use atck_bb_proc() to get the
procedure, create a basic-block iterator from the procedure and use the same
iterate-and-compare technique to find your current basic-block handle in the
procedure’s list.

As you can see, the process isn’t hard to figure out, it’s just a little tedious to
program. One moral to this story is to remember your context as much as
possible. Since going from an iterator to an object it contains is much easier than
going from an object to the parent iterator that generated it, your tool’s functions
should pass iterators and high-level objects around in preference to low-level
objects.

Querying Code Attributes
All code objects have attributes. As we’ve seen, attributes are accessed using
attribute access methods, which follow a simple naming convention:
atck_obj_attribute().

All attributes are read-only. The only way an ATtaCK tool can modify the target
application is by writing instrumentation code into it, as covered in the next
lesson.

Whenever one of these access methods returns a memory buffer (either a const
char* or a const void*), that buffer is valid until the containing image object is
closed. Buffers returned from the program object last until the program object is
closed. In no case should you release these buffers yourself.

Let me apologize here in advance for the next two pages. There are a lot of
attributes, and each attribute has an access method. The best way for me to tell
you about these attributes is to tell you about their access methods, all eighty-four
of them.

Right across this sea of text, though, is our first ATtaCK tool. Just hang in there
and we’ll get through this together.

Program Attributes
Remember that the program object doesn’t have an abbreviation, so instead of
atck_prog_attribute(), these methods all follow the pattern
atck_attribute().

const char* atck_appname(atck_prog_t* self)

The application’s filename...
const char* atck_iappname(atck_prog_t* self)

The name of the instrumented application file. When you called atck_open(), if
you specified an output filename using its outfile argument, then this string will
contain that argument, with any directory specifiers expanded into their real
values. If you passed a NULL for outfile, then NULL is what you’ll get back here.

atck_endian_t atck_byteorder(atck_prog_t* self)

 Analysis Tools Construction Kit 02-41

You’ve already seen this attribute, the program’s byte order. Its possible values
are ATCK_BE for big-endian (e.g., the Macintosh) or ATCK_LE for little-endian
(PC or PlayStation 2).

unsigned atck_nimg(atck_prog_t* self)

unsigned atck_nproc(atck_prog_t* self)

unsigned atck_nent(atck_prog_t* self)

The number of images in the program (always 1 for the PlayStation 2), and the
number of procedures or entry points in the program across all images.

unsigned atck_nproc_rdable(atck_prog_t* self)

unsigned atck_nent_rdable(atck_prog_t* self)

unsigned atck_ncall_rdable(atck_prog_t* self)

unsigned atck_nbb_rdable(atck_prog_t* self)

unsigned atck_ninst_rdable(atck_prog_t* self)

These attributes contain the number of procedures, entry points, call sites, basic
blocks and instructions in the entire program that are readable, e.g., that are not
marked with the ATCK_ATTR_NOREAD attribute. This is discussed under Procedure
Attributes, below.

unsigned atck_nproc_instr(atck_prog_t* self)

unsigned atck_nent_instr(atck_prog_t* self)

unsigned atck_ncall_instr(atck_prog_t* self)

unsigned atck_nbb_instr(atck_prog_t* self)

unsigned atck_ninst_instr(atck_prog_t* self)

The number of procedures, entry points, call sites, basic blocks and instructions in
the entire program that are instrumentable, e.g., that are marked with the
ATCK_ATTR_INSTR attribute. This is discussed under Procedure Attributes, below.

unsigned atck_nproc_skip(atck_prog_t* self)

unsigned atck_nent_skip(atck_prog_t* self)

unsigned atck_ncall_skip(atck_prog_t* self)

unsigned atck_nbb_skip(atck_prog_t* self)

unsigned atck_ninst_skip(atck_prog_t* self)

The number of procedures, entry points, call sites, basic blocks and instructions in
the entire program that you have marked with the ATCK_ATTR_SKIP attribute. This
is discussed under Procedure Attributes, below.

size_t atck_szdisbuf(atck_prog_t* self)

The size in bytes of the longest string that will ever be printed by
atck_inst_dis() (the instruction disassembly method) for this program.

Image Attributes
const char* atck_appname(atck_img_t* self)

 Analysis Tools Construction Kit 02-42

The name of the image: An image might not have a file name, in which case this
attribute is NULL.

unsigned atck_img_nproc(atck_img_t* self)

unsigned atck_img_nent(atck_img_t* self)

The number of procedures or entry points in the image.
unsigned atck_img_nproc_rdable(atck_img_t* self)

unsigned atck_img_nent_rdable(atck_img_t* self)

unsigned atck_img_ncall_rdable(atck_img_t* self)

unsigned atck_img_nbb_rdable(atck_img_t* self)

unsigned atck_img_ninst_rdable(atck_img_t* self)

The number of readable procedures, entry points, call sites, basic blocks and
instructions in the image.

unsigned atck_img_nproc_instr(atck_img_t* self)

unsigned atck_img_nent_instr(atck_img_t* self)

unsigned atck_img_ncall_instr(atck_img_t* self)

unsigned atck_img_nbb_instr(atck_img_t* self)

unsigned atck_img_ninst_instr(atck_img_t* self)

The number of instrumentable procedures, entry points, call sites, basic blocks
and instructions in the image.

unsigned atck_img_nproc_skip(atck_img_t* self)

unsigned atck_img_nent_skip(atck_img_t* self)

unsigned atck_img_ncall_skip(atck_img_t* self)

unsigned atck_img_nbb_skip(atck_img_t* self)

unsigned atck_img_ninst_skip(atck_img_t* self)

The number of skipped procedures, entry points, call sites, basic blocks and
instructions in the image.

Procedure Attributes
atck_attr_t atck_proc_attr(atck_proc_t* self)

This attribute indicates the procedure’s ability to be read and instrumented. There
are four possible values:

• ATCK_ATTR_INSTR indicates that the procedure can be instrumented. Almost
every procedure will have this attribute.

• ATCK_ATTR_SKIP indicates that you have flagged the procedure to be skipped.
This attribute is set by your own code, using the functions described in the
notes. It’s essentially just a reminder to yourself—ATtaCK treats
ATCK_ATTR_SKIP exactly the same as ATCK_ATTR_INSTR.

• ATCK_ATTR_RDONLY indicates that ATtaCK is unable to instrument the
procedure, although it can still navigate through the code. This would happen

 Analysis Tools Construction Kit 02-43

with any procedures that weren’t compiled by CodeWarrior—every procedure
in the PlayStation 2 SDK, for instance. (Sorry!)

• ATCK_ATTR_NOREAD indicates that ATtaCK is unable to read the procedure’s
code, which means ATtaCK also cannot instrument the procedure. This will
only be the case if the procedure contains invalid machine code, in which case
something very strange is happening.
const char* atck_proc_name(atck_proc_t* self)

Marking Code to Skip
void atck_skipimg(atck_prog_t* self, const char* imagename)

void atck_skipfile(atck_prog_t* self, const char* filename)

void atck_skipproc(atck_prog_t* self, const char* procname)

These three routines allow you to mark procedures with ATCK_ATTR_SKIP. As you
iterate, you can check for this attribute and skip the procedures you marked. ATtaCK
in no way enforces the skip attribute—it’s just a flag provided for your convenience.

Few tools need these functions. If you think they might be useful, refer to the
documentation.

The name of the procedure, if it has one; NULL otherwise. Remember that C++
function names will usually be mangled, and it’s the tool’s responsibility to
unmangle them.

atck_addr_t atck_proc_addr(atck_proc_t* self)

The lowest address of the procedure. This is the address of the first basic block in
the procedure, not necessarily the address of the first entry point (although for C
or C++, those will almost always be one and the same).

const char* atck_proc_file(atck_proc_t* self)

unsigned atck_proc_line(atck_proc_t* self)

The source file and line number of the first line of the procedure. If this
information is not available, the filename will be NULL and/or the line number
zero.

unsigned atck_proc_nent(atck_proc_t* self)

unsigned atck_proc_ncall(atck_proc_t* self)

unsigned atck_proc_nbb(atck_proc_t* self)

unsigned atck_proc_ninst(atck_proc_t* self)

The number of entry points, call sites, basic blocks and instructions in the
procedure. For unreadable procedures, the number of call sites, basic blocks and
instructions will be zero.

Entry-Point Attributes
const char* atck_ent_name(atck_ent_t* self)

 Analysis Tools Construction Kit 02-44

The name of the entry point, if it has one; NULL otherwise. Entry point names
corresponding to C++ functions will require unmangling.

atck_addr_t atck_ent_addr(atck_ent_t* self)

The address of the entry point.
const char* atck_ent_file(atck_ent_t* self)

unsigned atck_ent_line(atck_ent_t* self)

The source file and line number of the entry point. If this information is not
available, the filename will be NULL and/or the line number zero.

Call-Site Attributes
atck_bool_t atck_call_istargknown(atck_call_t* self)

ATCK_TRUE if the target of this call site is known—that is, if this is a static call.
ATCK_FALSE if the target is dynamically called via a register or variable.

const char* atck_call_targname(atck_call_t* self)

The name of the target procedure, if the target is known and if it has a name; NULL
otherwise.

atck_addr_t atck_call_targaddr(atck_call_t* self)

The address of the target procedure, if known, zero if not.
atck_attr_t atck_call_targattr(atck_call_t* self)

The target procedure’s readability attribute, or ATCK_ATTR_NOREAD if the target
address isn’t known or lies outside the application.

atck_bool_t atck_call_returns(atck_call_t* self)

ATCK_TRUE if the call appears to return to the caller when the called procedure
finishes; ATCK_FALSE otherwise. Call sites usually return to the caller, but some
call sites do not due to compiler optimizations or hand-coded assembly
techniques.

atck_addr_t atck_call_addr(atck_call_t* self)

The address of the call site, rather than the address of the target.
atck_bool_t atck_call_iscond(atck_call_t* self)

ATCK_TRUE if the call is conditional, ATCK_FALSE if it is unconditional.

Basic-Block Attributes
atck_addr_t atck_bb_addr(atck_bb_t* self)

The starting address of the basic block.
unsigned atck_bb_ninst(atck_bb_t* self)

The number of instructions contained within the basic block.
atck_attr_t atck_bb_attr(atck_bb_t* self)

The readability attribute of the basic block’s parent procedure.

 Analysis Tools Construction Kit 02-45

const void* atck_bb_raw(atck_bb_t* self)

size_t atck_bb_rawsize(atck_bb_t* self)

These methods expose the raw machine code contained with the basic block.
atck_bb_raw() returns a buffer containing the raw bytes, in the byte ordering of
the target processor; atck_bb_rawsize() returns the size in bytes of this buffer.

Instruction Attributes
This is the last section! Unfortunately, it’s also the longest section—the
instruction object, naturally enough, has the most interesting attributes and
requires the most explanation.

atck_addr_t atck_inst_addr(atck_inst_t* self)

The starting address of the instruction.
const char* atck_inst_file(atck_inst_t* self)

unsigned atck_inst_line(atck_inst_t* self)

The source file and line number of the instruction. If this information is not
available, the filename will be NULL and/or the line number zero.

const void* atck_inst_raw(atck_inst_t* self)

size_t atck_inst_rawsize(atck_inst_t* self)

These methods expose the raw machine code for the instruction. atck_inst_raw()
returns a buffer containing the raw bytes, in the byte ordering of the target
processor; atck_inst_rawsize() returns the size in bytes of this buffer.

atck_op_t atck_inst_op(atck_inst_t* self)

The instruction’s "pseudo-opcode." A pseudo-opcode identifies the function
performed by an instruction, but may not correspond to an actual hardware
opcode for the target processor.

A table listing the pseudo-opcode of every EE instruction starts on page ATK-231
of the online documentation.

size_t atck_inst_dis(atck_inst_t* self, char* buffer)

Writes a textual disassembly of the instruction to buffer, a string buffer you must
allocate yourself. In order to avoid overflow, buffer must be at least
atck_szdisbuf() bytes long. This routine returns the number of bytes written to
the buffer, excluding the null terminator.

This disassembly is complete, but not symbolic or particularly friendly. Here’s a
brief sample:

addu r4, r0, 325

lui r2, 4096 ! %hi(0x10000000)

or r3, r2, 36864 ! %lo(0x9000)

sw r4, 0(r3)

paddub r4, r0, r0

paddub r5, r0, r0

 Analysis Tools Construction Kit 02-46

jal 0x103738

nop

You could take the disassembly results and run them back through an assembler
to get the program again, but if you want something usefully human-readable,
you’ll probably need to do some back-end processing. We’ll see one way to do
that in the example program at the end of this lesson.

Instruction Classification

These attributes provide a generic, cross-platform classification of the instruction.
They each return ATCK_TRUE if the instruction performs the specified function, or
ATCK_FALSE otherwise. These classifications are not disjoint—a single instruction
may belong to more than one class. For example, the MIPS BC1 instructions are
conditional branches that touch the floating-point unit.

A table showing the classification of every EE instruction starts on page ATK-231
of the online documentation.

atck_bool_t atck_inst_isload(atck_inst_t* self)

Does the instruction load a value from memory?
atck_bool_t atck_inst_isustore(atck_inst_t* self)

Does the instruction unconditionally store a value to memory?
atck_bool_t atck_inst_iscstore(atck_inst_t* self)

Does the instruction conditionally store a value to memory?
atck_bool_t atck_inst_isubranch(atck_inst_t* self)

Does the instruction unconditionally branch (that is, change the control flow of
the application)?

atck_bool_t atck_inst_iscbranch(atck_inst_t* self)

Does the instruction conditionally branch?
atck_bool_t atck_inst_isbranch(atck_inst_t* self)

Does the instruction branch conditionally or unconditionally?
atck_bool_t atck_inst_isfp(atck_inst_t* self)

Does the instruction touch the floating-point unit?

Register Usage
void atck_inst_inregs(atck_inst_t* self, atck_regs_t* regs)

void atck_inst_outregs(atck_inst_t* self, atck_regs_t* regs)

These functions identify which registers the instruction reads and modifies,
respectively. They’re very important, but covering them would take a page all by
itself. We’ve already slogged through enough API information, so let’s move on
to looking at some code to try out our new knowledge. We’ll come back to
register usage in Lesson 05.

 Analysis Tools Construction Kit 02-47

Okay, You Can Wake Up Now…
…we’re done with the API documentation for this lesson. Go on to the next
section for the sample tool I keep promising.

A Static Analysis Tool

What is Static Analysis?
Dynamic analysis is examining a running program, using a debugger or a profiler.
Static analysis is examining a program’s code without running it, by simulating
the behavior of the CPU. For example, you’re able to step from a call instruction
into the called procedure because you (or rather, ATtaCK) know how to identify
an instruction and how the CPU executes it. So in many ways, static analysis can
tell you everything about your program. Indeed, if your CPU simulator modeled
every effect of every instruction, there’d be no difference at all between static and
dynamic analysis apart from speed.

Sorry, ATtaCK is smart, but not that smart. Its CPU simulator is only concerned
with the most important aspects of how an instruction is executed:

• Whether it branches, and to where

• Whether it calls a procedure, and which one it calls

• Whether it loads from or stores to memory

• Which registers it reads and writes

• Whether its execution is conditional or unconditional

So while ATtaCK can’t replace your T10000 system, you can still perform some
very valuable analysis tasks without ever running the target application.

For one thing, you can selectively disassemble your program and display the
result. Don’t underestimate how powerful a debugging tool Eyeball v1.0 is. If you
understand assembly code, you can catch a lot of problems in your application
just by scanning it for sections that "don’t look right." This is especially true in
C++, where a quick look at the actual assembly code for a function can often
reveal that hidden temporary variable whose constructor and destructor are killing
your performance.

Static analysis really shines for analysis tasks that are either too slow or have too
many side effects to perform on the target system. Disassembly is a perfect
example of that: You can’t read your application at the speed the CPU executes it,
and your application can’t effectively run at the speed that you read. Disassembly
must be done statically. A task like inline optimization, where you look at the
program as a whole to evaluate which functions to inline, also consume too much
time to perform against a running application.

Another task for which static analysis works well is code validation. For example,
there are certain OS routines that a shipping PlayStation 2 application must never

 Analysis Tools Construction Kit 02-48

call. You can use static analysis to sweep your code and ensure that you never call
those routines. We’ll work with an extremely valuable code validation tool in
Lesson 06 that does exactly that.

For now, though, we’re going to look at the simplest "real" ATtaCK tool to write:
a disassembler.

Display.c: A Simple Disassembler

Creating the Project

Your ATtaCK installation already includes a working project for display.c, under
Examples\Display. Since we’re not going to modify display.c, you can save
yourself some time and just use the example project.

However, if you want to make changes to display.c later on, it’s best to create a
new project. In Lesson 01, we went through the steps of creating a new ATtaCK
tool that includes both instrumentation and analysis code. If you’re just writing an
instrumentation tool, you can take a shortcut:

• Use "Win32 C Stationery" to create a new Win32 C console application.

• Add the atck-ps2\include folder to the project’s paths.

• Add atck.lib to the project’s files.

• Write your program. In this case, you would copy display.c into your
project folder, add the copy to the project and remove the blank main.c
created by the stationery.

Testing the Tool

Once you’ve either opened or created the project for display.c, hit F7 to make it.
The example project is already made; if you want to see it build just to reassure
yourself, hit ctrl-minus to remove object code, then make the program. If you get
errors during the make, see Lesson 01 for troubleshooting.

This is a console application, so open a command console and go to the directory
containing the program. For the example project that came with ATtaCK, the
program is Examples\Display\bin\ps2\display.exe. For a project created using the
CodeWarrior stationery, the program is in the Bin subdirectory and is named
noname.exe unless you gave it a different name at the "x86 Target" settings
panel.

Run the program once with no command-line just to make sure it works. If you
get a "cannot find atck.dll" dialog box, you need to modify your path; see Lesson
01 for troubleshooting. Otherwise, you should see a line like this:

Usage: display <app>

The only command-line option is the name of the program itself. Now, this tool
will disassemble the entire program, so we need to be careful here. If you just
take a normal program and run the tool, the output will scroll past for about five
to ten minutes—literally! Even a small sample application—such as my personal

 Analysis Tools Construction Kit 02-49

favorite, Blow, found in the Examples\sce200\vu1\blow directory—will go on
forever. When you get back from getting yourself a cup of coffee, here’s what
you’ll see:

Fig. 02-01: Sample Output of display.exe

The better option is to redirect the output to a text file. This runs much faster, and
the results are actually readable. Type the following, all as one line:

display "C:\Program
Files\Metrowerks\CodeWarrior\Examples\sce200\vu1\blow\blow.elf
" > output.txt

(Don’t leave out the quotes—they’re important!) Now all that output goes to the
text file, which you can open in Notepad.

If output.txt is empty or contains an error message, it’s probably because your
copy of ATtaCK isn’t installed properly, or perhaps because you don’t have the
PlayStation 2 SDK installed. Go back to Lesson 01 for troubleshooting.

How It Works

Okay, you’re still here, so I’ll assume the program worked. Now let’s look at the
tool’s structure. Open up display.c in your IDE. As you can see, this is a simple
command-line tool, with just one source file, display.c. main() does all the
driving. The initialization code at the start of main(), and the shutdown code at
the end, should look very familiar. This boilerplate code isn’t going to change
much from tool to tool, so get used to it.

main() calls Display() to do the actual processing. Display() in turn calls
PrintProc(), PrintEnts(), PrintCalls() and PrintBB() to step down into
the target application. We’ll look at those functions in the next section.

 Analysis Tools Construction Kit 02-50

Navigation and "Analysis"

The Display() Function

The first thing Display() does is declare all the variables it’s going to need.
Since it declares image and procedure iterators, and image and procedure handles,
we can already get a good sense of what Display() is going to do.

Next, Display() gets the byte order of the target, even though we already know
it’s little-endian. It also allocates a string buffer by using atck_malloc(), which
is just a wrapper for malloc(); ATtaCK provides it so your code can rely on a
specific memory allocation routine across all platforms. This buffer will be used
to display disassembled instructions, so we have to make sure it’s
atck_szdisbuf() bytes long.

Demonstrating the attribute access methods perfectly, Display() now proceeds
to dump out information about the target program, listing the number of images,
procedures, entry points, call sites, basic blocks and instructions the program
contains.

Next, it allocates an image iterator and starts walking through the image list to
generate an image-level summary of the same information. For each image in
turn, Display() allocates a procedure iterator to step through and display the
procedure-level statistics.

The procedure iterator loop keeps going until the next method returns NULL. The
image loop then releases the procedure iterator. Remember that it’s your job to
free up iterators, since they have no parents to clean up after them. There’s no
way to reinitialize or retarget an iterator; you just have to release it and create a
new one.

The image iterator loop then releases the image handle it got back. Notice that it
doesn’t release any of the procedure handles; they are owned by and released by
the parent image. It could just let the program object release the image objects at
the end of the run, but images can be very large, so releasing each image once it’s
no longer required can save a lot of memory. Of course, PlayStation 2 programs
only have one image each, so the question here is moot, but this is good practice
for the future.

When the image iterator’s _next() method returns NULL, the tool has finished
gathering the summary statistics. Now it iterates across the images all over again,
to disassemble them. To do this, it must release the old image iterator and create a
new one. Why not just jump back to the beginning of the iterator using
atck_imgit_first()? Because running through the iterator again would just give
back the same handles that were already released.

The second image iterator loop is much like the first. Instead of printing summary
information for each procedure in the image, this loop calls PrintProc(), passing it
the disassembly buffer allocated earlier. As the tool finishes with each image, it
releases the image for the last time. When the loop ends, the tool releases this
second image iterator and returns to main() for final cleanup.

 Analysis Tools Construction Kit 02-51

The Remaining Functions

PrintProc(), PrintEnts() and PrintCalls() are not particularly enlightening:
They create an iterator, run through every object in the list to display its attributes,
then release the iterator. These functions take the same principles used in
Display() and apply them to procedures, entry points and call sites. By this
point, though, you should be very confident in your iteration skills, so we’ll move
on to something more interesting: PrintBB(), where the actual disassembly
happens.

After declaring variables, PrintBB() immediately does something that may look
strange. It gets the number of instructions in the basic block, and the total number
of raw bytes those instructions take up, and divides the latter by
sizeof(atck_uint32_t) to make sure that it equals the former. In the disassembly
loop later on, casting them to an unsigned 32-bit int prints out each instruction's
raw bytes. That’s safe when working with the PlayStation 2’s MIPS instruction
set, where each instruction is exactly 32 bits, but if that’s not what we’re working
with, we want to know about it now!

Obviously this code only works when dealing with MIPS and similar RISC
architectures. This is a perfect example of when to violate cross-platform
compatibility. ATtaCK tools are so simple to write that you can afford to create
throwaway code that only works for one platform (or even for one target
application!). You’ve got the opportunity to write reusable tools, but don’t
hesitate to just slap together a one-shot solution for a problem at hand.

Moving onward, the next code should be very familiar by now. It creates an
iterator to traverse the instruction list. The ATCK_FLAGS_ITLIFE flag indicates that
the instruction objects created should only live as long as the iterator itself should.
That’s almost always what you want to use—without that flag, instruction objects
can wind up consuming a lot of memory.

The loop then prints out five pieces of information for each instruction: its source
file name and line number, its address, its raw bytes, and its disassembly string.
The ATCK_SWAPTOU32() macro conditionally byte-swaps the instruction’s raw
bytes if the host platform has a different byte order than the target. Thus, while
this tool will only work for the PlayStation 2, it can be run on multiple host
platforms.

After the disassembly information that’s common to all instructions, the loop
prints out the instruction’s classifications, if any. If the instruction is a branch, the
address is printed. If the instruction is a call, the target symbolic name (if known)
or address is printed. Notice how the tool gets the instruction’s corresponding
call-site object then uses that object to get the call’s target name and address.

When the loop finishes, the instruction iterator is freed and the function returns.

Future Improvements

And that’s the end of our first "real" ATtaCK tool. Its biggest problem is the
simplistic output routines. Dumping to stdout is not really appropriate for this
tool, since any but the shortest application is going to generate tens of thousands

 Analysis Tools Construction Kit 02-52

of lines of output text. A more user-friendly approach would be to save the output
to a text file, printing an ongoing progress report (such as a string of periods) to
the console. Better still, save the output into a format more useful than just plain
text.

Even then, the resulting disassembly file will be hard to work with. It’d be easy to
add command-line options that let the user specify starting and ending points for
the disassembly—from address to address, from source line to source line, or by
function name. Once the scope of the disassembly is limited, console output
becomes more manageable, so the user should get the option to switch between
console and file output.

So Far So Good!
Well, you’ll be happy to know that this was the longest and most content-rich
lesson of the entire course. If you look at the ATtaCK docs, you’ll see that we just
covered half the manual! That doesn’t mean we’re halfway done with the course,
but it does mean we’ve gotten half of the boring API details out of the way.
Future lessons will spend less time on type definitions and function arguments
and more time on the theory and practice of ATtaCK analysis. In fact, the last two
lessons are nothing but theory and practice.

For now, though, we’ve still got some more API to cover, so it’s on to Lesson 03:
Instrumenting an Application.

 Analysis Tools Construction Kit 02-53

Lesson 02 Assignment

Write the following function:
atck_inst_t* GetNextInstruction(atck_inst_t* cur);

This function should return a handle to the instruction that will get executed
after the current one. If that cannot be determined, return NULL.

Hint:

The key here is to understand that the next instruction by address won’t
necessarily be the next instruction executed. There are a few situations to deal
with:

• If the current instruction isn’t the last one in a basic block, then the next
instruction is simply the next instruction returned from the block’s iterator.

• If the current instruction is the last one in the block and is an unconditional
branch, the next instruction will be the target of the branch. (If it’s a
conditional branch, you should just return NULL, since by definition you
don’t know which instruction will be executed next—you know which of
two possible ones will be executed, but that’s not what you were asked to
find out!)

• If the current instruction is the last one in the block and is not a branch,
then it may be in the load-delay slot of the previous instruction. In that
case, the next instruction will be the target of the previous branch
instruction.

• If the current instruction falls at the end of a basic block but isn’t a branch
and isn’t in a load-delay slot, then the next instruction is just the first
instruction of the next basic block.

Answer:

The file ex02-01.c, which you can get from the "supplemental material"
folder, performs all the required checks. Note that it uses “image-life”
instruction handles, which are wasteful. However, it has to release its
instruction iterators before returning in order to avoid memory leaks, and so
iterator-life instruction handles would be invalid by the time the caller
received the return value. For extra credit, figure out how to use iterator-life
handles with this code!

 Analysis Tools Construction Kit 02-54

Lesson 02 Quiz

1. How many instructions are in each basic block?

A One

B Two, because the EE loads two instructions at once

C Sixteen, because the EE’s instruction cache lines are 64 bytes wide

D None of the above

2. When ATtaCK iterates through all the procedures in an image, which
of the following will appear in the list?

A Procedures that do not have symbolic debugging information

B Procedures that are never called

C Both

D Neither

3. Which of the following is most likely to be a legitimate ATtaCK
function?

A open_inst(atck_inst_t

B atck_iprog_close(atck_iprog_t*)

C atck_get_proc_size(atck_proc_t*)

D atck_bb_findnext(atck_proc_t*)

4. You have two instruction-object handles, X and Y. Comparing them,
you learn that X is less than Y. What do you now know about these
two instructions?

A Nothing

B X was created before Y

C X has a lower address than Y

D X and Y represent two different instructions

5. True or false: You cannot write ATtaCK instrumentation tools in C++.

A True

B False

6. You can use a procedure handle to create an iterator for three of these
object types. Which one can not be iterated across in a procedure?

 Analysis Tools Construction Kit 02-55

A Instructions

B Basic blocks

C Entry points

D Call sites

7. True or false: The last instruction in a basic block will always be some
kind of branch, call or return.

A True

B False

8. Which of the following objects needs to be released after use?

A Program

B Image

C Procedure

D Instruction

9. Of the following, which can appear multiple times within a basic
block?

A Branches

B Entry points

C Call sites

D None of the above

10. True or false: Before ending your ATtaCK session, you must free any
strings returned from methods like atck_appname().

A True

B False

 Analysis Tools Construction Kit 03-56

Lesson 03: Instrumenting an Application

The key to run-time analysis with ATtaCK is instrumentation: inserting analysis
calls into your application’s binary image. In our third lesson, we’ll cover
instrumentation in depth. We’ll also spend some time looking at simple analysis
code. Finally, we’ll examine ProcCount, a basic procedure counter.

Instrumentation Concepts

Lesson Objectives
In this lesson, we’ll cover two more steps of the ATtaCK process: adding
instrumentation calls and writing out the application. Writing out the application
is easy, and will take a small part of one page. Learning how to design, declare,
build and invoke analysis code will take the rest of this lesson and the bulk of
Lessons 05, 06 and 07. So don’t feel like you have to become an expert on
analysis code right away… we’ll visit this issue again later.

On the other hand, there will be a quiz at the end of this lesson, so pay attention!

Instrumentation and Analysis
You’re probably used to working with a sampling profiler. Such a tool runs
alongside the target application, halting it many thousands of times a second to
read the contents of the program counter (or instruction pointer in Intel-land).
This lets the compiler build a statistical picture of the application’s performance:
If the program counter was within the RenderWorld() function 72,600 times out
of the 100,000 times the profiler stopped the program, then it’s a good bet that
RenderWorld() probably takes up 72.6% of the application’s clock cycles.

It’s a good bet, but not a sure bet. Sampling profilers are not perfectly accurate—
very fast function calls might fall in between samples, and line-by-line
performance results within a procedure aren’t very reliable at all.

To improve accuracy, the profiler can take more samples per second, but that
slows down the target application. When working with a game, sampling profilers
can slow the code down so much that the game becomes unplayable. Profiling
then has to be a separate task from debugging or playtesting, and the profiler’s
results don’t represent typical gameplay.

Instrumentation takes a different approach. Instead of halting the target
application thousands of times a second to read its state, instrumenting profilers
add code to the target application that log events when the application’s state
changes. For instance, an instrumenting profiler might add code to the start of
every function to log that that function got called.

Notice how instrumentation solves the problems of sampling. First,
instrumentation is 100% accurate—nothing falls through the cracks. Second, the
code to log events usually runs much faster than halting the program to sample its

 Analysis Tools Construction Kit 03-57

state externally. CPUs are much faster at function calls within a thread than at
context switches between threads.

Best of all, an instrumenting profiler doesn’t have to instrument the entire
application. If you suspect that RenderWorld() is where the big time-sinks are,
you can tell an instrumenting profiler to concentrate on that one function. A
sampling profiler must run constantly if it’s to be of any value at all.

Binary Code Instrumentation

There are two ways to instrument an application, in source code and in binary
code. You’ve almost certainly created source-level instrumentation yourself a
time or two: When you write code in your display loop that gets the time at the
start and end of a frame, and compares those times to generate a “frames per
second” statistic, you’re using source code instrumentation.

Source code instrumentation is easy but time-consuming. You have to write the
code, add it to the correct places in the application, recompile and run the test,
then go back, remove the code and recompile again to “shut off” the profiling.

To save you that effort, ATtaCK uses binary code instrumentation. In this
technique, an instrumentation tool (e.g., an ATtaCK program) inserts
instrumentation calls into your compiled executable. Instrumentation calls,
conceptually, are function calls to routines that log events or monitor the
application’s state. Those routines are called analysis code.

For example, you might want to know how many times a particular function gets
called. Your instrumentation tool would add an instrumentation call to the start of
that function. The instrumentation call would call an analysis routine that
incremented a counter. At the end of the run, the counter would contain the
number of times the function had been called.

As you think about this, I’m sure you’ll start to see how powerful ATtaCK’s
binary code instrumentation can be. Instrumentation calls can be placed before or
after any entity, from individual instructions all the way up to the program as a
whole. You can specify arguments for these instrumentation calls—either static
arguments, such as an ID value for the procedure being instrumented, or dynamic
arguments, such as the contents of a particular register. And the analysis code can
do anything it wants with this information, including halting the application
altogether.

Unfortunately, all this talk about the principles behind instrumentation and
analysis makes it sound harder than it really is. To quell any fears, let’s look
briefly at an actual analysis routine:

void CountProc(atck_uint32_t procID)

{

 ProcCounts[procID]++;

}

ProcCounts[] is an array of counters, one for each procedure. Procedures are
identified by number using procID. To use this array, we add a call to

 Analysis Tools Construction Kit 03-58

CountProc() at the start of each procedure, passing in an ID number unique to
that procedure. When the program runs, these counters will get incremented. After
the program finishes, we’ll be able to look at each counter for each procedure.

Running the program and reading the array of counters are the subject of the next
lesson, though we’ll touch on them briefly when we examine a sample program
later on. For now, let’s look at how instrumentation calls work.

Instrumentation Calls
Analysis routines are C void functions that you write and compile into a
temporary executable. ATtaCK will link this file later on to your target
application, so that instrumentation calls inserted into the target can call to the
analysis code you write.

Analysis routines don’t return values, but they do accept arguments. Each
instrumentation call is thus a function call that passes a list of arguments but does
not expect a return value. Since the instrumentation call is inserted into the target
application by your instrumentation tool, the upshot of all this is that your
instrumentation tool passes the arguments to your analysis code.

Passing Arguments
Let’s take a quick look at how the instrumentation tool “calls” the analysis code:

iproc = 0;

pproc = atck_procit_first(ppi);

while (pproc)

{

 atck_proc_callbefore(pproc, pproto, iproc++);

 pproc = atck_procit_next(ppi);

}

You should immediately recognize everything in this code fragment except for
the fourth line. If you don’t, go back to Lesson 02 and review that now, because
believe me, this isn’t going to get any easier from here.

We’re not going to go into much detail on atck_proc_callbefore() right now.
This is the ATtaCK function used to insert an instrumentation call to a particular
analysis routine into the start of a target procedure. The function is a method of
the procedure object, the “self” handle of which is passed as the first argument.

The analysis routine is represented by a “prototype” object, which stores
ATtaCK’s definition of the routine (including its expected arguments). A handle
to that object is passed as the second argument; in this example, pproto is a
handle to the prototype for the CountProc() function that we’ve already seen.

The remaining arguments of atck_proc_callbefore() are the argument list to
be passed to the analysis routine. In this case there’s just one argument, iproc. As

 Analysis Tools Construction Kit 03-59

you can see, this is a counter that gets incremented for each procedure, so it will
range from 0 to the total number of procedures covered by the iterator minus 1.

Every time atck_proc_callbefore() is called, ATtaCK inserts a call to
ProcCount() right at the start of the target procedure, passing it the value of
iproc. If the target’s main() function happens to be the 17th function returned by
the iterator, the result would be something like this:

int main(int argc, char** argv)

{

 ProcCount(16);

/* REST OF ORIGINAL MAIN() GOES HERE */

...

Okay, now before I get into trouble here, let me stress that ATtaCK uses binary
code instrumentation. No source code file gets modified, and the program doesn’t
get compiled again! I’m just describing it here as if the source code were
instrumented, in order to make it clear what’s going on. Conceptually, ATtaCK
inserts the line ProcCount(16); at the top of main(). That line is the
instrumentation call, and ProcCount() is the analysis routine.

I suppose I could have shown an assembly version, something like this:
main:

 xor $a0, $a0, $a0 # zero-out register $a0
 addi $a0, $a0, 16 # put the value 16 into register
$a0

 jal ProcCount # call ProcCount
 # rest of original main() goes here
...

. . . except that it might or might not look like that. The instrumentation call is
conceptually a function call, but in practice, ATtaCK is free to perform the task
however it sees fit. In this case, since ProcCount() is so simple, ATtaCK would
almost certainly inline it, inserting the entire body of ProcCount() into the
beginning of main().

The point of all this is to demonstrate that the third and subsequent arguments
passed into the instrumentation method atck_proc_callbefore() become the
first and subsequent arguments to the analysis routine. The best way to envision
this process is that your instrumentation tool is passing values directly to your
analysis code, using the target application as a middleman.

Static Arguments vs. Dynamic Arguments

The iproc counter in this example is a static argument: Although the
instrumentation code runs through many values for iproc, each individual
instrumentation call that gets inserted into the program treats the value as a
constant. The instrumentation call at the top of main() will always pass 16 to
ProcCount().

 Analysis Tools Construction Kit 03-60

You can also specify dynamic arguments. With a dynamic argument, your
instrumentation tool doesn’t know the value. Instead, you specify which aspect of
the target application should be passed at runtime. ATtaCK then creates an
instrumentation call that reads that value and passes it on to the analysis routine.

For example, if you write an analysis routine to keep track of how deep the stack
has grown, you’d want to pass the value of register 29, the stack pointer.
Obviously your instrumentation tool doesn’t know that value. Instead, you pass a
special code meaning “the value of register 29” to the instrumentation method.

ATtaCK then inserts instrumentation code that fetches the value of register 29,
stores it in a register and then calls the analysis routine. The analysis routine itself,
however, just sees an unsigned 32-bit integer coming in; it doesn’t have to know
anything at all about how registers or the stack work.

Instrumenting an Application

Instrumentation Methods

Common Characteristics

Instrumentation calls get added to existing objects in the target application, such
as instructions or procedures. Consistent with the rest of the ATtaCK API, this
means that the functions to insert instrumentation calls are methods of code
objects. As methods, these functions each take as their first argument a handle to
the code object in question.

The second argument of an instrumentation method is always a handle to the
target analysis routine. Specific analysis routines are represented by the prototype
object, atck_proto_t. This object contains the routine’s symbolic name and its
argument list. For every analysis routine you create in C, you have to declare it in
ATtaCK. The declaration function gives you back a handle to a prototype object,
which you then pass to the instrumentation methods. This process will be covered
more later.

The remaining arguments of an instrumentation method are the values that the
instrumentation call should pass to the analysis routine.

Instrumentation methods follow the normal ATtaCK naming convention:
atck_obj_action(). In this case, the action is either callbefore—add the
instrumentation call before the specified object executes—or callafter—add the
call after the object executes.

None of these methods returns a value. If the specified object cannot be
instrumented, or if the specified analysis function is not appropriate for the object,
ATtaCK prints a diagnostic message but does not generate an error code.

Method Definitions
void atck_callbefore(atck_prog_t* self, atck_proto_t* targ,
...)

 Analysis Tools Construction Kit 03-61

void atck_callafter(atck_prog_t* self, atck_proto_t* targ,
...)

These methods add an instrumentation call at the start or end of the specified
program. Remember that the program object has no abbreviation, so the method is
atck_callbefore() rather than atck_prog_callbefore().

void atck_img_callbefore(atck_img_t* self, atck_proto_t* targ,
...)

void atck_img_callafter(atck_img_t* self, atck_proto_t* targ,
...)

These methods add an instrumentation call at the start or end of the specified
image.

void atck_proc_callbefore(atck_proc_t* self, atck_proto_t* targ,
...)

void atck_proc_callafter(atck_proc_t* self, atck_proto_t* targ,
...)

These methods add an instrumentation call at the start or end of the specified
procedure. Procedures marked “unreadable” or “unwritable” cannot be
instrumented, and ATtaCK will generate a diagnostic message if you try.

void atck_ent_callbefore(atck_ent_t* self, atck_proto_t* targ,
...)

This method adds an instrumentation call before the specified entry point—that is,
before any code in the entered procedure executes. There is no such thing as
instrumentation “after” an entry point. Entry points in procedures marked
“unreadable” or “unwritable” cannot be instrumented, and ATtaCK will generate
a diagnostic message if you try.

void atck_call_callbefore(atck_call_t* self, atck_proto_t*
targ,...)

void atck_call_callafter(atck_call_t* self, atck_proto_t*
targ,...)

These methods add an instrumentation call before or after the specified call site.
Call sites in procedures marked “unreadable” or “unwritable” cannot be
instrumented, and ATtaCK will generate a diagnostic message if you try. Call
sites that target uninstrumentable procedures may themselves be instrumented,
however.

void atck_bb_callbefore(atck_bb_t* self, atck_proto_t*
targ,...)

void atck_bb_callafter(atck_bb_t* self, atck_proto_t*
targ,...)

void atck_inst_callbefore(atck_inst_t* self, atck_proto_t*
targ,...)

void atck_inst_callafter(atck_inst_t* self, atck_proto_t*
targ,...)

These methods add an instrumentation call at the start or end of the specified
basic block or instruction. Basic blocks and instructions in procedures marked

 Analysis Tools Construction Kit 03-62

“unreadable” or “unwritable” cannot be instrumented, and ATtaCK will generate
a diagnostic message if you try.

Wot, No Filename?

Somewhat surprisingly, neither atck_img_write() nor atck_finish_write()
accepts a filename to write the new executable to. They also don’t modify the
original executable. So where does the filename come from? From the original
atck_open() call.

The atck_open() function’s outfile argument specifies a filename template for use
in writing out the executable. Since an application might have more than one image,
the template allows you to specify a naming scheme by which new image filenames
can be generated as necessary.

The format for this template is covered in the documentation on page [FIXUP:
“ATCK Framework API”, page 13]. However, here’s a boilerplate definition that will
almost always work for you:

“<dir><base>_toolname<suf>”

This template, which is used by all the example programs, places the new executable
in the same directory as the original one, adding “_toolname” to the end of the base
name but keeping the file extension the same. Replace toolname with your tool’s
name, such as proccount.

If you intend to download and execute the instrumented program immediately, and
are content to throw the program away once the profiling session is done, you may
specify NULL for the output filename. ATtaCK will then use temporary files to hold
the instrumented program.

Writing the Instrumented Application
atck_bool_t atck_img_write(atck_img_t* self)

If you add any instrumentation to an image, including to children of an image,
you must tell ATtaCK to write out that image, using atck_img_write(), rather
than simply releasing the image using atck_img_release().

If you instrument some images in a program but not others, you only need to call
atck_img_write() for the instrumented ones; the rest can be released normally.
You can call it for an uninstrumented image, in which case the new image file is
identical to the original one.

This method generates a name for the new image file using the filename template
specified in the atck_open() call, then writes the image and releases all
resources associated with the image. Do not attempt to call atck_img_write()
more than once for a given image, since each call will try to write to the same file.

This method returns ATCK_TRUE if the image was written successfully, or
ATCK_FALSE otherwise (for example, due to lack of disk space).

atck_iprog_t* atck_finish_write(atck_prog_t* self)

 Analysis Tools Construction Kit 03-63

If you call atck_img_write() for any image in the program, call this method
after you’ve finished writing the last image. It finalizes any instrumentation calls
added to the program object, and then generates the new executable file using the
instrumented images. It returns a handle to an instrumented program ready for
downloading and execution, a topic covered in the next lesson.

Instrumentation Sequencing
Previously, I threw around the terms “before” and “after” pretty loosely. For
simple tools, for instance, only those that instrument procedure, the intuitive
definitions of “before” and “after” are good enough. For anything more
complicated, you’ll want to know exactly where the instrumentation calls get
placed.

The guiding principle for the sequencing of “before” calls is top-down, then first
in, first out. If you add two instrumentation calls before the same object, the first
one will be executed before the second one. But if you add two instrumentation
calls in the same location via two separate objects, the call added to the “higher”
object executes before the call added to the “lower” object, regardless of the order
in which they were added.

For example, instrumentation added to the start of a basic block always executes
before instrumentation added to the start of the first procedure in the block. Two
calls added before the same instruction, however, execute in the order they were
added.

For “after” calls, the principle is bottom-up, then first in, first out. If you add two
instrumentation calls after the same object, the first one will be executed before
the second one, just as if they were added before the object. But if you add two
instrumentation calls after the same location via two separate objects, the call
added to the “higher” object executes after the call added to the “lower” object,
regardless of the order in which they were added.

Thus, instrumentation added to the end of a procedure always executes after
instrumentation added to the end of the last basic block in that procedure. Two
calls added to the end of the same basic block, however, execute in the order they
were added, not the reverse order.

Programs

Instrumentation added before the program object is called before the first
instruction in the application, and indeed before any instrumentation added with
any other call. Instrumentation added after the program object is called after the
last instruction in the application and after instrumentation added with any other
call.

Program instrumentation is the perfect place for any initialization or shutdown
functions your analysis code needs. For example, if your analysis code uses a
memory buffer, you should probably allocate and initialize it in a function called
via atck_callbefore(), then release it from an atck_callafter() function.

 Analysis Tools Construction Kit 03-64

Images

Instrumentation added before an image object is called after the image is loaded
but before the first instruction in that image executes, and before any
instrumentation associated with any child of that image. Instrumentation after the
image executes immediately before the image is unloaded, and thus after any
instrumentation associated with any child object.

If a program has only one image, or if it has one main image that remains in
memory throughout execution, that image will still get “unloaded” when the
program exits. In that case, instrumentation after the image will execute just
before any instrumentation added after the program object.

Procedures

Instrumentation added before a procedure is called just after the procedure is
entered, but before any instructions in the procedure are executed. The same
instrumentation call is executed regardless of which entry point the application
uses to enter the procedure.

Likewise, instrumentation added after a procedure is called just before the
procedure returns to its caller, and the same instrumentation is executed no matter
which of the procedure’s return statements is being used.

Entry Points

Entry-point instrumentation, which can only be “before” the entry point, executes
after any before-procedure instrumentation, but before any other instrumentation
in the procedure.

This instrumentation is associated with a specific entry point and only executes
when that point enters the procedure. Each entry point represents a specific
instruction, but the entry-point instrumentation won’t be executed unless that
instruction is reached by a call from another procedure.

Call Sites

Instrumentation added before a call site executes before the procedure is called,
and thus before any instrumentation in the target procedure.

Instrumentation added after the call site executes upon the target’s return. Note
that some procedures might not return—for example, they may execute a
longjmp() to return to a previous context. Instrumentation added after a call site
to one of those procedures will never be executed. You can check the site’s
atck_call_returns() attribute to see whether the target is known to return.

Call sites sit in between two basic blocks: the procedure is called after the end of
the first block, and then returns to the beginning of the next block.
Instrumentation added before the call site executes after instrumentation added to
the end of the basic block containing the site. Instrumentation added after the call
site executes before instrumentation added to the beginning of the next basic
block.

 Analysis Tools Construction Kit 03-65

Basic Blocks

This one, at least, is simple: Instrumentation added before a basic block executes
before the first instruction in the block. Instrumentation added after a basic block
executes after the last instruction in the block.

Instructions

Hang on. Instructions are involved enough that they really deserve their own
separate section...

Instrumentation Sequencing—Instructions
...ah, that’s better.

Instructions
ATtaCK makes an instruction’s instrumentation look as much as possible like a
part of the instruction itself. Instrumentation added before an instruction is the
very last thing to be executed before the instruction itself. Instrumentation added
after an instruction will get executed immediately after the instruction, before
anything else in the program.

This can get weird with instructions that change the flow of control, by branching
or by calling a procedure. Instrumentation added before a jump is easy—the
instrumentation executes, then the instruction, then the jump. But what does it
mean to add instrumentation after a jump instruction?

To understand that, we will need to remember dynamic arguments. An
instrumentation call can pass the contents of registers to the analysis routine. For
instrumentation added after an instruction, any changes that instruction makes to
registers are visible to the analysis routine.

For example, consider the following instruction:
xor a0, a0, a0

Let’s assume that we have an analysis routine that expects to be passed the
contents of r1. Instrumentation added before this instruction will pass in the
original value of r1. Instrumentation added after the instruction will pass the new
value, which in this case will be zero.

So instrumentation added after a jump has access to the new contents of all the
registers, including the program counter. The instrumentation actually happens in
between the change to the program counter and the transfer of execution.
Likewise, for a call instruction such as jal, which stores the return address in r31,
the instrumentation call can pass the new values of both the program counter and
r31.

On many chips, including the EE, when a register is loaded from memory, the
new value isn’t visible for several cycles afterward. If an instrumentation call
after an instruction passes the loaded register to an analysis routine, ATtaCK adds

 Analysis Tools Construction Kit 03-66

in a delay so that the new value is available. This can cause a significant slow-
down of your application, so only read registers when truly necessary.

Similarly, most branches on the EE are delayed—the instruction after the branch
executes while the processor prepares to transfer execution. You might think that
instrumentation code added after a branch would displace your application’s code
out of that “delay slot,” disrupting your code. It doesn’t. The instrumentation
executes, then the delay-slot’s instruction (including any instrumentation it might
have) executes, then the branch takes effect.

How does all this work? I have no idea. ATtaCK handles it all behind the scenes.
The bottom line is that your tools can put instrumentation anywhere in the
program you want, without worrying about what the actual CPU is doing.

Instrumentation might slow your program down, but it won’t break anything. If
you forget how instrumentation sequencing works, your analysis code might not
work the way you want. And if you write buggy analysis routines, they could
break. But nothing you do in an instrumentation tool can crash your application.

Pop Quiz
Here’s a quick test to review how all this works. Let’s diagram a simple
procedure:

Fig. 03-01: Diagram of a Simple Procedure

Our instrumentation tool in this case is
identifying objects using 32-bit values,
somewhat like IP addresses. Here we see
procedure 06, which contains basic block
0600, which in turn contains instructions
060000 through 060002, and so forth.

Let’s assume that every object in the diagram
is instrumented both before and after, with a
separate analysis routine for each level and
position. Thus, the routines are
BeforeProc(), AfterProc(), BeforeEnt(),
BeforeBB(), AfterBB(), BeforeCall(),
AfterCall(), BeforeInst() and
AfterInst(). Each routine takes the ID value
of the instrumented object.

For the sake of discussion, call site 0600 calls
procedure 1E, which is not itself instrumented
below BeforeProc() and AfterProc().

Now, if the caller enters this procedure at entry point 0600, what analysis routines
will be called, and in what order? The answer in the Quiz Answers section of the
document, but try to work this out on your own first.

 Analysis Tools Construction Kit 03-67

Creating Analysis Code

ATtaCK analysis code is a simple C program that contains routines, which will be
invoked by your instrumentation calls. There are three steps to creating this
program: First you set up a CodeWarrior for PlayStation 2 project to compile and
link the program. Then you design the analysis code itself, writing standard C
routines. Finally, you tell ATtaCK the names and argument lists of your analysis
routines, so that it can set up the instrumentation calls properly.

Building Analysis Code
Your analysis routines live in a small, temporary executable file, created using a
separate CodeWarrior for PlayStation 2 project. Back in Lesson 01, you learned
how to set up project stationery to create new analysis-code projects. That same
project stationery should work for just about every analysis tool you write, so
setting up the project and building the code is easy.

Now that you actually understand what instrumentation and analysis code are
trying to do, you might want to go back and review Lesson 01. Pay particular
attention to the project settings for analysis code, because they shed some light on
how things work. For instance, the linker must be told to use the atcktarg_start
library routine as the entry point for the analysis “program,” since there is no
main() function in analysis code.

If you want to review Lesson 01 now, feel free—I’ll wait here. From this point
forward, I’ll just assume you understand and are using the project stationery.

Designing Analysis Code
The analysis code for a particular tool is a small C program that you write. This
program does nothing by itself—it has no main(), and doesn’t even call any of its
own routines. Instead, your instrumentation tool uses ATtaCK to attach the
analysis code onto the end of the target application, inserting calls to that code
throughout the program.

When instrumentation code calls an analysis routine, what does that routine do?
The simplest analysis routines just increment counters. In fact, that’s pretty much
what all analysis code does. You want your analysis routines to be as lightweight
as possible. Simply incrementing a counter, leaving any real processing of the
data for later, is usually the best approach.

More often, the analysis routine increments one element from an array of
counters. That way, the instrumentation tool can use a numeric ID to specify
which counter should be incremented. The alternatives are to use a separate
function for each counter, which is cumbersome, or to identify a counter by some
non-numeric means (such as a string), which is inefficient. Analysis routines
should be easy to write and fast to run, and numerically indexed arrays fit the bill
perfectly.

The ProcCount() function we saw incremented one element of ProcCounts[],
an array with one element per procedure. Each procedure was identified by a

 Analysis Tools Construction Kit 03-68

numeric value that was passed into ProcCount(). These values came from the
tool, and only had meaning to it. Neither the instrumentation calls nor the
ProcCount() analysis routine understood the ID value to mean anything other
than which counter in the array to increment.

This brings up an important point: The data gathered by the analysis code almost
always is meaningless without the instrumentation tool. All of the context
information—the table that translates counter ID numbers into procedure names,
for example—lives there, not in the analysis code. After your instrumentation tool
collects the results of the analysis code, it’s your job to attach the context
information to those results before saving or displaying them.

Simple Analysis Code

Here’s the simplest analysis code you’re ever likely to use:
#include <atcktarg.h>

#pragma force_active on

atck_uint32_t ProcCounts[1000];

void CountProc(atck_uint32_t procID)

{

 ProcCounts[procID]++;

}

The first thing to notice about the program is that it is cross-platform: It doesn’t
use any types that aren’t defined by ATtaCK. You can get away with using
standard C types in an instrumentation tool. The whole point of analysis code, on
the other hand, is to gather data to communicate back to the host system, and it’s
vital that the basic types be the same on both sides of that connection.

In particular, instrumentation calls—which are essentially calls from your
instrumentation tool to the analysis code, across the gap between the host and
target—can only pass ATtaCK’s types. Analysis routines cannot use standard C
types in their argument lists. We’ll cover the range of available data types later
on, but atck_uint32_t is the one you’ll use most often anyway.

The ATtaCK types and interfaces are defined in the system header atcktarg.h,
included at the top of this program. Your instrumentation tools, which run on the
host system, include atck.h; analysis code, which runs on the target, uses just a
subset of the ATtaCK interfaces, defined in atcktarg.h. Some PlayStation 2-
specific definitions are included in atcktargps2.h, which you might need to
include in addition to (not instead of!) atcktarg.h. This program doesn’t use any
of those, and we won’t encounter a program that does until Lesson 05.

The pragma directive on the next line tells the linker to include all the routines
from this file, even though none of them ever get called. In the final executable,
there will definitely be instrumentation calls that use these routines, but the linker
doesn’t know that right now.

 Analysis Tools Construction Kit 03-69

The top two lines are boilerplate—every analysis program you create will use
them. The remaining lines are the actual analysis code.

The program simply creates a static array of 1000 32-bit unsigned integer
counters. Instrumentation calls to CountProc() specify which counter to
increment, and CountProc() dutifully increments the specified counter. Note
that, like all analysis routines, CountProc() doesn’t return a value.

See, I told you it was simple.

What’s Wrong With This Picture?

Now, if it were really that simple, you wouldn’t need this course. This code is in
fact too minimal, and in later lessons we’ll see how to improve it.

For one thing, allocating a static array is a bad approach—1000 elements will
either be too many, which is inefficient, or too few, which is downright
disastrous. So “real” analysis code needs to work with dynamically sized arrays.
You can create the array yourself, or you can let ATtaCK handle it for you.

Another problem with this function is that it only gathers one piece of
information—which procedure needs to be counted. So the only profile we can
get from this code is the number of times each procedure was called. Any
advanced optimization will certainly require more detailed data than that. At a
minimum, we’d want to know how many instructions within each procedure
actually got executed.

What’s not missing, on the other hand, is code to communicate the results back to
the host system. The analysis routines don’t talk to the host at all. Rather, the host
reads the memory of the target application (including its attached analysis code)
directly. In this example, after we’ve finished profiling the application, the
instrumentation tool will look up the address of the ProcCounts[] array and read
the counters out of it. That process is the subject of Lesson 04.

At any rate, while there’s a lot more to learn about designing analysis code, we
can get by with our simple CountProc() function until Lesson 05, when we cover
analysis code in detail.

Declaring Analysis Code

Analysis routines have to be declared twice: first in C, for the benefit of the
compiler, and then in a C-like description language, for the benefit of ATtaCK.

The C declaration is straightforward, as we saw in the CountProc() example
above. Now when I say “declaration” here, I’m talking about “void
CountProc(atck_uint32_t procID)” —the function’s signature. If the body of
the function itself follows that, then it’s more precisely a “definition” rather than a
“declaration.” Since analysis routines seldom call each other, you generally won’t
bother declaring the routines. Nevertheless, I’ll continue to refer to this as the C
declaration, to strike a parallel with the ATtaCK declaration.

 Analysis Tools Construction Kit 03-70

Your instrumentation tool will call the analysis routines—indirectly, through
instrumentation calls added to the target application. So the routines need to be
declared to the instrumentation tool. In this case, it’s ATtaCK, rather than the C
compiler and linker, that is generating the call, and so you have to use ATtaCK
function signatures rather than C ones.

An ATtaCK declaration is represented by, you guessed it, an object—the
atck_proto_t, or “prototype” object. The prototype object contains all the
information ATtaCK needs to know about a particular analysis routine.

Declaring ATtaCK Prototypes
Prototype objects are constructed using a factory method of the program object,
like so:

atck_proto_t* atck_analproto(atck_prog_t* self, const char*
declare)

As a method of the program object, this takes a handle to the program in question
as its first argument. The second argument is a string containing the function
declaration, written in a C-like definition language described below.

If the declaration is valid, this method returns a handle to the new prototype
object. This handle is then passed in as the targ argument for an instrumentation
call, as seen earlier. If the declaration is invalid, this method returns NULL, and
ATtaCK issues a diagnostic message to stderr. The most obvious reason why a
declaration would be invalid is a syntax error.

Remember that when you opened the program you also specified at that time the
name of the analysis program to use. If you didn’t specify an analysis program, or
if the declared function doesn’t exist in that program, this method will return
NULL.

Prototype handles are owned by the program object, and are released when it is.
You do not need to release them yourself. In fact, you can’t release them yourself.
So there!

Definition Language

ATtaCK function declarations use a C-like language, like so:
void name(arg1, arg2,...)

Analysis routines never return anything, so the void is boilerplate. name is the
function’s name, exactly as it appears in the analysis program’s symbol table—so
if you write your analysis routines in C++, you’ll have to mangle the name for
ATtaCK. (And the moral of that story is “Don’t write your analysis routines in
C++.”)

Each of the function’s arguments are specified by type only—no names. The
arguments must use ATtaCK’s basic types, not their standard C equivalents.
Types are specified by their core name—the middle part, in between the “atck_”
and the “_t.” For example, the extremely common atck_uint32_t appears as
just uint32 in function declarations.

 Analysis Tools Construction Kit 03-71

All analysis-routine arguments must be 32-bit or 64-bit values. They fall into
three categories: static arguments, which are values passed directly from the
instrumentation tool to the analysis routine; dynamic arguments, which are values
passed from the target application to the analysis routine; and arrays, which are
pointers to memory buffers allocated within the target application’s data space.

We’ll stick with static arguments for now, since they’re the ones you’ll use most
often anyway. Dynamic and array arguments will be covered in Lesson 05.

The static arguments available for analysis routines are listed in Table 03-01.

Table 03-01: Valid Types for Analysis Routine Static Arguments

A Minimal ATtaCK Tool
The simplest possible profiler would just count the number of times any
procedure in the application was called. Each procedure would be counted the
same whether it was a three-line swap function or a 500-line AI state machine.
We’d add an instrumentation call at the top of each procedure that invoked a very
simple analysis routine:

void CountProc(void)
{
 NumProcsCalled++;
}

In fact, if you remember the example from Lesson 01, which is exactly what
BareBones did. Not very useful. In the sample program for this lesson, we’ll do a
little better than that. The tool we’re going to look at here counts the number of
times each procedure gets called. We still add an instrumentation call at the top of
each procedure, but we need that call to identify which procedure was entered.
For efficiency, we’ll identify procedures by a numeric ID, which gets passed to
the CountProc() routine we’ve been looking at all lesson.

 Analysis Tools Construction Kit 03-72

That routine uses the numeric ID to increment one counter out of an array. At the
end of the run, we can read that array, map each numeric ID back to the original
procedure name, and find out how many times any given procedure was called.

How useful a profiler is this? So-so. The more often an individual procedure is
called, the more deserving of optimization it’s likely to be. That’s not universally
true—procedures with loops being the obvious problem. It’s good enough for a
first cut, though.

Creating the Project

Unlike Display from the previous lesson, this sample program wasn’t included
with the ATtaCK installation, so you’ll need to create a new project for it
yourself. This is done using the same process we saw in Lesson 01: Use the
“ATtaCK Metaproject” stationery we set up then to create a new metaproject,
instrumentation-tool project and analysis-code project. Name this project (and the
.exe file it produces) ProcCount.

You’ll need three files for ProcCount: ProcCount.c, ProcCount.h and
CountProc.c. These can be downloaded from this course’s supplemental-
material folder. Delete main.c from your instrumentation-tool project and replace
it with ProcCount.c. Then delete analmain.c from the analysis-code project and
replace it with CountProc.c. Once the code is ready, select the metaproject
(ProcCount.mcp) and make it—hit F7 or select Project > Make. Refer back to
Lesson 01 for troubleshooting.

Once you’re sure everything builds correctly, open up ProcCount.c and let’s take
a look!

ProcCount: Navigation and Instrumentation
This is a simple program—everything is done in main(), and you’ve seen all of
this code at least once already.

After the system and ATtaCK headers, the file includes ProcCount.h. Open that
up and you’ll see that it has just one line, defining the MAXPROCS constant. More
on that in a minute. Let’s go back to ProcCount.c.

At the top of main(), after all the variables are declared, we find the standard
boilerplate—open a session, open a configuration file and open an application.
The target application filename is read off the command line. The one thing that’s
changed is that, since we’re now adding instrumentation calls, we need to tell
ATtaCK where to find the analysis code—in this case, it’s in the file
“<tooldir>..\\Analysis Code\\analcode.elf”.

The filename analcode.elf is obviously the output executable file we set up in
the analysis-code project. ATtaCK replaces the <tooldir> macro with the
directory that the instrumentation tool is in. The “..” steps up to the metaproject
directory, and the “\\Analysis Code\\” steps back down into the analysis-code
directory where analcode.elf is.

 Analysis Tools Construction Kit 03-73

The first thing we do with the newly-opened program handle is find out how
many instrumentable procedures it has. Each instrumented procedure will be
instrumented with a call to our CountProc() routine, which you’ll remember uses
a static array of 1,000 elements. Actually, as you’ll see when we look at
CountProc.c, we’ve updated that a little bit—now it uses a static array of
MAXPROCS elements. By using a header file to share this value between the two
programs, we keep them in sync with each other.

If our tool added instrumentation calls to more procedures than the analysis code
can handle, CountProc() would crash. So we need to make sure that the
instrumentation tool knows and respects the analysis code’s limits. If the target
application has more than MAXPROCS instrumentable procedures, we print an error
message and quit.

Next we declare our single analysis routine, Pcount(). It’s a void function that
takes a single 32-bit unsigned integer. The declaration gives us a prototype handle
that we’ll use later on.

Now we iterate over every image in the program, and over every procedure within
each image. I can’t imagine what’s left to say about iteration after our last lesson,
so let’s move on...

At the heart of the iteration loop, we check to see whether the given procedure is
instrumentable. (Procedures not compiled by CodeWarrior—most notably, the
Sony libraries—are not.) If it is, then we use the procedure’s “call before”
instrumentation method, atck_proc_callbefore(), to insert a call to Pcount()
at the start of the procedure.

The instrumentation method takes three arguments, a handle to the procedure, a
handle to the prototype of the routine to call, and the argument to pass in to that
routine. Here we pass in iproc, a counter, which we then increment. The net result
is that for the first procedure we pass 0, for the next 1, then 2, 3 and so forth.
CountProc() will use this value to identify the procedure.

As we finish with each image, we call atck_img_write(), which saves the new,
instrumented image, rather than atck_img_release(), which would discard our
instrumentation.

Once all the images are done, we call the program object’s
atck_finish_write() method to close the new executable file. This method
returns a handle to the new file, which we will use to download and run that
program.

Next we connect to the target system, download the instrumented application and
start it running. While the program is running on the T10000, the instrumentation
tool waits for the user to hit enter on the PC. Then the tool halts the target so that
we can read the results. All of this code is essentially boilerplate, so we’ll save it
for Lesson 04.

After we’ve stopped the target, we find the address of its ProcCounts[] array and
upload it into our tool—another topic covered in Lesson 04. We can then read and
display this array, but let’s look at the analysis code that created it first.

 Analysis Tools Construction Kit 03-74

ProcCount: Analysis and Output

Analysis Code
The analysis code lives in CountProc.c. The only system header it needs is
atcktarg.h. It also includes the shared ProcCount.h header, to get the MAXPROCS
constant. That constant is then used to allocate the ProcCounts[] global array.

As discussed, each element of ProcCounts[] is an unsigned 32-bit integer
counter. When a particular procedure in the target application is entered, an
instrumentation call passes the procedure’s ID to CountProc(), which increments
the appropriate counter from the array.

And now back to the instrumentation tool.

Output
The atck_readdata() function reads the entire contents of ProcCounts[] from the
target into a buffer on the host. Arguments to the function tell ATtaCK that the
memory consists of an array of unsigned 32-bit integers, so if the host and target
had different byte orders, ATtaCK would be able to byte-swap each array element
automatically.

Of course, since we’re talking to a PlayStation 2 from a PC, we don’t need to
swap the bytes. But it’s a handy thing to remember for the future.

Once the buffer has been loaded, we iterate through the program again in order to
attach a procedure name to each slot in the array. At first glance this seems weird
and inefficient—why didn’t we create an array of strings and store the procedure
names during the first iteration pass?

To ask the question is to answer it: That would have been more work. The
iteration is guaranteed to be the same each time through, so why not just do it
twice? The big savings in programming time overwhelms the teensy tiny waste of
computer time.

This highlights one of the most important ATtaCK principles: Keep it simple,
stupid! It’s not likely anyone is paying you to create elegant tools; they’re paying
you to analyze the application. Take the most direct route to that goal you can.

At any rate, having looked up the procedure name for each counter in the array,
we simply print the two out. The result, shown in Fig. 03-02, is human-readable,
but only really useful for small programs. A better output format would have been
comma-separated values, which could then be loaded into a spreadsheet program
and analyzed or at least sorted.

 Analysis Tools Construction Kit 03-75

Figure 03-02: ProcCount Output

Onward!
We’re not quite halfway done, but we might as well be. Downloading and
executing the target application is our next subject, and compared to navigation or
iteration, it’s trivial. Truth be told, it’s so easy that I’m embarrassed to be getting
paid for explaining it to you.

Not so embarrassed that I turned down the money, mind you. And since I am
getting paid, let’s go ahead and move on to Lesson 04: Running and Analyzing an
Application.

 Analysis Tools Construction Kit 03-76

Lesson 03 Assignment

Here’s a diagram of a simple procedure:

Our instrumentation tool in this case is
identifying objects using 32-bit values,
somewhat like IP addresses. Here we see
procedure 06, which contains basic block
0600, which in turn contains instructions
060000 through 060002, and so forth.

Let’s assume that every object in the
diagram is instrumented both before and
after, with a separate analysis routine for
each level and position. Thus, the
routines are BeforeProc(),
AfterProc(), BeforeEnt(),
BeforeBB(), AfterBB(), BeforeCall(),
AfterCall(), BeforeInst() and
AfterInst(). Each routine takes the ID
value of the instrumented object.

For the sake of discussion, call site 0600
calls procedure 1E, which is not itself
instrumented below BeforeProc() and

AfterProc().

Now, if the caller enters this procedure at entry point 0600, what analysis
routines will be called, in what order and with what arguments? The answer is
below, but try to work it out for yourself first.

Hint:

There are a few “gotchas” you need to watch out for:

• Entry point instrumentation only gets called if the procedure is actually
entered there.

• A call instruction finishes before the call itself takes place.

• The instruction in a call’s delay slot also happens before the call.

• A basic block ends when its last instruction ends, before any call out of
the block takes place.

 Analysis Tools Construction Kit 03-77

Answer:
BeforeProc(06)
BeforeEnt(0600)
BeforeBB(0600)
BeforeInst(060000)
AfterInst(060000)
BeforeInst(060001)
AfterInst(060001)
BeforeInst(060002)
AfterInst(060002)
AfterBB(0600)
BeforeBB(0601)
BeforeInst(060100)
AfterInst(060100)
BeforeInst(060101)
AfterInst(060101)
BeforeInst(060102)
AfterInst(060102)
BeforeInst(060103)
AfterInst(060103)
BeforeInst(060104)
AfterInst(060104)
BeforeInst(060105)
AfterInst(060105)
BeforeInst(060106)
AfterInst(060106)
AfterBB(0601)
BeforeCall(0600)
BeforeProc(1E)
AfterProc(1E)
AfterCall(0600)
BeforeBB(0602)
BeforeInst(060200)
AfterInst(060200)
BeforeInst(060201)
AfterInst(060201)
BeforeInst(060202)
AfterInst(060202)
AfterBB(0602)
AfterProc(06)

 Analysis Tools Construction Kit 03-78

Lesson 03 Quiz

1. Which of the following is an advantage that sampling has over
instrumentation?

A. Speed.
B. Convenience
C. Accuracy
D. Selectivity

2. True or false: Instrumentation can be added both before and after entry
points.

A. True
B. False

3. True or false: Calls added to the same object execute in the order they were
added.

A. True
B. False

4. True or false: Instrumentation added after a call site is guaranteed to be
executed.

A. True
B. False

5. Which of the following lines of code is not required in ATtaCK analysis
code?

A. #include <atcktarg.h>
B. #include <atcktargps2.h>
C. #pragma force_active on
D. None of the above

6. True or false: Analysis routines are unable to communicate with the host
directly.

A. True
B. False

7. Which of the following is a valid return type for an analysis routine?

A. int.
B. atck_uint32_t.
C. void.
D. void*

8. True or false: You have to be careful when instrumenting branches on the
PlayStation 2, to avoid displacing the instruction in the “branch delay” slot.

A. True
B. False

 Analysis Tools Construction Kit 04-79

Lesson 04: Running and Analyzing an
Application

The ATtaCK framework handles all the details of downloading and running your
instrumented application on the T10000. In our fourth lesson, you’ll learn how
this works, and how to pause, resume and kill a running application. We’ll also
look at how to communicate data between your PC and the target, and how to
display your profiling results in a useful form. Finally, we’ll explore SimpProf, a
simple profiler.

Execution Concepts

Lesson Objectives
Okay, wake up! This lesson is going to go by so fast that if you nap, you’ll miss
it. We’re going to cover the penultimate two steps of the ATtaCK process:
downloading and running applications, and reading data from the target system.
For both of these, ATtaCK does almost all the work, so all you need to learn is a
handful of API calls.

Download
The end result of instrumenting the target application is a new program, which
will need to be run on the target system to perform the analysis. You can just
launch it as you would any other program, but if you did that, you wouldn’t be
able to read your data. The analysis code has no way of saving data or sending it
to the host system, nor can it communicate with the main application.

The only way to get the analysis results out of the program is to read them directly
from an ATtaCK tool. And to do that, you have to have downloaded and executed
the application from that tool in the first place.

You don’t have to download and run the program immediately after instrumenting
it, however. You could create a tool that ran an already-instrumented application.
This would let you instrument the application once, save it, and then run it
multiple times—even run it on multiple systems.

If you were analyzing AI routines, for instance, you might want to have several
different play testers run the program, trying out different tactics. The aggregate
results from all their sessions would tell you more about your AI code than the
results from any single session.

As we’ve already seen, though, the tool that handles the execution needs to know
exactly what the analysis code is like in order to know what memory buffers to
read. So in practice, you usually download and run the application from the same
tool that performed the instrumentation. Avoiding the nominal inefficiency of re-
instrumenting the application every time the tool runs isn’t worth wasting a lot of
programming effort.

 Analysis Tools Construction Kit 04-80

ATtaCK handles all the details of communicating with the target system. Your
tool simply opens a connection to the target and specifies the application to run.
ATtaCK downloads the application and immediately pauses it.

Execution
Once the application is on the target, you can instruct ATtaCK to start execution.
You don’t have much fine control over the target, but you do have absolute
power—you can tell it to start and stop, and your commands will be obeyed.

You should run the application for a little while in order to build up a body of
data. You could start and stop the program based on a timer, but the better
approach for a game is to run the program until the user halts it. You’ll generally
want to analyze “typical” gameplay, and the user is the best judge of when he’s
accomplished that.

When the target stops, whether the application exited, the operating system killed
it or ATtaCK halted it, the tool gets sent an event. It then responds to that event
by reading the analysis results from the target system.

Reading Data
ATtaCK doesn’t know in advance where in the target system’s memory the
application will wind up; it gets that information back from the target when the
application is downloaded. An API function lets you look up the target address of
a particular symbol.

Once you have an address, you can read data from the target. We saw this in the
sample program last lesson, and there’s really not much more to know. In addition
to reading from the target, ATtaCK can also write to the target.

Displaying Data
Analysis code needs some kind of context information to work properly. In the
ProcCount sample program, the procedure-counting routine needed to know
which procedure to count. To keep the analysis code as streamlined as possible,
this context information is usually just a simple integer, which gets passed from
the instrumentation tool to the analysis code. The tool is responsible for mapping
these ID numbers back to actual code structures once it reads the data.

The easiest way to do that is simply to iterate through the code again, in the exact
same sequence the code was instrumented. Most ATtaCK tools thus have two
nearly-identical iteration loops: One runs through the application’s code objects to
add instrumentation calls, the other runs through to map analysis results back to
the code objects.

Once the analysis results are associated with the original code, the tool can either
dump this information to the display or a file, or it can perform higher analysis. A
profiler that gathered instruction-counts for each procedure, for instance, might
then go on to calculate the percentage of total execution time happened in each

 Analysis Tools Construction Kit 04-81

procedure. It might even create totals and subtotals, to show how many cycles
were consumed by each procedure plus its children.

Executing an Application
To execute an application, you must first open a connection to the target system.
The “device connection” object, atck_dev_t, represents the connection. This
object is created using a factory method of the session object, like so:

atck_dev_t* atck_connect(atck_sesn_t* self, atck_cfg_t*
config,
 void
(*evthandler)(atck_tvt_t*,void*,void*),
 void* devID)

The first argument is a handle to the session object, as befits a session method.

The second argument is a handle to a configuration object, used to wrap the
various system settings used by ATtaCK, such as the IP address of the T10000.
Configuration objects are discussed in detail next page.

The third argument, evthandler, is a pointer to an event-handler callback function.
We’re going to cover events in just a bit, so just take this as a given for now.
You’re also free to leave this as NULL, and indeed many programs do just that.

The fourth argument is a pointer to an arbitrary variable. This variable is a user-
specified (by which I mean you-specified) device ID. If you have multiple device
connections but only one callback function, this device ID can be used to identify
the connection for a specific event. This only matters for the event handler, so
again, we’ll save it for later. If you’re not using an event handler, you may as well
leave this argument NULL, too.

If ATtaCK can’t open a connection to the target system—if, for example, the
target system is turned off—this method returns NULL and prints a diagnostic
message. Otherwise, it returns a handle to the new device connection.

Downloading the Program
The connection object is used to download a program to the target, using the
following methods:

actk_run_t* atck_idownload(atck_dev_t* self, atck_iprog_t*
prog,
 atck_cfg_t* config, void* progID)

actk_run_t* atck_udownload(atck_dev_t* self, atck_iprog_t*
prog,
 atck_cfg_t* config, void* progID)

These functions are methods of the device-connection object, and thus take a
connection handle as their first argument.

The second argument is a handle to an instrumented-program object; more on that
in a moment. The atck_idownload() method expects the program to include
instrumentation symbols and other special ATtaCK-created information; the

 Analysis Tools Construction Kit 04-82

atck_udownload() method can be used with any program, whether it was
instrumented by ATtaCK or not.

The third argument is a handle to a configuration object, containing options for
use with the downloaded program. On the PlayStation 2, those options are the
host directory to load from, and the command line to pass to the downloaded
application. This is covered in the next section.

The fourth argument is a pointer to a user-specified variable. Like the devID
argument of atck_connect(), this pointer is passed to the event handler, where it
can be used to identify which downloaded program generated a particular event.

If this method succeeds, it downloads the program to the target system and returns
a “running program” object, atck_run_t.

If the method fails, it returns NULL and prints a diagnostic message.

Opening Instrumented Programs

The “instrumented program” object, atck_iprog_t, represents a downloadable
program. You may remember that the atck_finish_write() method returns a
handle to the instrumented program it writes out. You can also open an existing
program—instrumented or not—for downloading like so:

atck_iprog_t* atck_iopen(atck_sesn_t* self, const char*
filename,
 atck_cfg_t* config)

This function is a method of the session object, and takes a handle to that object
as its first argument. The second argument is the filename to open. The third
argument is a configuration object, but since like atck_open() this method
doesn’t accept any options, you should just pass NULL.

If the method succeeds, it returns an instrumented-program handle for use with
the download functions. Otherwise, it returns NULL and prints a diagnostic
message.

Running the Program
As mentioned, the run object represents a downloaded program on the target
system. The program begins already halted; to start it running, you’d call the
atck_continue() method of the run object. That function, and the run object in
general, is covered a little later.

Your tool’s execution continues while the program runs on the target system.
Usually, you’ll want your tool to sit in an idle loop. The best way to do this is to
call a blocking character-input library routine such as getch(); when the user hits
ENTER, the function returns, at which point your tool would halt the target
system.

 Analysis Tools Construction Kit 04-83

Ending the Run
While the program is running, you can start and stop it. When you’ve stopped it
for the final time, you can shut it down permanently and release the run object by
calling that object’s “destructor,” atck_kill(), as follows:

 atck_bool_t atck_kill(atck_run_t* self)

If an error occurs, the method returns ATCK_FALSE and prints a diagnostic
message; otherwise it returns ATCK_TRUE.

Finally, when you’ve finished with a connection object, you call its “destructor,”
atck_disconnect():

Atck_bool_t atck_disconnect(atck_dev_t* self)

This method will call atck_kill() automatically for any programs still running.
Like atck_kill(), it returns ATCK_FALSE and prints a diagnostic message if an
error occurs.

Configuration Objects

When working with applications and target systems, ATtaCK needs to know a
number of configuration options—things like the host directory, the target
system’s IP address and so forth. These options are all platform-specific, so to
preserve its cross-platform compatibility, ATtaCK encapsulates all the options
into a single object, atck_cfg_t.

Configuration options can be set two ways. Most commonly, you pass a filename
to the configuration object’s “constructor,” which parses that file for options. You
can also use methods to add new options to an existing configuration object,
allowing you to use the command-line or a different file format rather than the
default ATtaCK format.

The configuration object also has methods to let you read its contents. Thus, you
can use these objects to store tool settings and other non-ATtaCK options.

Configuration Objects

Initialization

To create a configuration object, you use a factory method of the session object:
atck_cfg_t* atck_config_new(atck_sesn_t* self, const char*
filename)

The first argument is the usual handle to the session object. The second argument
is the name of a file from which to initialize the configuration object. To create an
empty configuration object, pass NULL for the filename.

The filename argument can use absolute or relative paths, using the standard
Windows file syntax. It can also use special keywords to identify known
directories:

 Analysis Tools Construction Kit 04-84

• The keyword <syscfg> is replaced with the full path and filename of the
system configuration file—usually lib\ps2\syscfg.txt in your ATtaCK
installation, as we saw back in Lesson 01. This is the file you should
almost always load and pass to atck_connect().

• The keyword <tooldir> is replaced with the path to the directory
containing the tool’s instrumentation code.

The format of the configuration file and the options each ATtaCK function
expects are described at the end of this section.

At the end of your program, you can free any configuration objects you created by
calling their “destructor”:

void atck_config_free(atck_cfg_t* self)

However, this isn’t necessary—releasing the session object with
atck_endsession() will automatically free any configuration objects created in
that session.

Reading Options

Configuration options are identified by name and come in two types, integers and
strings. To read an option from a configuration object, you use the following
methods:

long atck_config_getint(atck_cfg_t* self, const char* opt)

const char* atck_config_getstr(atck_cfg_t* self, const char*
opt)

If the specified option doesn’t exist, or if it exists but is of the wrong type, these
methods return 0 or NULL, respectively. The string returned by
atck_config_getstr() is valid until the configuration object is destroyed, or
until the specified option is changed to a different value.

To find out whether a particular named option exists, and/or to learn its type, use
the following method:

atck_cfgtyp_t atck_config_hasopt(atck_cfg_t* self, const char*
opt)

This method returns an enumerated type with three possible values:
ATCK_CFGTYP_INT, if the option exists and is an integer; ATCK_CFGTYP_STRING, if
it exists and is a string; or ATCK_CFGTYP_NONE, if the option doesn’t exist.

Writing Options

If you’re using command-line options or your own configuration files, you can
store these options in a configuration object by hand, using the following
methods:

void atck_config_addint(atck_cfg_t* self, const char* opt,
long val)

void atck_config_addstr(atck_cfg_t* self, const char* opt,
 const char* val)

 Analysis Tools Construction Kit 04-85

The opt argument specifies the option’s name, and val specifies its value. If an
option with that name already exists, it is overwritten with the new value and
type.

Configuration Files
ATtaCK configuration files are plain text, much like Windows .INI files. Each
line in the file defines an option and its value, like so:

ip = 192.168.0.10

addr = 0xfa001234

output = file.txt

message = “ Analysis complete. ”

prompt = “Hit “ENTER” to continue.”

Each line consists of the option name, an equal sign and the option value; spaces
and tabs within the line are ignored. If an option value is a recognizable decimal,
hexadecimal or octal value, it is stored as an integer, otherwise it is stored as a
string. Dotted-decimals, such as IP addresses, are interpreted as strings.

You can force an option to be interpreted as a string by surrounding it in quotes,
but this isn’t necessary for most strings. Putting a value in quotes will allow you
to include leading and trailing whitespace, which would otherwise get stripped.
The quotes themselves do not become part of the value, of course, although any
quotes inside the string are preserved.

Connection Options

The options expected by atck_connect() are the ones contained in syscfg.txt.
You usually only need to modify this file when you install ATtaCK on a new
machine, so read the installation instructions for more details. Here’s a quick
review:

ip (string): The IP address of the T10000 target system.

port (integer): The port number of the T10000

priority (integer): The connection priority of the T10000

timeout (integer): The connection timeout value, in milliseconds

hostioDrive (string): A single letter identifying the default drive for host files

Download Options

The download functions atck_idownload() and atck_udownload() only
expect two options, both of which are, well, optional:

hostio (string): The path to the application’s host I/O folder. The default value
for this option depends on how the downloaded program was opened. For existing
programs opened with atck_iopen(), this defaults to the opened application; for
programs “opened” as the result of atck_finish_write(), this value defaults to
the location of the original, uninstrumented application.

 Analysis Tools Construction Kit 04-86

cmdline (string): The command line arguments to pass to the application. This
works just like an actual command line: Each argument is delimited with spaces,
and you don’t need to surround the line in quotes. The default for this option is
simply a blank line.

ATtaCK Events

Event Handlers
To save you the trouble of sitting in a loop polling the status of the target system,
ATtaCK provides an event system. The target system reports various events back
to ATtaCK, which passes them on to an event-handler callback function you
specify in your call to atck_connect().

All event handler functions follow this pattern:
void MyEventHandler(atck_tevt_t* event, void* devID, void*
progID)

{

 /* Handle the event */

}

The function takes three arguments, a handle to the event generated, and the IDs
of the device connection and program that generated that event.

There can be at most one event handler for any given connection—“at most”
because you don’t have to have an event handler if you don’t want one.
Conversely, if you had multiple connections, they could all share the same event
handler. The device and program IDs let you tell which device or program
generated which event.

These IDs are the values you passed in to the connect and download methods we
saw previously. What they are is up to you. They could be pointers to integers,
pointers to character strings, even pointers to C++ objects—ATtaCK doesn’t care.
Whatever value you pass in just gets passed back to you.

They could even be NULL. If you only intend to have one connection open and
have one downloaded program running at the same time—most likely the case—
then you can decide not to bother with this ID nonsense and can just pass in
NULLs. Also, if the generated event isn’t associated with a program, then the
progID value would be NULL regardless of what you passed in to the download
method.

In this lesson’s sample program SimpProf, we’ll see a clever use for the devID
pointer. SimpProf stores the running application’s context information—handles
to the session, the uninstrumented program and the address of the data buffer—in
a structure, and then passes a pointer to that structure through devID. When the
event handler receives that pointer, it gets access to that information, which it uses
to read, format and print the profile data.

 Analysis Tools Construction Kit 04-87

Designing Event Handlers

An event handler can more or less do anything you want. There are only a few
restrictions.

First, the event object doesn’t belong to you, so don’t try to release it.

Second, the event handler function may—almost certainly will—be called from a
different thread than your instrumentation tool. Take all the usual precautions in
working with global data.

Last but not least, an event handler cannot call functions that generate events
themselves! In practice, this means you can’t call functions that stop the running
program—atck_disconnect(), atck_stop() or atck_wait()—nor can you
call functions that download a new program—atck_idownload() and
atck_udownload().

Events
An event object, atck_tevt_t, which is passed into your event handler, represents
the event. The first thing you should do is get the event type, as follows:

atck_tevt_typ_t atck_tevt_type(atck_tevt_t* self)

This is, of course, a method of the event object. It will return one of three values:

• ATCK_TEVT_LOADPCT: Events of this type indicate the progress of a
downloading program, so that you can display a progress bar on the host.
The percentage completion is available from atck_tevt_loadpct(), a
method of the event object which returns a value from zero to 100.
ATtaCK will try to send LOADPCT events as often as it can, but it only
guarantees that you’ll receive one: When the download finishes, you’ll
always get one of these events with a value of 100.

• ATCK_TEVT_PRINT: Your ATtaCK tool can print a diagnostic message
whenever it feels one is called for. The ATtaCK code on the target may
also decide to issue a diagnostic message. When that happens, it raises an
event of this type. The message itself is available from
atck_tevt_printstr(), a method of the event object which returns a
constant character string containing the message to print. Your handler
should respond to this event by immediately displaying this string to the
user, generally via stdout or stderr. The strings returned by
atck_tevt_printstr() are only valid until the handler returns. If you want to
save these messages, copy them to an allocated buffer in your tool.

• ATCK_TEVT_STOPPED: ATtaCK sends you this event whenever the target
application stops or terminates. This might be because the application
crashed, because the application’s analysis code halted itself, or because
your tool halted the program.

It’s possible that future versions of ATtaCK will generate more events. Your
event handler should simply ignore any event type it does not recognize.

The event object has two more attributes beyond those mentioned above:

 Analysis Tools Construction Kit 04-88

atck_dev_t* atck_tevt_dev(atck_tevt_t* self)

atck_run_t* atck_tevt_run(atck_tevt_t* self)

These methods respectively return the device-connection and running-program
object that generated the event.

Controlling the Application

The Running-Program Object

Methods

ATtaCK gives you only the most basic control over the target system: You can
pause and resume the running program, and you can kill the program altogether.
In particular, you can’t perform the kind of line-by-line execution that you can
with a debugger.

Within those limits, here’s what you can do. All of these functions are methods of
the running-program object, atck_run_t.

atck_bool_t atck_continue(atck_run_t* self)

This method continues execution of the program if it’s currently stopped, and has
no effect if the program is running. It returns ATCK_FALSE if the program cannot
resume—for instance, because it’s been terminated by atck_kill()—or
ATCK_TRUE otherwise.

atck_bool_t atck_stop(atck_run_t* self)

This method halts the running program. If the program is in the middle of a
critical section, as discussed on the next page, then this method will wait until the
critical section ends before stopping the program. Notice that this means that, if
the program never ends the critical section, this method will never return, and
your ATtaCK tool will hang.

When the program finally does stop, your event handler will receive an
ATCK_TEVT_STOPPED event. Thus, an event handler may not itself call
atck_stop().

Once the program has stopped, and after the generated event has been processed,
this method will return ATCK_TRUE. If the program has already been killed or can’t
be stopped for some other reason, this method returns ATCK_FALSE.

atck_bool_t atck_wait(atck_run_t* self)

This method waits for the running program to halt itself, either by terminating
normally, by crashing, or by calling the atcktarg_stop() analysis function (see
notes). It is essentially a replacement for an idle loop—if your instrumentation
tool has nothing to do until the application finishes running, you can call this
method to wait for it to finish. By doing so, though, you give up the ability to halt
the application from the host.

 Analysis Tools Construction Kit 04-89

Stopping the Application on the Target

The running-program object allows you to halt the application from the host side of
the connection. There are two ways to halt the application on the target.

The first is for the application to end itself, the same way it normally would—by
exiting main(), by calling exit(), by crashing—you name it. In this case, the
program cannot resume, and calls to atck_continue() will fail.

The second is for an analysis routine in the target application to call
atcktarg_stop(). This function simply halts the application and raises an
ATCK_TEVT_STOPPED event on the host, and looks like this:

 void atcktarg_stop(void)

A program stopped in this manner may be resumed from the host using
atck_continue(). For obvious reasons, there is no atcktarg_continue()
function.

One particularly useful technique is to create a “do-nothing” function in your
PlayStation 2 application that gets called in response to a certain keypad button. In
your analysis code, create a simple routine that does nothing but call
atcktarg_stop(). Then insert an instrumentation call to that routine at the start of
the do-nothing function. Pressing the keypad button now instructs ATtaCK to pause
your application.

When the program finally does stop, your event handler will receive an
ATCK_TEVT_STOPPED event. Thus, an event handler may not itself call
atck_wait().

Once the program has stopped, and after the generated event has been processed,
this method will return ATCK_TRUE. If the program has already been killed, this
method returns ATCK_FALSE.

atck_bool_t atck_kill(atck_run_t* self)

This method unconditionally halts the running program, without honoring any
critical sections the program may have claimed. The program immediately stops,
generating an ATCK_TEVT_STOPPED event. Thus, an event handler may not itself
call atck_kill().

This method also destroys the running-program object and frees up all resources
associated with it. That means that you will not be able to read data from or
resume the program after it has been killed.

You will usually call this method on an already-stopped program, after you’ve
read the analysis data from it. If the program has already been killed, this method
returns ATCK_FALSE otherwise it returns ATCK_TRUE.

Attributes

…or rather attribute. The running-program object has one attribute,
atck_status():

atck_status_t atck_status(atck_run_t* self)

 Analysis Tools Construction Kit 04-90

This access method returns the program’s current status. You can call this inside
an event handler, or to poll from within an idle loop. The return value will be one
of these constants:

• ATCK_STATUS_RUNNING: The program is running.

• ATCK_STATUS_TSTOPPED: The program has been stopped by analysis code
on the target, using the atcktarg_stop() function, and may be resumed
with atck_continue().

• ATCK_STATUS_HSTOPPED: The program has been stopped by the host,
using the atck_stop() method, and may be resumed with
atck_continue().

• ATCK_STATUS_EXITED: The program has ended normally and may not be
resumed.

• ATCK_STATUS_FAULTED: The program has ended abnormally, through a
hardware fault or some other disaster. Not only can the program not be
resumed, but its memory cannot be read, and any cleanup analysis code
inserted via atck_callafter() probably wasn’t executed.

• ATCK_STATUS_ERROR: A communications error occurred.

Critical Sections
ATtaCK provides special lock variables called mutexes (a contraction of “mutual
exclusion”). These let your analysis routines establish critical sections, stretches
of code that cannot be interrupted by another thread or by the host.

It’s possible that your target application is multithreaded. If the application is
multithreaded, and both threads are instrumented, then the analysis code is also
multithreaded. If two threads tried to increment the same counter at the same
time, your profile data would be corrupted. A mutex can be used to keep that from
happening.

Even in a single-threaded application, your analysis code might want to prevent
any interference from the host. For example, if you decide that you need a
minimum of a hundred frames of profile data, you could lock a mutex and not
release it until the hundredth frame of data had been gathered. Likewise, the target
application might have a task that shouldn’t be interrupted by the host, such as
writing to NVRAM or disk.

On the other hand, it’s perfectly possible you won’t ever need to use mutexes.
However, it’s better to have the knowledge and not need it than need the
knowledge and not have it, so let’s look at them anyway…

Mutexes
To create a mutex, your analysis code must first declare a variable of the type
atcktarg_lock_t. This scope of this variable should encompass the location
where you want the critical section to begin and the place where it ends. For

 Analysis Tools Construction Kit 04-91

example, if your critical section is entirely within a single analysis routine, its
mutex can be a local variable. For a critical section that spans two or more
functions, however, you need to declare a global mutex.

The mutex needs to be initialized before it can be used. This is done with the
following function:

void atcktarg_initlock(atcktarg_lock_t* mutexptr)

All you need to do is pass the address of the mutex to this function, which is
guaranteed to succeed. However, make sure that you call this function from
single-threaded code! The best place to initialize mutexes is in an analysis
function called from before the program: An instrumentation call inserted using
atck_callbefore() is guaranteed to run in a single thread before anything else
in the application.

Locking and Unlocking

Once a mutex is initialized, you can use it to protect critical sections. Upon
entering a stretch of code that you wish to protect, you request a lock on the
mutex. Once you receive a lock on a particular mutex, no other thread can lock it,
nor can the host system halt your application. When the critical section finishes,
you then release the mutex.

void atcktarg_lock(atcktarg_lock_t* mutexptr)

This function locks the specified mutex, and does not return until the lock is
granted. That means that if another thread has the mutex locked, this thread will
wait until the lock is released. If the lock is never released, perhaps due to a bug
in your code, then this function will never return, and the calling thread will hang.

All interrupts are disabled for a thread that has a mutex locked. If any thread in
the application has a mutex locked, the host cannot halt the target with
atck_stop()—the target cannot even halt itself with atcktarg_stop().
However, atck_kill() will always work.

void atcktarg_unlock(atcktarg_lock_t* mutexptr)

If the calling thread has the specified mutex locked, then the lock is released, and
any other thread waiting on that lock resumes execution. If the calling thread
doesn’t already have the mutex locked, nothing happens—you cannot release
another thread’s mutex.

Designing Critical Sections
Let’s look at how to use mutexes to handle the three scenarios outlined at the start
of this page. In the first situation, analysis code called from multiple threads needs
to increment the same array of counters. To prevent two threads from writing at
the same time, the array of counters is “wrapped” in a mutex, like so:

atcktarg_lock_t TheMutex;

void CountProc(atck_uint32_t procID)

{

 Analysis Tools Construction Kit 04-92

 atcktarg_lock(&TheMutex);

 ProcCounts[procID]++;

 atcktarg_unlock(&TheMutex);

}

When CountProc() wants to modify ProcCounts[], it requests a lock on the mutex,
releasing the lock when it’s done. If another thread’s analysis code already holds
the lock, then the first thread will wait for it to be released. In this situation, you
should make sure that your code releases the mutex as quickly as possible, so that
the threads don’t bog each other down.

In the second scenario, the analysis code wants to ensure that it collects 100
frames of data before being interrupted by the host. The code would lock a mutex
when it gathered the first frame and release it when it gathered the 100th frame,
like so:

atcktarg_lock_t TheMutex;

atck_uint32_t NumFrames = 0;

void AnalyzeFrame(...)

{

if (NumFrames == 0)

 atcktarg_lock(&TheMutex);

/* Frame analysis code goes here! */

NumFrames++;

if (NumFrames == 100)

 atcktarg_unlock(&TheMutex);

}

In the final scenario, the target application performs certain tasks that must not be
interrupted by the host. This presents more of a challenge, since the target
application isn’t aware of the analysis code and can’t use ATtaCK’s mutexes
directly. To get around this, we have to create “analysis” routines that do nothing
but lock and unlock mutexes on the application’s behalf. Then, we insert calls to
those routines at the appropriate spots in the application. Here’s how the routines
would look:

atcktarg_lock_t TheMutex;

void LockATCKMutex(void)

{

 atcktarg_lock(&TheMutex);

}

void UnlockATCKMutex(void)

{

 Analysis Tools Construction Kit 04-93

 atcktarg_unlock(&TheMutex);

}

If the target application’s critical code all lives in known functions, then you
would simply add an instrumentation call to LockATCKMutex() at the top of that
function, and a call to UnlockATCKMutex() at the bottom.

Alternately, if you’re programming the application as well as the tool, you could
write new “proxy” routines in the application. These routines, perhaps called
BeginATCKCriticalSection() and EndATCKCriticalSection(), would just be
empty placeholders. (You might have to put a short bit of do-nothing code in
them to keep the compiler from optimizing them out of existence!) Your
instrumentation tool would then add a call to LockATCKMutex() at the start of
BeginATCKCriticalSection(), and a call to UnlockATCKMutex() to the end of
EndATCKCriticalSection().

Communicating with the Application
Just as ATtaCK handles all the details of downloading and running programs on
the target system, it also handles the details of reading and writing data. There
might be other ways to get information off the target system, but these functions
are far and away the easiest to use.

Finding Target Symbols
ATtaCK lets you read directly from the target system’s memory. To do that,
though, you have to know the address of the buffer you want to read. To do that,
you must look up the address in the application’s symbol table:

atck_addr_t atck_anal_symaddr(atck_iprog_t* self, const char*
sym)

This method of the running-program object returns the address of a symbol in the
application’s analysis code. For example, in the ProcCount tool from Lesson 03,
we saw this function used to look up the address of the ProcCount[] array. The
symbol must be in the analysis code—if the symbol is in the target application
itself, or if it doesn’t exist at all, this function returns NULL.

At this point, you might be thinking, “No problem. I can look up addresses from
the target application already, using atck_img_symaddr().” Well, that’s right and
wrong. Remember, ATtaCK is adding instrumentation code. To your tool, that
code is invisible, but to the actual application, it’s anything but. When ATtaCK
writes out the instrumented application, it has to insert that code into your
application, and it might move code around (changing its addresses) in order to
make room. However, the PlayStation 2 version doesn’t do that—since all MIPS
instructions are the same size, ATtaCK doesn’t have to move code to insert
instrumentation. So on the PlayStation 2 only, you can rely on addresses from the
uninstrumented application matching those in the instrumented application.

 Analysis Tools Construction Kit 04-94

Oh, and one other thing: Only read—and especially write!—memory that you
know to contain data, not code. Trying to read or write executable code may
produce undefined results.

Reading and Writing Data
Armed with the address of a buffer on the target, you’re now ready to read data!

atck_bool_t atck_readdata(atck_run_t* self, atck_addr_t
targaddr,
 void* hostaddr, const char* type,
 unsigned count)

This is a method of the running-program object, and takes a handle to that object
as its first argument. The second argument is the source buffer to read from on the
target, and the third argument is the destination buffer to copy into on the host.

The fourth and fifth arguments define the buffer’s contents. ATtaCK expects you
to be reading arrays. Rather than request a set number of bytes, you tell ATtaCK
what type of data is in the array and how many elements (not bytes!) to copy.

The type string specifies the data type, using the same definition language used to
declare prototype functions—“uint32” for an array of atck_uint32_t,
“float64” for an array of atck_float64_t, and so forth. The array can also be
composed of user-defined types (that is, structs—we’ll cover these in Lesson
05).

If you want to copy raw bytes of data, of course, you can: Just specify “char” as
the type and the number of bytes as the number of elements.

If the host and target have different byte orders, ATtaCK swaps the array
elements appropriately as they’re copied over. Between the PC and the
PlayStation 2 you don’t have to worry about this, but it’s nice to know that you
won’t ever have to worry about it.

If ATtaCK can’t read the target memory, perhaps because the address is bad or
the connection has died, this function returns ATCK_FALSE and prints a diagnostic
message. Otherwise it returns ATCK_TRUE.

atck_bool_t atck_writedata(atck_run_t* self, atck_addr_t
targaddr,
 void* hostaddr, const char* type,
 unsigned count)

This method writes to the target. Other than the direction the data’s going, it is
identical to atck_readdata(). In fact, the argument list is exactly identical, which
may throw some people off—if the ATtaCK API followed the C standard-library
convention of “dest, src,” the order of targaddr and hostaddr would be reversed
for atck_readdata().

Arrays and Structures
Unless your analysis task is extremely simple, you’ll be generating more than one
variable’s worth of data. Even the simple profiler from Lesson 03 used a

 Analysis Tools Construction Kit 04-95

thousand-element array, and for some target applications that wouldn’t be big
enough. Allocating and managing data buffers is a vital part of creating an
analysis tool. ATtaCK provides two mechanisms to help manage your data: tool-
allocated arrays, and user-defined data structures.

Arrays
Since ATtaCK’s designers knew you’d be spending a lot of time dealing with
arrays on both the host and target, they created an elegant system to allow you to
“pass” arrays into your analysis code.

Basically what happens is this: Your instrumentation tool allocates an array in its
memory however it sees fit—statically or dynamically. It’s most efficient to
allocate it dynamically, of course, but you can afford to be profligate with host
memory.

This array is then passed to the analysis code as an argument in an
instrumentation call. When that instrumentation call is added to the application,
ATtaCK allocates a buffer in the analysis code’s data space the right size to hold
the array, and copies the contents of the tool’s array into it. The analysis routine
then receives a pointer to that buffer. Usually this happens in an initialization
routine, which then saves that pointer for the rest of the routines to use, but you
can also pass read-only or throwaway arrays, such as strings.

Declaring Arrays

To be able to pass an array to an analysis routine, you must declare it in the
ATtaCK prototype. Let’s say that you have an array of unsigned 32-bit integers
that you want to pass to an initialization routine. The prototype declaration for
that routine would look like this:

pproto = atck_analproto(pprog, “void Init(uint32[])”);

That’s all it takes—just add the array marker to one of the existing types. In fact,
you have a wider range of types available to you for use in arrays. ATtaCK can
only pass 32-bit or 64-bit values to analysis routines, but arrays, which are passed
as pointers, get around this limitation. Table 04-01 shows the data types you can
use with these arrays.

 Analysis Tools Construction Kit 04-96

Table 04-01: Array Types

Two keywords can be placed in front of the array declaration to modify it. You
can declare an array argument as being read-only with const; normally the
analysis routine can write to the buffer it receives. You can also declare the buffer
as nopersist, meaning that it can only be relied on for the duration of that one
call to the analysis routine; the default is that the buffer is valid for the lifetime of
the application.

Using Arrays

There’s a trick to passing an array into an instrumentation call. Normally, each
argument passed to the analysis code corresponds to one argument to the
instrumentation method. With an array, though, you first pass in the number of
elements in the array, followed by a pointer to the array itself.

atck_uint32_t* ProcCounts = atck_calloc(psesn,
 atck_nproc_instr(pprog),
 sizeof(atck_uint32_t));

atck_callbefore(pprog, pproto, atck_nproc_instr(pprog),
ProcCounts);

This code fragment allocates an array of unsigned 32-bit integers, one for every
instrumentable procedure in the target application. It then inserts a call to the
Init() analysis routine into the start of the program. The one argument in the Init()
routine’s declaration has become two arguments in the instrumentation call: the
number of elements in the array, and a pointer to the array.

 Analysis Tools Construction Kit 04-97

The analysis routine, on the other hand, receives the array as a simple pointer of
the appropriate type. ATtaCK does not automatically pass the number of elements
to the routine. If you need that information, you can pass it yourself by declaring
an additional integer argument. However, as you’ll see in our sample program,
you won’t usually need the size of the array—by the nature of the iteration and
instrumentation process, your analysis code won’t be able to violate the array
bounds.

When the analysis routine receives the array, it contains a copy of the array
passed to the instrumentation call. Thus, you can use arrays to pass data into the
analysis routines, in addition to storing data within the routines. Note, though, that
passing the same array multiple times results in multiple arrays on the target—be
careful not to use up too much memory! You can use the const keyword in the
declaration to tell ATtaCK to collapse duplicate arrays into one.

Strings (indicated by char*) are a special type of dynamic buffer. Normally they
function just like a char array. However, rather than having to specify the length
of the array, ATtaCK assumes it to be null-terminated and calculates the length
itself. Thus, strings are both passed and received as a single argument of type
char*.

Reading Arrays from the Host

Reading the contents of these arrays later is something of a challenge. When you
allocate a static array in your analysis code, it gets a symbol you can look up;
these tool-allocated arrays don’t. Instead, the analysis code has to store the
address in some location where the tool can find it. It does this by declaring a
global pointer variable to store the buffer’s address. When it receives the buffer, it
stores the address in this pointer.

Knowing the name of this pointer, the instrumentation tool can use
atck_anal_symaddr() to look up the pointer’s address. It then uses
atck_readdata() to read this one-element “array” of type atck_addr_t. Now it
has the address of the actual buffer, which it can read normally.

Structures
It’s often easiest to manage data in structures. For instance, this lesson’s example
program, SimpProf, gathers for each procedure the number of times it is called
and the number of instructions executed within it. This data could be stored in two
parallel arrays, but the better approach is to store it in one array of structures, each
of which contains the call count and instruction count for a single procedure.

ATtaCK lets you declare structures that you can then pass in arrays to your
analysis routines. While you can only pass structures in arrays, there’s nothing to
stop you from passing an “array” of one element.

Much as with functions, structures must be declared in C to your compiler, and in
a C-like syntax to ATtaCK. This is done with the following method of the session
object:

 Analysis Tools Construction Kit 04-98

atck_bool_t atck_analtype(atck_sesn_t* self,
 const char* declaration)

The declaration syntax is a streamlined version of C: the structure name, followed
by the types (but not the names!) of its members in braces. For example, a
structure called CallLog, containing an address and an unsigned 32-bit integer,
would be declared as CallLog{addr, uint32}.

The structure name must be a valid C identifier, with the additional restriction that
it must also begin with a capital letter. Each member may be either one of the
basic ATtaCK types or another structure declared previously.

If the declaration is valid, the function returns ATCK_TRUE; otherwise it returns
ATCK_FALSE. Unlike functions, there’s no handle you need to save for later use—
in effect, the name of the structure is the handle.

Note that it’s extremely important for the C declaration of your structure to be the
same on both the host and the target. To ensure this, you should put all your tool’s
ATtaCK structures in a single header file, which is then included by both the
instrumentation code and the analysis code. You should also define the ATtaCK
declaration string for each structure as a constant in the same file, to make sure
the ATtaCK declaration matches the C implementation.

Memory Allocation with ATtaCK

ATtaCK includes a set of memory allocation methods to provide the same
functionality as the standard C memory functions:

void* atck_malloc(atck_sesn_t* self, size_t bytes)

void* atck_calloc(atck_sesn_t* self, size_t elementsize,
 size_t elementcount)

void* atck_realloc(atck_sesn_t* self, void* mem, size_t
bytes)

void atck_free(atck_sesn_t* self, void* mem)

Each of these works the same as the C function of the same name (minus the
“atck_” prefix, of course). The only difference is that the allocation routines never
return NULL. If they fail, the tool terminates and ATtaCK prints a diagnostic message.
This saves you the trouble of checking the return value against NULL.

These methods are for convenience only—you’re free to use the standard C routines
instead. However, any memory you allocate with one of ATtaCK’s allocation
methods must be freed with atck_free(), and any memory you allocate with the C
routines must be freed with the standard-C free().

Note that since these methods require a session object, they are not available to
analysis code, only to the instrumentation tool.

 Analysis Tools Construction Kit 04-99

A Simple Profiler

Our sample program for this lesson is an improved version of the previous
lesson’s program. Unlike ProcCount, this new program, SimpProf, will get used—
it adds just enough features to become a genuinely useful profiler.

The simple design is still very close to that of ProcCount. Every time a procedure
executes, a counter for it is incremented. However, now we add a new metric:
Within each procedure, a counter at the start of every basic block increments an
instruction counter.

Thus, we not only gather the number of times each procedure is called, but also
the number of instructions that are executed within that procedure. This solves
ProcCount’s chief failing: Procedures that are called infrequently but have large
loops, such as the typical game-loop function, no longer “fall through the cracks.”

Building and Running the Program
SimpProf is one of the sample programs that came with ATtaCK. From the main
folder where ATtaCK was installed, go to Examples\SimpProf. The
instrumentation tool’s project, simpprof_inst_ps2.mcp, is located in the Inst
folder, while the analysis code is in the simpprof_anal_ps2.mcp project within the
Anal folder.

Open both those projects in CodeWarrior, and make each of them. It doesn’t
matter what order you make them in.) Most likely they’re already up to date, so
the make shouldn’t take any time.

To run the tool outside the debugger, which is easiest, just open a command
prompt. The syntax is just simpprof appname. The results are lengthy and get
dumped to stdout, so you probably want to redirect that with simprof appname
> outfile.

Assuming everything works, the application will launch and run on the target
system immediately. Hit ENTER on the host to halt the target and read the data.

Figure 04-01: SimpProf Output

Now that we know the program works, let’s look at how it works.

 Analysis Tools Construction Kit 04-100

SimpProf: Navigation

simpprof_inst.c
Open up simpprof_inst.c, which contains all the instrumentation tool’s code. You
can see immediately that this is a much more sophisticated program that what
we’ve been dealing with to date. A header file! Structures! Forward declarations!
Oh my!

Ignore the simpprof.h header file for the moment, and let’s proceed. The first
thing the code does is declare its state variables, putting them all in a structure
called rundata_t. This is used by the event handler, which we’ll come to by and
by.

Next we see forward declarations for the functions that do all the work. You can
guess what Instrument(), RunIt(), HandleEvt() and PrintData() do.
cmpSort() is a comparison routine required by qsort(), used to make the output
more user-friendly, and ClearData() is used to reset the target’s profile data.
We’ll see all those functions later.

main()

Moving on into main(), we find the same boilerplate code that we know and love
from Lessons 02 and 03. We’re going to see this code nine more times before the
course is through.

This program reads the target application name off the command line, as usual.
There’s an extra argument this time, the name of a procedure. As we’ll see later,
the analysis code will halt the application for the profile data to be read whenever
the named procedure is called.

Next, we allocate a buffer for the pdats array. This array contains one element for
every instrumentable procedure in the target application; by dynamically
allocating it, we know that the buffer is large enough without being wasteful.

Each element of this array is a procdat_t structures. This structure is defined in
simpprof.h, so jump to that for a moment. There we see that procdat_t stores the
profiling data for a single procedure, in two members: a 64-bit counter for the
number of calls to the procedure, and a 64-bit counter for the total number of
instructions executed within that procedure.

There’s also a string constant for this structure’s ATtaCK signature. That’s
something we haven’t seen before. ATtaCK allows you to declare structures for
use in instrumentation calls. Structures like this are a much better way to store
profiling data than the alternative, parallel arrays. To use a structure, though, you
have to declare it to ATtaCK as well as the compiler—just as to use an analysis
routine you had to declare it to ATtaCK and the compiler. You can probably
guess how that works, but we’ll cover it in detail next lesson.

For now, take the procdat_t structure as a given and let’s move on. Armed with
our profile-data buffer, we call Instrument().

 Analysis Tools Construction Kit 04-101

Instrument()

Apart from being a separate function rather than a section of main(), this is
basically the same navigation and instrumentation process we’ve already seen,
with a couple of new features.

First, we declare the procdat_t structure for use by ATtaCK, naming it “ProcDat.”
Next we declare a prototype for the Initialize() analysis routine. This routine takes
an array of ProcDat structures. Arrays of structures work exactly like arrays of
basic types. We’ll cover structures in depth next lesson, but you’re probably
already getting an intuitive feel for how they work.

We then use our prototype to insert a call to Initialize() at the start of the program.
Since it takes an array of ProcDat structures, we pass the instrumentation call the
size of the array and the address of its first element.

Next, if the user specified a function name on the command line, we look up that
name in our program. Note that in the ATtaCK model, C function names are more
akin to entry points than procedures, so that’s what we look up and instrument
here. If the entry point exists, it receives an instrumentation call to the Report()
analysis routine.

Finally, we enter a traditional iterate-and-instrument loop, running through all the
images, then all the procedures within an image, then all the basic blocks within a
procedure. Each procedure receives an instrumentation call to CountProc(),
passing it the procedure’s numeric ID. Each basic block receives a call to
CountBlock(), passing it the procedure’s ID and the number of instructions in that
block.

After each procedure finishes, we release its basic-block iterator. After each
image finishes, we release its procedure iterator and call atck_img_write(). When
the image loop is done, we release the image iterator and call atck_finish_write().
That method gives us back a handle to our newly instrumented application, which
we return to the caller.

The caller’s next stop will be to pass that handle to RunIt(), which will download
and run the instrumented application. Before we go there, though, let’s look at
what the analysis code does.

SimpProf: Instrumentation and Analysis

simpprof_anal.c
Open simpprof_anal.c, part of the simpprof_anal_ps2 project. Even though this is
a much better profiling tool than last lesson’s ProcCount, the analysis code is
really not much more involved.

First, the file includes the simpprof.h header, so that both the host and target are
using the same definition of the procdat_t structure.

 Analysis Tools Construction Kit 04-102

Initialize()

The Initialize() function receives a pointer to an array of these structures and
stores that pointer in a global variable. Remember, even though the tool passed
both the size and address of the array to the instrumentation tool, we only receive
the address.

CountProc()

The CountProc() routine receives a numeric procedure ID and uses that to index
the pProcDats[] array, it then increments the ncalls member of the indexed
element. This is the exact same process used in ProcCount; the only differences
are that the array is now dynamic and the counters are members of a structure
rather than stand-alone integers.

CountBlock()

CountBlock() receives the same numeric procedure ID as CountProc(), plus the
number of instructions in the block—it increments the icount member of the
indexed structure by the number of instructions. The profile data will thus show
us both the number of times each procedure was called and the total number of
instructions executed within that procedure.

Notice that we’ve instrumented basic blocks, not individual instructions. By the
definition of a basic block, we know that if the block is entered, every instruction
in that block will get executed. Thus, we can simply increment the instruction
counter at the top of the basic block.

Without the concept of basic blocks, we’d have to instrument every individual
instruction. You can imagine the effect that’d have on performance.

Now, it’d be nice to know which basic blocks get executed, rather than just the
total instruction count. Knowing which procedure consumes the most time
definitely helps, but we’d also like to know why that procedure executes so many
instructions—for instance, is there a loop that runs more often than we expected?
So there’s definitely room for some simple improvements here, which we’ll look
at in the assignment.

Report()

At first glance, this routine doesn’t seem to live up to its name: It just stops
execution. Remember, though, that the analysis code cannot talk to the host; the
host must talk to (i.e., read from) it. The only way analysis code can get the host’s
attention is by stopping. This raises an event on the host, who (presumably)
responds to that event by reading the profile data.

And with that, let’s go back to the instrumentation code and see how it executes
and analyzes the application.

 Analysis Tools Construction Kit 04-103

SimpProf: Execution and Output

simpprof_inst.c Again

RunIt()

First, this function looks up the address of the analysis code’s pProcDats variable.
That address, along with the other state information that will be required to read
the profile data from the target, is stored in the rdata structure.

Next, RunIt() goes through the standard boilerplate of connecting to the target. It
specifies HandleEvt() to be the callback event handler, and passes in a pointer to
the rdata structure. ATtaCK will pass this pointer to HandleEvt() along with any
events that get generated.

The function then downloads the application and immediately starts it running.
The fgets() library function waits for user input, which is a good way to set up an
idle loop. If the user hits ENTER, the target is stopped, which results in the event
handler being called; if the user hits Z before ENTER, the event handler will clear
the profile data buffer, otherwise it will print the buffer’s contents.

If the user hits X before ENTER, the loop immediately ends and the target is
disconnected. This automatically kills the running program, which generates one
last call to the event handler.

Finally, RunIt() returns to main(), which goes through the standard end-of-session
cleanup boilerplate.

HandleEvt()

The event handler receives a handle to the event, a pointer to the rdata state
structure and a dummy pointer, which gets discarded.

If the event is of type ATCK_TEVT_STOPPED, the handler gets the running-program
handle from the event. Based on a flag set by the user-input loop in RunIt(), the
handler either calls ClearData() to wipe the target’s profile buffer or PrintData() to
read and display the buffer.

The other events are just diagnostic or progress messages, which can be displayed
or not as you see fit. In this particular tool, we chose to display the progress
messages but not the diagnostic ones.

PrintData()

The first thing PrintData() does is find out how many instrumentable procedures
the original application has—which is, of course, the number of elements in the
profile data array.

Then, by reading a “buffer” of a single address, it gets the contents of the target’s
pProcDats pointer. It uses that address in turn to read the contents of the target’s
profile data array.

 Analysis Tools Construction Kit 04-104

Next, PrintData() allocates a temporary array of sort_t structures. This structure
holds a handle to a procedure and a pointer to that procedure’s profile data. A
standard iteration loop fills in the structures, and then the array is sorted in
descending order of instruction counts using the standard C library routine
qsort() and the user-defined comparison routine cmpSort().

PrintData() then runs through this sorted array, printing out the name, number of
calls, total instruction count and percentage of the program’s entire instruction
count for each procedure.

Finally, PrintData() releases the temporary array and restarts the target.

ClearData()

Using the same process as PrintData(), ClearData() gets the address of the target’s
profile data buffer and writes an array full of zeroes to it, then restarts the target.

Almost There!
With that out of the way, we’ve covered 90% of the documentation in 60% of the
course. We still need to go over the details of dynamic arguments, and there are
some register-usage attributes of the instrumentation object to discuss.

After that, though, the rest of the course will just focus on nine more sample
programs. Each of these programs solves real-world problems, and they’re all as
useful as you’ll find SimpProf to be.

So without further ado, let’s continue to Lesson 05: Designing Analysis Tools.

 Analysis Tools Construction Kit 04-105

Lesson 04 Assignment

SimpProf counts the number of instructions executed within each procedure,
by incrementing the procedure’s counter by the number of instructions
contained within each basic block that gets executed. In other words, we know
how many instructions get executed in a procedure, but not which instructions.

That’s usually good enough, but there are times when it’s inadequate. This is
one of those times: Your AI pathfinding routine, WalkMap(), is executing
more than twice as many instructions as it should. Hack SimpProf, as quickly
and easily as possible, to give you the information you need.

Hint:

You’ll find the methods atck_ent_byname() and atck_ent_proc() very
useful.

Answer:

As with any coding exercise, there’s more than one right answer, but your
solution should look pretty similar to mine. Basically, you need to instrument
each basic block within WalkMap() with a special version of CountBlock()
that increments a counter for the block in addition to the counter for the
procedure.

Remember, what we’re aiming for here is a hack: You’re not trying to
improve SimpProf, you’re trying to improve WalkMap()! So take as many
shortcuts as you can. In particular, you know roughly how many basic blocks
WalkMap() has, so create a static array in the analysis code to hold the basic-
block counters rather than dynamically allocating one. Reading and displaying
the contents of this array is trivial, so we’ll skip that.

Here’s the code I added to Instrument(), right before the comment that
begins “This is the main part of the instrumentation.”

pent = atck_ent_byname(pprog, "WalkMap");

if (pent)

{

 int ibb = 0;

 pproc = atck_ent_proc(pent);

 pproto = atck_analproto(pprog, "void
 HackCountBlock(uint32,uint32)");

 pbbit = atck_proc_bbit_new(pproc);

 while (pbb = atck_bbit_next(pbbit))

 {

 atck_bb_callbefore(pbb, pproto, ibb,
 (atck_uint32_t)atck_bb_ninst(pbb));

 Analysis Tools Construction Kit 04-106

 ++ibb;

 }

 atck_bbit_free(pbbit);

}

And here’s the new analysis code:
atck_uint32_t BlockCounters[25];

void HackCountBlock(atck_uint32_t ibb, atck_uint32_t
numInst)

{

 BlockCounters[ibb] += numInst;

}

I also added a tiny loop to Initialize(), in order to clear the array to zero at
the start of the program:

int i;

for (i = 0; i < 25; i++)

 BlockCounters[i] = 0;

 Analysis Tools Construction Kit 04-107

Lesson 04 Quiz

1. Where can you find the file referred to by <syscfg>?

A. The directory containing your ATtaCK license

B. The Windows system directory

C. The directory containing atck.lib

D. The CodeWarrior compiler directory

2. True or false: An ATtaCK tool can monitor the status of the target
system without using an event handler.

A. True

B. False

3. True or false: The event-handler arguments devID and progID must be
pointers to structures.

A. True

B. False

4. True or false: The ATtaCK config-file system only lets you read, not write,
files.

A. True

B. False

5. True or false: The only way to create a new iprog handle is by calling
atck_iopen().

A. True

B. False

6. Which of the following is not an option expected by atck_connect()?

A. Ip

B. Port

C. HostioDrive

D. devID

7. Which of the following functions may not be called from within an event
handler?

A. atck_stop()

B. atck_kill()

C. atck_continue()

D. None of the above

 Analysis Tools Construction Kit 04-108

8. When an application has locked a mutex using atcktarg_lock(), how can
the application be halted or interrupted?

A. By system interrupts

B. By the host stopping the target with atck_stop()

C. By the host stopping the target with atck_kill()

D. By another thread locking that same mutex

9. True or false: Every member in an ATtaCK structure declaration needs to
be named.

A. True

B. False

10. True or false: You are not required to use the special ATtaCK memory-
allocation methods such as atck_malloc().

A. True

B. False

 Analysis Tools Construction Kit 05-109

Lesson 05: Designing Analysis Tools

By this point, you’re proficient with using and modifying the existing ATtaCK
sample tools. In our fifth lesson, we’ll dig deeper into designing your own
analysis code. We’ll discuss some basic principles of code analysis and look at all
the information your analysis code can gather. Finally, we’ll examine
PS2Counter, an extremely useful tool that uses the EE’s hardware performance
counters to quickly collect accurate performance information.

The Road Ahead

Between what you’ve learned so far, and keeping the documentation handy, you
should be able to look at any ATtaCK tool and figure out what it’s doing. Really,
though, the point of ATtaCK is to allow you to create custom tools that answer
specific questions you have about your code. To get the most out of ATtaCK, you
need to go beyond learning how ATtaCK tools work and master how to design
new tools of your own.

Now, in a live course, or even a one-on-one interactive version of this online
course, that’s exactly what we’d spend the rest of our lessons working on. We’d
stop here and go straight to your own code—you’d tell me what problems you’re
trying to solve, and I’d show you how to use ATtaCK to, well, attack them.

Unfortunately, from where I’m currently writing—April 2001, on a rooftop in
Israel—I can’t know what your particular code problems are. So rather than just
stop the course short, I’ll keep going as I have been, covering general-purpose
tools that answer questions everybody tends to have:

• “How often does my program read from the cache rather than memory?”

• “Which functions should be inlined?”

• “Which branches should be reversed?”

• “Where’s that *^!%@# memory leak coming from?”

There are seven of these general-purpose tools to come, one in this lesson and
three each in the next two lessons. Each of then is a full-fledged, standalone tool,
and you might find the whole suite of them worth ATtaCK’s price tag.

Before we get stuck forever in the land of general-purpose tools, though, we’ll
cover the remaining handful of ATtaCK features you haven’t yet seen: dynamic
arguments, user-defined data structures and instruction register-usage attributes.

Before that, though, we’ll talk about some principles of code analysis and how
they can help you design your own ATtaCK tools.

Principles of Code Analysis
What follows are some guiding principles of code analysis that I’ve found useful
over the years. I don’t pretend these to be jewels of crystallized wisdom, just

 Analysis Tools Construction Kit 05-110

handy rules of thumb. I’m sure many of you taking this course are senior
programmers to whom these will be old hat. You have to read this page anyway,
because it’ll be covered in the quiz.

On the other hand, a lot of you are probably junior programmers. “The lead
programmer is way behind schedule; let’s have the new guy right out of CS
school run the profiler”—does that sound familiar? If you’re in that situation, I
can’t drag you out of the deep end, but I can at least throw you a rope.

The Role of Analysis
People think of analysis as relating to optimization, which is partially true.
However, what people think of as “optimization” is more properly called
“tweaking” or “fine-tuning,” which is really just a form of debugging. Code
analysis provides information for all forms of debugging, not just performance
tuning. Your IDE debugger, for instance, is a code-analysis tool.

No matter what type of debugging task you’re using it for, you have to keep in
mind that analysis gives you a very low-level view into your code. It can tell you
what’s going wrong, but it shouldn’t help you fix it. Most problems, whether
they’re code defects, speed problems or whatever, need to be fixed at the highest
level possible.

The absolute best place to fix software defects is at the game-design level. If the
game design calls for twelve robot guards per level, but your AI routines can only
handle ten before becoming too slow, you have a right to ask the designer whether
he can live with just ten robots per level. Programming is an extremely expensive
and risky endeavor, and the less of it the game requires, the better.

Of course, every time I’ve made that point, at all the companies I’ve worked for
or consulted to, it’s fallen on deaf ears. I don’t have any illusions that this time
will be any different. So let’s assume the game design is graven in stone…

The next best place to fix defects is at the code-design level. This is the land of
algorithm changes, render-pipeline shortcuts and other tricks that let you cut out
whole chunks of code from your program. Programmers often think of design
changes only as an optimization technique, but they can address code defects as
well. For instance, you might be able to fix a memory leak simply by changing
how or where you allocate memory.

The function level, though, is where the typical programmer feels most
comfortable. This is the land of inline functions, unrolled loops and the like. You
might well lack the authority to make changes above this level. For that matter,
many problems can only be fixed at this level, since this is where they were
introduced—having a brilliantly streamlined render pipeline doesn’t mean you
can afford to implement it with buggy code. Nevertheless, any time you’re
debugging at this level, a voice in the back of your mind should be questioning
whether you can’t accomplish the same task better through a design change.

Finally, the instruction level is where the hard-core assembly programmers get to
have fun. This is the land of branch-prediction optimization, five-cycle render
loops and other clever tweaks that earn you the admiration of your hacker peers.

 Analysis Tools Construction Kit 05-111

The trouble is, while these tricks can make a fast program faster, they won’t make
a slow program less slow. It’s the same reason why they put afterburners on F-16s
rather than B-52s.

Notice that each level down brings you closer and closer to the information
ATtaCK generates, because each level is closer to the actual machine code that
ATtaCK measures. This is the single biggest danger of using ATtaCK: The
wealth of low-level data you gather encourages you to focus your efforts on the
low-level code, rather than looking at the big picture. The higher levels, though,
are where you get the most return on your programming dollar. Always, always
keep that in mind when you work with ATtaCK.

Analysis Principles
Now that I’ve gotten the “with great power comes great responsibility” speech out
of the way, here are the rules-of-thumb I’ve found most useful when analyzing
code.

The 80/20 Rule

The most interesting 80% of anything is usually contained in 20% by volume. For
instance, 80% of your bugs are usually found in 20% of your code. Whenever
analysis reveals a bug, you should check the portion of your program most similar
to it—same author, written at the same time, performing the same task,
whatever—for other bugs.

Likewise, 80% of your performance problems usually come from 20% of your
code. One of the very first things you should do when performance-tuning an
application is run SimpProf and make note of the top 20% of the procedures by
instruction count. Those routines should receive the bulk of your attention.

You have to actually measure the entire program, however. While 20% of your
code needs 80% of the work, don’t assume that you know which 20% that is.

Measure, Don’t Guess

It’s amazing how often this slips by people (including me, I have to admit): If
your program has a problem, then obviously your assumptions were wrong
somehow. (I guess you could be incompetent or malevolent—I’ve encountered
both!—but that’s a story for a different time…) So when you’re performing
analysis—that is, when you’re trying to figure out what mistake you made—you
should be especially quick to challenge your assumptions and test your
preconceptions. The possibilities that you dismiss out of hand are the very first
ones you should use analysis to test.

I can’t count the number of times I’ve been helping one of my programmers
debug his code and heard him say “That code can’t possibly be the problem.”
That’s always my cue to say “Well, let’s check it anyway, just to be sure”—and
more often than not, that’s exactly where the bug is. This is one of the reasons
why simply having an extra person helping you debug or optimize is so useful—
each of you can check the other’s assumptions.

 Analysis Tools Construction Kit 05-112

The Heisenberg Uncertainty Principle

The Heisenberg Uncertainty Principle is a rule of quantum physics that, broadly
stated, means that it is impossible to measure something without interacting with
it. It’s true of analysis, too: The mere act of measuring performance will
invariably reduce it. Likewise, there are some bugs that go away when you run the
app under the debugger, or that go away when you simply recompile. ATtaCK
can help you track those down, since it uses a different mechanism than the
debugger, and doesn’t require you to recompile your program in order to insert
diagnostic code.

The Heisenberg Uncertainty Principle tells physicists that there’s an ultimate limit
to how accurate any measurement can be. That goes for ATtaCK too—at a certain
point, the performance information you get from the tool is less than the
performance penalty of the instrumentation code. That’s the point to stop
tweaking—perhaps you could make your program faster, but there is such a thing
as “good enough.”

Designing Analysis Tools

Notwithstanding the fact that I just spent four entire lessons talking about nothing
else, actually programming ATtaCK tools is very simple. The challenge is in
designing analysis tools. The perfect ATtaCK tool has three features:

• It is focused, collecting exactly the data you need, so that you get the
answer to your question without being overwhelmed by information.

• It is lightweight, so that the analysis process doesn’t distort your results or
interfere with playtesting.

• It is simple, so that you can focus your efforts on actually solving
problems rather than writing and maintaining analysis tools.

Focused

When you start designing (or using) an analysis tool, stop and ask yourself what
you’ll do with the information it collects. In the case of a profiler, the answer is
easy: You’ll use the profile to show you which areas of the program require the
most optimization effort. As your tools get more specific and detailed, however,
you should become more skeptical about their value.

For example, one of the tools we’ll see later estimates how often your code
fetches data out of the cache rather than from memory. Let’s say you run that tool
and find out that your program misses the cache 74.4% of the time. Now what?
You’ve asked a valid question, and you’ve gotten an informed and accurate
answer, but if you don’t know what to do with that answer you’ve just wasted
your time.

Instead of asking “How often does my program miss the cache?” a better
approach would be to ask (for instance) “How often does my AI pathfinding

 Analysis Tools Construction Kit 05-113

routine miss the cache?” By limiting the scope of the question to a single
function, you make the answer more comprehensible and thus more useful.

Better still would be to ask first “What data does my AI pathfinding routine fetch
most often?” if you don’t already know that answer. This enables you to be more
specific still: “How often does my AI pathfinding routine miss the cache when
fetching map data?” Now when you get the answer “74.4%,” you know that you
should probably modify your search algorithm to walk the map by rows rather
than columns.

It’s seductive to simply collect as much information as possible. That requires less
planning in the tool, and seems to make the tool more “reusable,” thus reducing
your work down the road. However, writing the tool is the easy part. The hard
part—and the part you get paid for, by an amazing coincidence—is solving real
problems in your application. That cause is best served by special-purpose tools
that deliver narrow, focused information.

Lightweight

Here’s a scenario I’ve seen play out several times: Lead programmer discovers
the value of a profiler, memory-leak checker, code validator or some other
analysis tool. Lead programmer convinces management to buy copies of the tool
for every programmer, so that they can all run it all the time. Within a week, the
tool is collecting dust on the shelves, as the programmers stop using it so that they
can “get some actual work done.”

Does that sound at all familiar? The problem here is that Heisenberg Uncertainty
Principle again: Measurement invariably interferes with the thing being measured.
In the case of analysis tools, if the cost they impose in programmer or playtester
time is too great, then the programmers and playtesters will just revolt and not use
them.

When designing analysis routines, you should move as much of the processing
out to the host as you can, so that the game remains playable. We’ve already seen
how a tool can keep all the context info on the host, so that the analysis code only
deals with ID numbers for procedures. More generally, you should pass as little
information as possible to analysis routines. This ties in to the previous point
about collecting narrow information: The more focused your tool, the less impact
it will have on the target application.

Target clock cycles aren’t the only resource your tool might waste, however. An
analysis tool that must instrument the program each time it runs, and that takes ten
minutes to do the instrumentation, wastes tester time—better to break the
instrumentation code out from the download and execution code, so that the tester
only has to sit through the time-consuming instrumentation process once.
Relatively small and quick changes like that can have big payoffs in usability.
Talk to the people who are actually using your analysis tools and ask them for
feedback.

 Analysis Tools Construction Kit 05-114

Simple

ATtaCK does a lot of work for you. Take advantage of that—write your tools in
the simplest, most direct way possible, using the library code as much as you can.
Especially when working with ATtaCK’s iterators, the most intuitive approach to
a task may well require the most work, while a less “natural” or “elegant” solution
will let the API handle everything for you.

For example, given an instruction handle, you can get the handle of the containing
basic block, but there’s no convenient way to get the handle of the next
instruction in that block. If you find yourself needing to write code to do that, then
you’ve probably made a mistake—you’ve written a function that works with
instruction handles, when really you should write one that works with a basic
block or an instruction iterator. (C++ programmers should recognize this as one of
the rules of OOP design: If you find yourself needing friend access, you’ve
probably designed your classes poorly.)

Aside from forcing yourself to use the ATtaCK API as much as possible, write in
the style that’s most natural for you. If you’re most comfortable writing
uncommented code with one-letter variable names—well, it’s not a habit I want to
encourage, but go ahead and indulge yourself if that’s what it takes to get the tool
written faster. If maintenance turns out to be an issue, you can clean things up
later, when you don’t have a big problem looming over you.

It’s often more efficient to write a sloppy but customized tool focused precisely
on the task at hand than to sift through the output of a more general-purpose, well-
written one. When you’re jotting down notes during a debugging session, neat
handwriting and proper grammar are less important than getting the information
you need; ATtaCK tools are just the software equivalent of that scratch paper.

Dynamic Arguments
Okay, so much for the guru-on-the-mountaintop bit. Now we’ll introduce
dynamic arguments and look at the last remaining API functions. We’ll finish the
lesson with a look at an analysis tool that takes advantage of a super-elite secret
hardware feature of the EE.

Dynamic arguments are values known only at the application’s runtime, not the
tool’s runtime. These are used to communicate information from the running
application to the analysis routines, and are in fact the only way to do so—
analysis code does not have access to the running program, and can only act on
information passed to it via instrumentation calls.

The most common dynamic arguments are registers. Technically, an analysis
routine could simply read registers itself rather than being passed them. However,
that would require writing the routine in assembly, which many programmers
don’t know. More importantly, registers might get modified in between the
instrumentation call and the analysis routine. (This is nearly guaranteed to happen
in the case of the link register GPR31!)

 Analysis Tools Construction Kit 05-115

Dynamic arguments can also pass addresses. An address argument can be used to
identify the memory location accessed by a load or store operation. It can also be
used to identify the instruction address targeted by a branch, call or return
operation.

“But wait!” you say. “I already know the targets of branches and calls, thanks to
methods like atck_call_targaddr(). Why do I need them at runtime?” Well,
for two reasons. First, you might not know them in advance—you don’t know the
targets of C++ virtual method calls until runtime, for instance.

Second, the act of instrumenting the program might change all of those addresses.
ATtaCK inserts code into the instrumented program, and that code has to go
somewhere. Actually, though, on MIPS platforms like the PlayStation 2, all
instructions are the same size, so ATtaCK doesn’t have to change any addresses.
Still, on other platforms it might, so don’t rely on this beyond the PlayStation 2.

Similarly, the tool can also simply pass in a static address from the original
application, such as the address of a function, which gets translated into the
corresponding address from the instrumented application. Technically this isn’t
really a dynamic argument, since it’s known before application runtime, but it
uses the same syntax as dynamic arguments.

For applications with multiple images, a simple address is not sufficient, since
each image may have its own address space. ATtaCK can thus pass image ID
numbers to complement addresses. This won’t happen automatically—you have
to explicitly ask for both the address and the image ID, as we’ll see in a moment.

Finally, there’s a special dynamic argument available called the condition-taken
flag. This is used with instrumentation added after a conditional store or before a
conditional branch to tell the analysis routine whether the operation was taken. Of
course, the PlayStation 2 doesn’t have conditional stores, so this is really just for
identifying whether a conditional branch was taken or skipped.

C Declarations
As with static and array arguments, your analysis routines see dynamic arguments
as they would any other arguments: as basic types. Specifically, image IDs and
condition-taken flags come through as atck_uint32_t, integer registers as
atck_uint64_t, floating-point registers as atck_float32_t and addresses as
atck_addr_t.

As an example, let’s create an analysis routine for logging conditional branches.
The routine takes a static integer (used by the instrumentation tool to identify this
particular branch), the target address and image of the branch, a condition-taken
flag, and the contents of the register tested for the condition. The C declaration of
this routine would look like this:

void LogBranch(atck_uint32_t id, atck_addr_t destaddr,
 atck_uint32_t destimgid, atck_uint32_t
taken,
 atck_uint64_t value);

 Analysis Tools Construction Kit 05-116

ATtaCK Declarations
Likewise, the ATtaCK declaration for a dynamic argument specifies the
argument’s type, modified to indicate that the argument is dynamic rather than
static. The ATtaCK declaration does not specify what value the argument will be
used to pass, however—that’s done by the instrumentation call.

Registers are declared as regv64 and fregv32 for integer and floating-point
registers respectively. Runtime addresses are declared as valaddr; instrumented-
application addresses are declared as instaddr. Image IDs and condition-taken
flags are declared as valuint32.

The ATtaCK declaration of our example LogBranch() routine would look like
this:

“LogBranch(uint32, valaddr, valuint32, valuint32, regv64)”

The real work of dynamic arguments is done at the instrumentation call.

Instrumentation Calls
The declaration tells ATtaCK to expect a dynamic-argument flag instead of an
actual value in the instrumentation call; the value you then pass to the
instrumentation call specifies which dynamic argument to use. For instance, the
declaration specifies that you’ll be passing a register; the instrumentation call
itself identifies the particular register to pass.

Registers

Remember the atck_reg_t enumerated type from way back in Lesson 02? Now
you get to see what it’s for. In your instrumentation call, you pass a value of this
type to indicate which register you want to pass to the analysis routine. At
runtime, ATtaCK replaces this value with the contents of the specified register.
Remember that you need to use regv64 for the integer registers, fregv32 for the
floating-point ones.

You can only pass registers via instrumentation calls added to instructions. The
contents of a register are undefined anywhere else in the program. If you really
need to analyze the contents of registers at the start of a procedure (for instance, if
you want to log the arguments passed to the function), use
atck_inst_callbefore() on the very first instruction of the procedure.

If you pass a register via atck_inst_callbefore(), your analysis routine
receives the register’s value before any changes made by the instruction. If you
pass it via atck_inst_callafter(), your routine gets the value after all the
instruction’s side effects. If the value wouldn’t normally be immediately
readable—for instance, in the case of a load from memory—ATtaCK
automatically inserts enough delay cycles to ensure the value is available.
(Actually, on the PlayStation 2, the processor will itself insert the delay cycles,
but the effect is the same.) Be aware of the performance hit this will cause!

We’ll look at registers again next page.

 Analysis Tools Construction Kit 05-117

Runtime Addresses

To pass the address of data loaded or stored by an instruction to an analysis
routine, you pass the flag value ATCK_EFFADDR to the instrumentation call. This
value is replaced at runtime with the memory address affected by the instruction.
This flag only has meaning when passed to atck_inst_callbefore(); it won’t
work with atck_inst_callafter(), and obviously it only applies to instruction
instrumentation.

Similarly, you can pass the target address of a branch instruction using the
ATCK_TARGADDR flag with atck_inst_callbefore(). You can also pass the
target of a call using the ATCK_TARGADDR flag with atck_call_callbefore().

Finally, you can pass the address to which a procedure is returning using the
ATCK_TARGADDR flag with atck_proc_callafter().

Runtime Integers

In any situation where you could use ATCK_EFFADDR or ATCK_TARGADDR, you can
also use ATCK_EFFIMG and ATCK_TARGIMG to identify the specific image
containing the passed address. On the PlayStation 2, where you can only
instrument single-image applications anyway, this won’t come into play.

You can pass the ATCK_TAKEN flag into atck_inst_callafter() on a store
operation to find out whether the store was actually executed. It is replaced with
the value ATCK_TRUE if the store was executed, or ATCK_FALSE otherwise. This is
only available with instructions, and must be called after the instruction. Note that
the EE doesn’t have conditional stores, so while you can still use ATCK_TAKEN, it
will always be ATCK_TRUE.

Between image IDs and conditional-store flags, runtime integers may seem
useless. Well, there’s one more situation where you can use ATCK_TAKEN: before a
branch, using atck_inst_callbefore(). If the branch is conditional and not
taken, this value will be passed as ATCK_FALSE; unconditional or taken
conditional branches pass ATCK_TRUE.

Application Addresses

Application addresses may be declared and used with any instrumentation call.
Simply pass an address from the original application into the call. As long as the
address is contained within the uninstrumented application, it is replaced with the
corresponding address from the instrumented application. If ATtaCK can’t
recognize the address as part of the original application, then the address is passed
unchanged to the analysis routine.

To conclude our example, here’s what one instrumentation call to our
LogBranch() analysis routine might look like:

atck_inst_callbefore(pinst, plogbranchproto, instid,
 ATCK_TARGADDR, ATCK_TARGIMG,
 ATCK_TAKEN, ATCKMIPS_REG_GPR6);

The complete set of dynamic arguments is summarized in Table 05-01.

 Analysis Tools Construction Kit 05-118

Argument Type C Type ATtaCK Type Expected Value

Register atck_uint64_t or
atck_float32_t

regv64 or
fregv32

Register flat (e.g.,
ATCKMIPS_REG_GPRO)

Affected Address atck_addr_t valaddr ATCK_EFFADDR

Affected Image atck_unit32_t valuint32 ATCK_EFFIMG

Target Address atck_addr_t valaddr ATCK_TARGADDR

Target Image atck_uint32_t valuint32 ATCK_TARGIMG

Condition-Taken Flag Atck_uint32_t Valuint32 ATCK_TAKEN

Application Address Atck_addr_t Instaddr Address from uninstrumented
application

Table 05-01: Dynamic Arguments

Restrictions
As you can see in the text above, not all calls can take all dynamic arguments—
they’re mostly restricted to calls added to instructions. In fact, they’re not even
valid for all instructions.

Most of the restrictions are common sense—you can’t use ATCK_EFFADDR with an
instruction that only affects registers. Some are more obscure. For instance, you
can’t use ATCK_TAKEN with the EE’s coprocessor branch instructions. There may
even be context-sensitive reasons why a particular instruction may not permit an
instrumentation call that would be valid for an identical instruction somewhere
else.

To find out whether an instruction can take a given dynamic argument, you can
check the following attribute:

atck_bool_t atck_inst_isallowed(atck_inst_t* self, int code)

This is a method of the instruction object, so of course a handle to the object is
passed as the first argument. The second argument is the dynamic-argument flag
you want to test: ATCK_EFFADDR, ATCK_TARGADDR, ATCK_EFFIMG, ATCK_TARGIMG
or ATCK_TAKEN. The return value is either ATCK_TRUE if the argument is allowed
in this context, or ATCK_FALSE otherwise.

You don’t have to check to see whether an instrumentation call is permitted. You
can simply insert the call. If the call or its arguments are forbidden, ATtaCK will
halt and issue a diagnostic message. That wouldn’t be acceptable behavior in an
actual application, or in a robust, reusable analysis tool, but might be just fine for
a throwaway program.

Working with Registers
Way, way back in Lesson 02, I mentioned two additional attributes of the
instruction object: which registers the instruction reads and writes. Since an
instruction will often touch multiple registers, these attributes have to return
multiple values. And since there are more than 64 registers on the EE, returning

 Analysis Tools Construction Kit 05-119

bit flags in an unsigned integer isn’t an option. Instead, ATtaCK uses a special
object called a register set.

Register Set Object
The register-set object, atck_regs_t, performs the same function that a set of bit
flags would. In fact, on a platform with very few registers (like, say, the x86), the
register-set object would probably just be a wrapper for an integer containing bit
flags—but that sort of implementation detail is hidden from you.

But since it’s essentially simulating a large collection of bit flags, the register-set
object provides methods to give you the same abilities you’d have with bit flags:
toggling individual bits on and off; turning all the bits on or off; testing an
individual bit; counting the number of set bits; and combining sets with AND and
OR.

Managing Register Sets

You’re responsible for allocating and releasing all the register sets you use. As
with most objects in ATtaCK, this is done using new and free methods:

atck_regs_t* atck_regs_new(atck_prog_t* self)

void atck_regs_free(atck_regs_t* self)

atck_regs_new() is a method of the program object—that’s the object that
knows about the target processor, and thus knows what the range of possible
registers is. It returns a handle to an empty register set, which will eventually be
freed using its atck_regs_free() method. If you don’t free up a register-set
object, it will get freed for you automatically when you close the session using
atck_endsession().

Adding and Removing Registers
void atck_regs_add(atck_regs_t* self, atck_reg_t reg)

void atck_regs_rem(atck_regs_t* self, atck_reg_t reg)

These methods add or remove the specified register from the register-set object.
The reg argument is one of ATtaCK’s register ID constants. If you were using bit
flags, these methods would be exactly equivalent to self |= reg and self &=
~reg.

void atck_regs_addall(atck_regs_t* self)

void atck_regs_remall(atck_regs_t* self)

These methods add or remove all registers from the set. If you were using bit
flags, these methods would be exactly equivalent to self = 0 and self = -1.

Testing Registers
atck_bool_t atck_regs_ismem(atck_regs_t* self, atck_reg_t reg)

 Analysis Tools Construction Kit 05-120

This method tests whether the specified register is part of the set, returning
ATCK_TRUE if it is, ATCK_FALSE if it isn’t. If you were using bit flags, this method
would be exactly equivalent to (self & reg).

unsigned atck_regs_num(atck_regs_t* self)

This method returns the total number of registers contained in the set. This
method doesn’t have a convenient equivalent with bit flags; I always wound up
writing one, and I guess the ATtaCK designers did too!

Combining Register Sets
void atck_regs_addset(atck_regs_t* self,

 atck_regs_t* src1, atck_regs_t*
src2)

This method makes the specified register set contain the union of src1 and src2.
Any of the three arguments may be the same register set. If you were using bit
flags, this method would be exactly equivalent to the statement self = src1 |
src2.

void atck_regs_intset(atck_regs_t* self,

 atck_regs_t* src1, atck_regs_t*
src2)

This method makes the specified register set contain the intersection of src1 and
src2. If you were using bit flags, this method would be exactly equivalent to the
statement self = src1 & src2.

void atck_regs_remset(atck_regs_t* self,

 atck_regs_t* src1, atck_regs_t*
src2)

This method makes the specified register set contain every register from src1 that
is not in src2. If you were using bit flags, this method would be exactly equivalent
to the statement self = src1 & ~src2.

Register-Usage Attributes
void atck_inst_inregs(atck_inst_t* self, atck_regs_t* dest)

void atck_inst_outregs(atck_inst_t* self, atck_regs_t* dest)

These attributes of the instruction object identify which registers the instruction
reads from and writes to, respectively. You must first allocate and pass in a
register-set object to contain the result.

The existing contents of the set are not cleared; the affected registers are simply
added to the set. If you were using bit flags, these methods would be exactly
equivalent to dest |= atck_inst_inregs(self) and dest |=
atck_inst_outregs(self).

And that’s it—we’re done with the entire ATtaCK API! For the rest of the course,
we’re just going to cover sample programs. So let’s get started…

 Analysis Tools Construction Kit 05-121

The EE Register Set
ATtaCK uses an enumerated type, atck_reg_t, to hold identifiers for all the EE
registers. Unlike most of the ATtaCK API, this type is platform-dependent, and
requires you to include the processor-specific header in addition to the normal
atck.h header. For the PlayStation 2, this file is atcktargps2.h.

If you’re going to work with registers in ATtaCK, you really need to get yourself
up to speed on MIPS assembly language. Here’s a cheat sheet to get you started,
however.

• ATCKMIPS_REG_GPR0 to ATCKMIPS_REG_GPR31

These are the standard 32 64-bit integer registers. By convention, some have
specific meanings:

• GPR0, called $0 in source code, always contains the value zero.

• GPR4 through GPR7 are called a0 to a3 in source and are used to pass
arguments into functions, in order.

• GPR2 (and GPR3, if necessary), called v0 and v1, hold the return value.

• GPR16 through GPR23 are used to hold register variables; all subroutines
are supposed to preserve the values of these registers.

• GPR29 is the stack pointer, although the stack isn’t used as much as on x86
chips—arguments are passed in registers, and even the return address of a
function is stored in a register (GPR31, to be exact).

• GPR30 holds a pointer to the function’s local variables (its stack frame).

• ATCKMIPS_REG_SA

This register is used by several of the shift instructions to specify the number of
bits to shift.

• ATCKMIPS_REG_HI and ATCKMIPS_REG_LO

These two registers store the results of integer multiplies and divides.

• ATCKMIPS_REG_FPR0 to ATCKMIPS_REG_FPR31; ATCKMIPS_REG_ACC

FRP0 to FPR31 are the EE’s 32 32-bit floating-point registers, which are all
general-purpose. ACC is the floating-point accumulator.

• ATCKMIPS_REG_FCR0 and ATCKMIPS_REG_FCR31

These are the floating-point control registers.

Measuring Performance Counter Events
The EE includes a system control coprocessor, known as COP0. This coprocessor
controls the CPU’s operation—for instance, COP0 is used to enable or disable
interrupts, manage memory paging, set debugger breakpoints, handle exceptions

 Analysis Tools Construction Kit 05-122

and so forth. COP0 also includes a pair of “performance counters,” special
registers that are automatically incremented when certain events occur.

By instructing these counters to measure events that interest us, we can, in effect,
take advantage of a hardware profiler for our code. This offers two major
advantages. First, the performance counters are 100% accurate—in fact, as we’ll
see later on, they’re so accurate that their results can be confusing! Second,
enabling the counters does not affect the system’s overall performance. The
performance counters aren’t versatile enough to handle all your profiling needs,
but they’re free, easy to work with and can greatly improve the results you get
with ATtaCK tools.

This lesson’s example program, PS2Counter, instruments an application to enable
and read these performance counters. You can choose which two events to
measure, out of a list of ten possible events. The tool also uses static analysis to
refine and limit its measurements, so that they’re more useful. As a stand-alone
tool, this program is mildly useful… but as a source of ideas to use in creating
your own profilers, it’s invaluable.

Composed of four source files and a header file, PS2Counter is far and away the
biggest program we’ve looked at so far. The easiest way to understand what it’s
doing is to start with the analysis code. And the easiest way to understand the
analysis code is to look at the specifics of how the EE’s COP0 performance
counters work.

EE Performance Counter Registers
COP0’s two performance counters, named “0” and “1” in a fit of charming
originality, each measure two different sets of events. You specify which events
to log by writing to the “performance-counter specifier” register, using an
assembly command we’ll look at later. The two counters are wholly independent
of each other—one can be measuring instructions, for instance, while the other
measures mispredicted branches.

Once a counter has been set to log a particular event, the counter increments
whenever that event occurs. If set to log instructions, say, the counter is
incremented with every instruction issued. Note that at full clip, the EE can issue
about 600,000,000 instructions a second, which fills up a 32-bit counter pretty
quickly! (In less than eight seconds, to be exact.)

Clearly these counters can’t be used to collect data over a long period of time.
Instead, you should turn the counters on just over the section of your program that
most interests you and gather a short span of data. The PS2Counter tool we
examine here, for instance, collects data from just a single frame. Presumably,
your target application performs roughly the same tasks in the same order each
frame, so you can use the profile of a single frame to draw conclusions about the
rest of the program.

Once you’ve gathered the data you want, you can use other special-purpose
assembly commands to read and clear the performance counters.

 Analysis Tools Construction Kit 05-123

Performance Counter Events

Cycle: Either counter may be set to count cycles. No matter what, some
294,000,000 cycles pass by every second. This may not seem like the most
interesting event to measure, but it can be handy for detecting problems. For
instance, “cycles per frame” is a much more precise and informative measurement
than “frames per second.”

Single issue/double issue: The EE core tries to issue two instructions at once
whenever it can, but sometimes (due to register dependency or instruction
incompatibilities) it fails. Double issues are thus the default, “correct” behavior;
single issues represent inefficiencies you should try to correct. Single issues may
only be measured in counter 0, double issues only in counter 1.

Branch taken/branch mispredicted: Counter 0 can count the number of
branches taken. Counter 1 can log the number of branches mispredicted. This is
not merely a subset of branches taken, of course—a likely branch that was not
taken still counts as a misprediction.

I$/D$ miss. Like all high-end processors, the EE uses a cache of extremely fast
RAM to isolate the processor from the much slower system RAM. Cache misses,
where your code needs data that’s stored in system memory rather than the cache,
slow down performance dramatically, and most really high-octane optimizations
are tweaks designed to avoid cache misses at all costs. Unfortunately, we don’t
really have the time or space to talk about such tweaks in this course. In Lesson
07, we’ll cover a cache analysis tool that will help you diagnose cache problems,
and I’ll try to give some very general tips there.

The performance counters aren’t very good at diagnosing cache misses, because
they only tell you how many times the cache was missed—the program we’ll look
at in Lesson 07 tells you exactly where your cache misses are. Nevertheless, the
performance counters can help you detect problems. Counter 0 can be set to
measure instruction-cache (I$) misses, while counter 1 can measure data-cache
(D$) misses.

Instruction executed: Either counter may be set to measure the number of
instructions issued. This value should always wind up being the number of single
issues plus twice the number of double issues. By adding instrumentation to every
basic block of your program, you can count this yourself, of course. The
difference is that the COP0 performance counters do so without slowing down the
application.

Note, however, that COP0 counts every instruction issued. The instrumentation
calls ATtaCK inserts into the application get counted just like your original
program—unlike ATtaCK, COP0 doesn’t know the difference. Likewise, if the
CPU processes an exception or interrupt during your program, the COP0 counters
just keep on ticking. Thus, most of the time you’re better off using ATtaCK
instrumentation to measure instructions rather than using the performance
counters—the speed hit is worth it to get results that are more representative of
your actual application performance.

 Analysis Tools Construction Kit 05-124

Load/store: Counter 0 can measure every time you load data from memory,
while counter 1 can measure every time you store data into memory. Accessing
memory counts as a load or store regardless of whether it came out of the cache or
from actual system RAM. As with instructions, this is something you could very
easily measure using ATtaCK, at the cost of degrading the application’s
performance.

None: Either or both counters can be set to measure nothing at all, which is the
default.

Okay, now that you understand how the performance counters work, the analysis
code will be easy: All it does is activate, manage and read the performance
counters. We’ll take a look at that next.

PS2Counter: Analysis Code

The only way to work with the performance counters, or COP0 in general, is
through special assembly instructions. That means we’re going to have to look at
some assembly code. It’s really simple assembly code, though—particularly
compared to some of the tricks one can pull with the MIPS instruction set! In fact,
this code is so simply that you can basically just imagine the assembly
instructions as being API function calls. You’ll see what I mean about that in a
minute.

Open the PS2Counter example program’s analysis-code project—the full path to
this should be C:\Program Files\Metrowerks\ATtaCK for
PS2\Examples\PS2Counter\Anal\ps2counter_anal.mcp for a default
installation. Now open ps2counter_anal.c.

The top of the file is the usual boilerplate. There’s a single data buffer, to which
the code maintains a pointer. This buffer contains one procdat_t structure per
procedure, storing the number of instructions executed and accumulating the
performance-counter events.

HostEnable is a global flag that allows the host to turn gathering on and off:
When you hit ENTER on the host to start collecting data, the host halts the target
and writes TRUE into this memory location. (Technically, this variable ought to be
marked volatile, since its value is expected to change from outside the program,
but we get away with it here.)

The constant value NFRAMES_SETTLE, the countdown variable CountDown and the
flag Collect are used to delay the start of collecting data. To enable data
gathering, the host has to halt the target, write to its memory and then resume it,
operations that consume time and system resources. Moreover, when the target
restarts, the instruction and data caches will have been disrupted, disabled
interrupts might need to get handled and so forth. The analysis code thus counts
down ten frames, then sets Collect to ATCK_TRUE to start collecting data, giving
the system time to “settle” back into its normal state.

 Analysis Tools Construction Kit 05-125

Initialization Routines
Well, okay, there’s only one function here, but saying “initialization routine”
didn’t sound right. The Initialize() function first stores the received pointer to
the buffer ATtaCK allocated. It then passes a magic number to the mtps()
function, which is used to activate and configure the event counters. Truth be told,
I don’t know how this magic number is generated, so let’s just take it as gospel.

Analysis Routines
Enable() is called at the start of every frame. Mostly it does nothing. If, however,
the host has enabled data collection, then Enable() decrements the countdown
variable. When that variable reaches zero, the function turns on the performance
counters and starts gathering data.

Disable() is called at the end of every frame. If Collect is true, then this
function turns data collection back off. It then halts the target, allowing the host to
read the gathered information.

EnterReset() is called at the start of every procedure. If data is being collected,
this function increments the procedure’s instruction counter, then uses the mtpc
assembly instruction, “Move To Performance Counter,” to clear both of the
performance counters. The syntax for this instruction is very simple:

mtpc src, dest

src is the EE core register to copy into the counter, while dest specifies the
counter (either 0 or 1—the dollar sign here simply indicates that this is a number).
Note, this violates the normal “dest, src” convention. Also note that the EE core
registers are 64 bits wide while the performance counters are only 32 bits wide, so
the upper 32 bits of the core register are discarded.

In this case, we copy register GPR0 into the two counters. This special register
always contains the value 0, so in effect we’re resetting the counters.

Reset() works just like EnterReset(), except that it’s called within a procedure
to reset the counters as necessary. As such, it doesn’t increment the instruction
counter, since that’s already been done at the top of the procedure. Reset() is
generally used after returning from procedure calls, to keep the called procedure’s
events from “contaminating” the caller’s profile.

Helper Routines
The next two functions, getcounter0() and getcounter1(), are written entirely
in assembly language—as well they should be, considering how trivial they are!
Each function first issues a jr ra instruction, starting a return to the caller.
Branches always execute the next instruction after the branch before transferring
control, and in this case that next instruction is mfpc. This instruction, “Move
From Performance Counter,” is just the reverse of mtpc, with the following
syntax:

mfpc dest, src

 Analysis Tools Construction Kit 05-126

This time it does follow the normal convention: dest is the EE core register to
copy into, while src specifies the counter (either 0 or 1 again). The 32-bit counter
is sign-extended to fill the 64-bit destination register.

Accumulate() is a simple C function that uses getcounter0() and
getcounter1() to read the performance counters and add them to the running
totals stored in the profile data buffer.

The mtps() function is a wrapper for mtps, the “Move To Performance-event
Specifier” instruction. This instruction has the same syntax as mtpc: mtps src,
dest. For src, we use GPR4 (also known as a0), the register holding the first
function argument. Unlike the performance counters, there’s only one
performance-event specifier, and so the only valid value for dest is 0.

The next instruction after mtps is sync.p. This simply tells the processor to wait
until the previous instruction finishes execution. This is necessary because we
don’t want to leave this routine without knowing that the performance counters
are properly initialized.

The more assembly-aware of you might now be asking, “If sync.p is necessary
after mtps, why isn’t it necessary after mtpc?” Good question! The answer is that
it is necessary we just don’t care. Yes, it’s possible that by failing to sync after
clearing the performance counters, we will miss a few processor events. However,
given that we have to clear the counters at the start (and often end) of every
function call, putting sync.p there would restart the pipeline and utterly kill our
performance. On the other hand, you’ll want to go ahead and synchronize writing
analysis tools that demand higher accuracy than this general-purpose one.

At the end of the function, we do the standard jr ra to return to the caller. The
nop (“No OPeration”) instruction is just a placeholder—the delay slot has to have
something in it, and nop is harmless. The only other thing we could put there is
the sync.p instruction, which unfortunately is illegal in delay slots.

You can probably guess what the last two functions do. That’s right:
enable_counters() enables the counters, and disable_counters() disables
them. This is done by setting or clearing bit 31 of the performance-event specifier
register.

First, we use mfps to fetch the current value into GPR1. Then lui loads the
immediate value 0x8000 into the topmost 16 bits of GPR2, clearing the bottom 16
bits. (The folderol is necessary because MIPS chips can’t load immediate 32-bit
values.)

To enable the counters, GPR2 is ORed against GPR1 and the result stored in GPR1.
To disable the counters, GPR2 is negated and then ANDed into GPR1. In either case,
we now use mtps to store GPR1 into the performance-event specifier. A sync.p to
make sure the change “takes,” the traditional jr ra/nop pair, and we’re all done!

Okay, you get the idea. The COP0 performance counters do all the real analysis
work, of course—this code just sets them up and lets them do their job. Now let’s
look at the instrumentation process.

 Analysis Tools Construction Kit 05-127

PS2Counter: Instrumentation

Open up the instrumentation tool project, which is probably C:\Program
Files\Metrowerks\ATtaCK for PS2\Examples\PS2Counter\Inst\
ps2counter_inst.mcp. Within this project open ps2counter_inst.c.

The main() function is largely boilerplate, which at this point in the course I
think we can safely ignore. Let’s jump straight to the good part, starting with the
Instrument() function.

Instrumentation
First, we declare the PrDat structure and the Initialize() analysis routine.
Then we insert a call to Initialize() at the start of the target application. In
addition to the profile data buffer, this routine gets passed flag values indicating
which events to log in counter 0 and counter 1. (Note that the code here talks
about “counter 1” and “counter 2,” but as these are more correctly termed 0 and 1,
that’s how I’ll continue to refer to them.)

As we saw previously, the analysis routines are designed to gather a single frame
of data at a time. Ideally, there is some function in the target application that is
already called at the top of each frame—for example, there might be a function
that handles all the world physics, which would generally be the first thing
processed each frame of the game loop.

If there’s some convenient function available to indicate the start of a frame, the
user specifies it on the tool’s command line, and the instrumentation code inserts
a call to Enable() at the start of the function. If there’s not such a function, then
one will have to be created in order to use this tool. Likewise, the user must
specify a function name to mark the end of a frame; a call to Disable() is
inserted before that function.

With that out of the way, the instrumentation code now declares the remaining
three analysis routines, and starts iterating over the application’s procedures. This
is where things really get interesting—open up classify.c.

Classification
This file contains the function Classify() and its support functions. Classify()
takes a procedure and determines which of three categories it belongs to:

COUNT: Procedures in this category get instrumented and profiled normally. This
is the default. The procedures specified by the user as marking the start and end of
each frame are always classified as COUNT, since the data-collection system relies
on those routines getting instrumented.

INPARENT: Procedures in this category are profiled as part of their callers. In other
words, the performance counters are not reset when these procedures are called,
and the procedures aren’t instrumented. For all intents and purposes, the tool
treats these procedures as if they were inlined.

 Analysis Tools Construction Kit 05-128

So what qualifies a procedure as INPARENT? Well first of all, if a procedure can’t
be instrumented—for instance, if it’s part of the SCE libraries—then it’s a “black
box.” The only way to profile such procedures is via the performance counters.
By clearing the counters before each call, and checking them after the return, we
could profile these routines independently. However, what would we actually do
with that information? It’s not as though we can optimize the library code! So, we
will simply treat these library routines as if they were part of their callers.

Procedures are also classified as INPARENT if they’re “simple.” A simple
procedure has no loops, makes no calls to non-simple procedures and is less than
100 instructions long. Such procedures don’t offer a lot of opportunity for
individual profiling and tuning, so we just treat them as part of the parent. Indeed,
when performance is more critical than code size, such procedures are prime
candidates for being inlined, at which point they really are part of the parent.

The test for simplicity is done in IsSimple(). This function simply iterates over
the instructions within a procedure. If an instruction is a callsite, then the target
procedure is itself tested for simplicity by a recursive call to IsSimple(). (Of
course, this means that if you have two functions in your application that call each
other, PS2Counter will crash with a stack fault. In the assignment at the end of
this lesson, we’ll look at one way to keep this from happening.)

If an instruction is a branch, then the function gets the target address of the branch
and checks to see whether that address is greater than or less than the current
instruction’s address. Note that, while callsites are also branches, we’ve already
checked whether the instruction is a callsite before we get here, so we know that
the branch target is within this procedure. A branch backward to an earlier
instruction within the same procedure is, almost by definition, a loop—it’s
possible to write assembly code in which that’s not true, but the compiler doesn’t
do that.

EXCLUDE: Procedures in this final category are excluded from the profile entirely.
These procedures, identified by name, are ones known not to offer any useful
profiling information. Right now this consists only of the library routines
sceGsSyncV() and sceGsSyncPath(). Normally, these routines would be
classified as INPARENT. However, these routines’ idle loops generate large
numbers of system events (especially instruction issues and instruction-cache
misses) that will obscure the relevant profiling results.

Feel free to add any other routines to the exclusion list that you see fit. Remember
the principle advocated earlier in this lesson: Don’t collect information that you’re
not going to use.

Now go back to ps2counter_inst.c, where we’ll wrap up navigation and look
at execution.

 Analysis Tools Construction Kit 05-129

PS2Counter: Navigation, Execution and Output

Navigation and Instrumentation
The tool now iterates over every procedure in the application, classifying it. The
instrumentation depends on the procedure’s category:

COUNT

This category is the default. Procedures in this category get instrumented first
with a call to EnterReset() at the start, and Accum() at the end. Clearing the
performance counters at the start and reading them at the end collects profile data
for just the single procedure.

Once those calls are in place, the navigation code looks inside the procedure for
call sites. Calls to COUNTed and EXCLUDEd procedures are not counted inside this
procedure—COUNTed procedures are profiled in their own right, while EXCLUDEd
procedures aren’t profiled at all. Thus, these calls are instrumented with Accum()
beforehand and Reset() afterwards.

Calls to INPARENT require no special handling, since they’re supposed to be part
of the caller’s profile.

INPARENT and EXCLUDE

If a procedure is INPARENT, then its profile is included in that of the parent, and so
we don’t need to instrument it. If a procedure is EXCLUDE, then we don’t want to
instrument it. They amount to the same thing: Procedures in these categories are
simply skipped.

Note that indirect calls—for example, C++ virtual function calls—can’t be
classified, since the target is unknown at instrumentation-time. These default to
COUNT, isolating them from the caller’s profile to make sure they don’t get
counted twice. However, if these procedures are in fact simple, then when it’s
their turn to be instrumented, they’ll be classified as INPARENT and won’t get
counted at all. The upshot of all this is that PS2Counter is really not designed for
C++, so if you’re working in C++ you’ll need to customize the tool.

Download, Execution and Output
Once the instrumentation is finished, the tool calls RunIt(). This function is
mostly boilerplate, connecting to the target and launching the application
immediately. The function then drops into a loop waiting for user input. When the
user hits ENTER, the loop calls SnapshotFrame().

SnapshotFrame() first halts the target and sets the HostEnable flag to TRUE,
then resumes the target. When the Enable() analysis routine gets called at the start
of the next frame, the target realizes that HostEnable has been modified—that’s
the only way a target application can detect that it’s been suspended by the host.
This starts the “settle” countdown process, at the end of which a single frame of
profile information is gathered. Once that frame ends, the target halts itself.

 Analysis Tools Construction Kit 05-130

Most ATtaCK tools read their information from the target in an event handler,
since they can’t predict when the target application will stop. In this case, though,
the tool knows that the target will stop very soon (1/6th of a second, generally)
after the user hits ENTER. Thus, the tool simply calls atck_wait() to suspend
itself until the target stops.

When atck_wait() returns, we know that the target has a frame of data ready to
read. The DumpCounters() function handles this, in a wholly unremarkable way.
Its last act is to zero-out the profile data buffer on the target—this is purely a one-
frame-at-a-time profiler.

Fig.
05-01: PS2Counter Output

Whew!
And with that, we’re now done with the entire API—at this point you should be
able to create any ATtaCK tool you need. Our last two lessons are labs, in which
we’ll look at eight more “real-world” tools to give you more. Those should go
pretty quick, so let’s go ahead and get started with Lesson 06: Profiling
Applications.

 Analysis Tools Construction Kit 05-131

Lesson 05 Assignment

Tasked with fine-tuning your PlayStation 2 game’s render system, you break
out PS2Counter to get some initial, overall information. However, when
PS2Counter tries to instrument your application, the tool crashes with a stack
fault.

Fortunately, you remember reading in this course that PS2Counter cannot
handle recursive functions. A quick check with the other programmers reveals
that, sure enough, the particle-animation system uses a recursive function. But
you still need to profile the application.

Fix PS2Counter so that it no longer crashes when trying to instrument
recursive functions. The crash happens in IsSimple(), found in classify.c,
and can be prevented just by modifying that function.

Hint:

Remember from Lesson 02 that two handles to the same object will always be
the same, and can be tested for equality using ==.

Answer:

There’s basically two ways to fix this problem. To reinforce the hacker
mindset you should use with ATtaCK tools, I’m only going to present the
“fast and dirty” solution. For the purists, though, I’ll tell you the “proper”
solution at the end.

The basic problem is that, if a function being analyzed by IsSimple() calls
itself, then it will call IsSimple() on itself, which in turn calls IsSimple()
on itself, and so forth, and so forth…

So your goal is to keep IsSimple() from calling IsSimple() again on the
current function. That turns out to be very easy: You already know the handle
to the current function (it’s the argument pproc), and you know that, no
matter what, every procedure handle that refers to that same function will
have the same value. Thus, you can just check to see whether the target
procedure’s handle, as returned from atck_ent_proc(), is equal to pproc—if
it is, then don’t call IsSimple()! In fact, since a function that recursively
calls itself is pretty much not simple by definition, you can just return
ATCK_FALSE without further ado.

So the quick-and-dirty fix is to turn this (line 146 or thereabouts):
if (!pent || !IsSimple(atck_ent_proc(pent), &ninst2)) {

into this:
if (!pent || atck_ent_proc(pent) == pproc ||
 !IsSimple(atck_ent_proc(pent), &ninst2)) {

Notice that, since the compiler endeavors to resolve the if statement as quickly
as possible, the second clause won’t get executed if the first is true, and the

 Analysis Tools Construction Kit 05-132

third won’t get executed if the second is true. Therefore, if the target of the
callsite in question is this function itself, IsSimple() returns ATCK_FALSE
immediately rather than getting caught in an infinite loop.

I promised the purists the “proper” solution, which requires stating what the
real problem is: If X calls Y, and Y calls Z, and Z calls X, then when
IsSimple() tries to analyze X, it will inevitably drop into the same infinite
loop as if X called X. Our quick-and-dirty fix does nothing to prevent this
general-case bug.

What we’d have to do to really fix the problem is maintain a stack of parent
procedure handles. Every time IsSimple() is entered, it pushes the pproc
argument onto that stack; every time it exits it pops the stack. Every time
IsSimple() is about to recurse into itself, it searches the stack to make sure
that the target procedure isn’t a parent of the current procedure.

Now you can see why I focused on the quick fix. The “right” solution is big
and complicated, and unnecessary in the most common case (X calling X). In
between projects, when you’re honing your analysis tools, you can implement
this sort of general-purpose fix, to save yourself time down the road. But in
the middle of a project, go for the quick hack. You’re here to fix your game,
not your tools.

 Analysis Tools Construction Kit 05-133

Lesson 05 Quiz

1. True or false: The only purpose of analysis tools is optimization.

A. True

B. False

2. True or false: Changing your algorithm is often the best way to fix not only
performance problems but bugs of all kinds.

A. True

B. False

3. Which of the following is always feature of a well-designed ATtaCK tool?

A. Flexibility

B. Good programming style

C. Simplicity

D. A graphical user interface

4. True or false: The best place to analyze your data is on the target, in the
analysis routines.

A. True

B. False

5. True or false: It’s easiest and safest for analysis routines to read registers
directly, rather than relying on ATtaCK to pass them in.

A. True

B. False

6. Which of the following is a valid ATtaCK analysis-routine declaration on
the PlayStation 2?

A. “GetTarget(valaddr)”

B. “GetTarget(ATCK_TARGADDR)”

C. “GetStack(ATCKMIPS_REG_GPR29)”

D. “GetStack(valuint64)”

7. Which of the following is a valid place to use ATCK_EFFADDR?

A. atck_proc_callafter()

B. atck_call_callbefore()

C. atck_inst_callbefore()

D. atck_inst_callafter()

 Analysis Tools Construction Kit 05-134

8. True or false: You must always use atck_inst_isallowed() to verify that a
dynamic argument is safe before trying to instrument an instruction with it.

A. True

B. False

9. True or false: An address is all that’s required to completely identify any
instruction in a program.

A. True

B. False

10. Which of the following does a MIPS application (that is, a PlayStation 2
game) store on the stack?

A. Function arguments

B. Local variables

C. Return addresses

D. None of the above

Analysis Tools Construction Kit 06-135

Lesson 06: Profiling Applications

The first five lessons cover everything you need to know to develop ATtaCK
tools. Our sixth lesson will really be more of a lab, as we examine four tools to
tackle common profiling and debugging tasks: verifying code compliance,
examining your branch-prediction performance, calculating which functions are
worth inlining and catching registers that are used before they finish loading from
memory. These tools will probably be useful to you as is, but we’ll also spend
plenty of time discussing ways to improve and tailor them to your exact needs.

Verifying Code Compliance
Code validation is a form of static analysis in which you review your application
looking for certain types of expected problems. For example, when you finish
writing a function, you might go back and review it to make sure you initialized
all its variables. That’s a rudimentary form of code validation—the “expected
problem” you’re looking for is an uninitialized variable.

The best-known example of code validation is lint, a tool that reviews C source
for common (and not-so-common) errors. Uninitialized variables are just one of
many, many problems that lint will catch. The value of code validation is that
these problems might not show up during normal testing and debugging.

ATtaCK can be used for binary code validation, looking for expected problems in
the binary code. The last program we’ll look at in this lesson, for instance, scans
the binary code looking for places where you use a register immediately after it’s
loaded from memory.

The first tool we’ll be examining also does code validation. Called TRCTool, it
tests for Sony TRC compliance. As part of the PlayStation 2 licensing approval
process, Sony prohibits certain functions from being called in shipping
applications. These are kernel functions which are valid and useful for debugging,
but which could crash an end-user’s system. There are other functions that Sony
requires be present, various initialization library routines that must be called for a
PlayStation 2 application to function properly.

TRCTool checks for both these categories of functions. It reads a list of them
from a text file, and then scans the program to see if any prohibited functions are
called, and conversely to make sure that all the required functions are called.

Now, this tool isn’t foolproof. TRCTool uses static analysis only, which means
that it’s basically predicting what the program will do in action. Since that
prediction is imperfect, the tool can be fooled. For instance, if your application
calls a required function conditionally, the condition must be true for the function
to be executed. TRCTool doesn’t try to check whether the condition is always (or
ever!) true, it just notes that the required function call is present. The tool is really
just for pre-screening your application, so static analysis like this is sufficient.

Analysis Tools Construction Kit 06-136

TRCTool
Open the project file, trc_tool_ps2.mcp, located in the Thrill Seeker
Tools\TRC\inst subdirectory off your ATtaCK folder. (On a default installation,
this will be C:\Program Files\Metrowerks\ATtaCK for PS2\Thrill Seeker
Tools\TRC\Inst\trc_tool_ps2.mcp.)

Right away you’ll notice something different—this program’s written in C++! As
you’ll see next page, the tool spends most of its time just parsing its configuration
file, a task that is easier to manage in an object-oriented language.

Normally I wouldn’t recommend writing an ATtaCK tool in C++—the “quick-
and-dirty” coding approach ATtaCK facilitates doesn’t mix well with object-
oriented programming. However, if you’re writing a tool that you intend to extend
and reuse over several projects, the maintenance and design burden of writing
good C++ code can pay for itself.

(Later on in this lesson, we’ll see a quick-and-dirty tool written in C++ for
another reason: to take advantage of the STL.)

Now that you’re past the shock of seeing .cpp file extensions, let’s review the
project’s contents:

• trc_tool.cpp contains main() and does all the analysis and reporting.

• ProcedureCallDetails.cpp and .h implement the
ProcedureCallDetails object, used for holding the analysis results.

• TRCConfiguration.cpp and .h implement the TRCConfiguration
object, which parses and contains the lists of prohibited and required
functions.

• TRCProcedure.cpp and .h implement TRCProcedure, a helper object
used by TRCConfiguration.

• CallSite.cpp and .h contain CallSite, a C++ wrapper object for
atck_call_t.

• UnderterminedCallSite.cpp and .h contain the UndeterminedCallSite
object, another C++ wrapper, and this one for sites that make indirect
function calls—i.e., whose targets cannot be determined. In spite of its
name, it doesn’t inherit from CallSite.

Strangely enough, the most complex code in this program is found in
initialization, so we’ll start there.

TRC: Initialization and Navigation

TRCConfiguration Object
It’s really a testament to the ease of writing ATtaCK tools that the most complex
code in this tool—nearly the most complex code in this entire course!—is the
code to read and parse the configuration file. Actually, ATtaCK provides code to

Analysis Tools Construction Kit 06-137

do this too, but this particular program doesn’t take advantage of that. The good
news is that, this being C++, you can easily take this parsing code and adapt it to
your own projects.

The TRCConfiguration object has a fairly standard interface that doesn’t call for
a lot of examination. The object maintains three lists: prohibited functions,
required functions and SCE library functions. The first two lists have been
discussed. The third list is used to allow the tool to identify and skip any functions
provided by the SCE libraries.

The prohibited and required lists are composed of TRCProcedure objects, which
are just structures containing two strings, the name of the procedure and the
reason why it’s either required or prohibited. These lists are public members,
implemented using the vector STL class. By contrast, the “SCE library routines”
list is protected, its implementation hidden from the user by an access method,
bIsSceFunction(). That’s definitely better design, but either way works.

The other access methods are strGetVersion() and strGetConfigFilename().
The first returns a version string read from the configuration file, while the second
just returns the name of the configuration file itself.

That’s about it for the object’s interface—pretty minimalist. All the work happens
in the initialization method vParseConfigurationFile().

Parsing

TRCTool expects to find four members in its configuration files: VERSION, a
version string; SCE_FUNCTIONS, the name of a text file to parse for a list of SCE
functions; REQUIRED, the list of required functions; and PROHIBITED, the list of
prohibited functions. For an example file, open up trc1_6.txt, found in the same
folder as the project.

Each of these members is represented using a simple XML-like syntax. The two
lists are delimited with open and close tags (for example, <REQUIRED> and
</REQUIRED>), while the two string members are contained in self-closed tags
(<SCE_FUNCTIONS file="sce_functions.txt"/>). Any line beginning with #
is a comment, ignored entirely.

vParseConfigurationFile() uses a simple state machine to parse this format.
The self-closed tags don’t need states, since they’re parsed entirely when
encountered. The opening and closing tags for the prohibited and required lists
trigger state transitions; within each state, every line read is passed to
vParseFunctionSpec().

vParseFunctionSpec() receives a reference to the list being read, and a line of
text to parse. The first thing expected on each line is the procedure name, which
of course must not have any spaces. After a space comes the reason why this
procedure belongs to the list—just a simple text string, surrounded by quotes.

Unlike the other two lists, the SCE functions list is read from another text file.
The name of that file is specified in the SCEFUNCTIONS tag. The file itself, parsed
by vLoadSceFunctions(), just contains one name per line, with no comments.

Analysis Tools Construction Kit 06-138

This file is created automatically from the SCE library symbol table, using a Perl
tool contained in the TRC\GrabSCESyms folder. Since this isn’t a Perl course, we’ll
ignore that tool—whenever you’re curious, it’ll be there waiting for you.

Navigation
With that out of the way, go back to trc_tool.cpp. Once the configuration file is
read, we get back to the standard boilerplate that’s becoming so familiar. After
that, we clear our two lists of call sites. We’ll see how those get used in a
moment.

Unlike the other ATtaCK tools we’ve seen, this one uses recursion rather than
iteration to walk the program. In iteration, a tool runs through every image, then
through every procedure in each image, and then through every call site in each
procedure. In recursion, though, the tool takes a particular procedure and runs
through every call site in it; for each call site, the tool finds the target procedure
and runs through every call site in it.

This process starts in vForeachCallSiteFromMain(), so that’s where we’ll start
too.

vForeachCallSiteFromMain()

This function takes two arguments. The first is the handle of the program to
analyze. The second is a pointer to a function to invoke on each call site in the
program’s chain of execution. Ignore that for now—we’ll look at it in detail soon
enough.

The first thing this function does is check to make sure the program is
instrumentable. This is still a static analysis tool, however, so it can run against
non-instrumentable programs. The most likely reason for a program not to be
instrumentable is that it was compiled with gcc rather than CodeWarrior. By
default, the tool will run against gcc-compiled applications, but if for some reason
you don’t want it to, you can pass in the command line option –no-gcc to prevent
it.

Next, we look up the entry point for main() and pass it to
vRecurseCallSites(), the function that will do the recursion.

vRecurseCallSites()

This function takes two arguments. The first is the handle of an entry point. The
second is the function pointer we’ve already mentioned. Keep ignoring that
function pointer and just look at what we do with the entry-point handle.

The function looks up the procedure handle associated with the entry point, and
then gets that procedure’s instrumentability attribute. Instrumentable procedures
get analyzed, as do uninstrumentable ones in the absence of the—no-gcc option.
However, procedures from the Sony libraries—that is, those for which
bIsSceFunction() returns true—are skipped.

Analysis Tools Construction Kit 06-139

If the procedure isn’t skipped, we proceed to iterate through all its call sites. If the
target of a call site is known, then we call our static-analysis code—the function
to which we received the pointer—on that target, and then pass the target entry
point into vRecurseCallSites() itself. If, on the other hand, the site’s target is
unknown, we call vRecordUndeterminedCallSite() instead.

Now let’s look at our static-analysis routines. Go on to the next page.

TRC: Analysis and Reporting

Analysis
The recursion routines call a function on every call site in the program. That
function is identified by a pointer for versatility: You can use the same routine to
invoke any function recursively over the program. In this tool, though, only one
function gets called, vAddCallSiteToHashtable().

vAddCallSiteToHashtable()

This function creates a new CallSite object, which represents a single call site in
the program. This object, along with the name of the target procedure, are passed
to addProcedureCallToHastable(). (Yes, that’s Hastable, not Hashtable—
the source contains a typo. Now you know why this is in the “Thrill Seeker
Tools” folder.)

To add the call to the table (which is really implemented using a vector, not a
hashtable—the hashtable is on the “to-do” list), first the routine scans through the
table to see whether a ProcedureCallDetails object with that name already
exists. If it does, then the callsite is added to the object’s internal list. Otherwise, a
new ProcedureCallDetails object is created.

CallSite Object

This is just a wrapper for ATtaCK’s atck_call_t object—it’s simple, but it
gives you an idea of how a well-designed set of C++ wrapper objects could
improve ATtaCK development. Its constructor takes handles of the procedure
containing the call, the ATtaCK callsite object, and a boolean flag indicating
whether the site appears in read-only code. Access methods are provided for these
members, plus there’s a fourth access method that wraps
atck_call_targname().

ProcedureCallDetails Object

This object has just two members: the name of a target procedure, and a set of the
CallSite objects, which target that procedure. The object also has methods that
provide access to those members—pretty basic stuff.

Analysis Tools Construction Kit 06-140

vRecordUndeterminedCallSite()

When the target of a call site can’t be determined, this function sees whether the
site is already stored in the list of undetermined call sites. If it is, then no further
action is needed. If not, a new UndeterminedCallSite object is created and
added to the list.

UndeterminedCallSite Object

Indirect call sites might or might not be calling prohibited or required functions.
Since the tool can’t figure them out, it simply reports the call site to the user. The
UndeterminedCallSite object encapsulates the little information the tool does have
about the site—primarily the source filename and line number where the site can
be found.

Output
The tool’s syntax is very simple: trctool configfile app. configfile is the
configuration file—use trc1_6.txt, located in the same folder as the tool. app is the
application to validate.

Once launched, the program runs for a little while and spits out its results, looking
something like this:

Fig. 06-01: TRCTool Output

Improvements
TRCTool isn’t ready for prime time yet. It’s got three notable flaws: It can’t
handle recursive applications; it doesn’t guarantee that the required functions are
actually called; and it can’t handle indirect function calls.

Of these, the recursion problem is unquestionably the worst. Right now, the tool
doesn’t have any mechanism to indicate that a routine has already been examined.
For most applications, that’s merely wasteful. If the target application itself uses
recursion, however, TRCTool will crash. Recursive algorithms are not at all
uncommon in games, especially in AI routines and particle-animation systems.

Analysis Tools Construction Kit 06-141

Fortunately, there’s an easy fix available. Before recursing into a call-site’s target,
the tool calls vAddCallSiteToHashtable() for it. That function in turn calls
addProcedureCallToHastable(). And that function determines whether the
procedure already exists in the table—in other words, that function knows
whether the procedure has been examined already.

Thus, all we need to do to fix this bug is pass a boolean return value back from
addProcedureCallToHastable(), then pass that same value back from
vAddCallSiteToHashtable(). This value should be false if the procedure was
already in the table, or true otherwise. We can then make the call to
vRecurseCallSites() conditional on this return value.

The other two problems are not nearly as severe, but they’re not nearly as easy to
fix, either. Guaranteeing that a particular function gets called requires dynamic
analysis, adding instrumentation to every call site that targets required functions.
The instrumentation should pass a “required function ID,” which the analysis
code can use to check the call off a list.

With that mechanism in place, handling indirect function calls becomes a simple
matter. Add instrumentation to every indirect call that passes the called address
via ATCK_TARGADDR. The analysis code’s required-function table would then have
an address listed for each function. The called address would be matched against
the known addresses of the required functions to see whether one should be
checked off. Since there are only a handful of required functions, this wouldn’t
slow the program down noticeably.

Analyzing Branch Prediction
Because the EE is so heavily pipelined, branches present a special problem. By
the time the processor determines whether the branch will be taken or not, it
already has as many as six instructions after that branch loaded in the pipeline. If
the branch isn’t taken, those instructions execute normally and no time is lost. If
the branch is taken, however, those instructions must be flushed out of the
pipeline, which starts all over again at the target.

This can waste ten nanoseconds per branch, which may not sound like much but it
adds up. Worse yet, if any of those six instructions lie in another cache line—
which, since cache lines are 16 instructions wide, they will about 37% of the
time—then you incur the hit of a wasted cache miss in addition to the cache miss
caused by the branch itself. (If you’re unfamiliar with terms like “cache miss,”
just wait—we’ll be covering the cache in detail next lesson.)

The EE instruction set gives you two ways to alleviate this problem. First, the
Jump instructions provide for unconditional branches. Since the chip knows that
the branch will be taken, it doesn’t bother loading the instructions beyond it.

Second, the Branch-Likely instructions allow you to identify conditional branches
that are usually taken. As with Jumps, Branch Likely instructions assume that the
branch will be taken, and start loading the pipeline with instructions from the

Analysis Tools Construction Kit 06-142

target address. Of course, if a Branch Likely turns out to fall through instead, then
the hit is just as bad as when a regular conditional branch is taken.

Now, branch prediction isn’t nearly as important as managing the cache well.
Nevertheless, it’s still an important speed factor. It’s also a factor that’s relatively
easy to tweak. In assembly, you can replace Branches with Branch Likelies. In C,
you can reverse the sense of if statements. We’ll discuss both those optimizations
later in this lesson.

But the first step in solving a problem is recognizing you have one. You need a
tool to monitor your application’s branches, logging the missed predictions. By an
amazing coincidence, such a tool is already sitting on your hard drive. Open up
branch_inst_ps2.mcp from your Examples\Branch\Inst folder (by default,
this will be C:\Program Files\Metrowerks\ATtaCK for
PS2\Examples\Branch\Inst\branch_inst_ps2.mcp.)

Branch
This is a very basic tool. It instruments every conditional branch with a call to a
counter routine. ATtaCK passes this routine a flag to indicate whether the branch
is taken. This routine updates a counter for every branch, and a counter for every
taken branch, to calculate the percentage of branches taken.

We can cover everything of interest here in about five minutes. Open
branch_inst.c. The main() function is just a boilerplate that calls
Instrument() and then RunIt(), so we’ll skip that part.

Instrument() does two things. First, if the user specifies a procedure name on
the command line, that procedure gets instrumented with a call to the analysis
routine Report(). That routine halts the target, allowing the host to read the data.
The net result of this is that the user can specify a procedure in the target
application that causes the counters to be read. This function might be called at
the end of each level, say, or upon pressing a control-pad button.

The rest of the application gets iterated over, instrumenting every instrumentable
instruction that is a conditional branch. Conditional branches are identified using
the atck_inst_iscbranch() method of the instruction object. The
instrumentation call passes the ATCK_TAKEN flag, which is received as
ATCK_FALSE if the branch condition is false, or ATCK_TRUE if it’s true.

The analysis code isn’t even worth looking at, although it’s in
Branch\Anal\branch_anal.c if you’re curious. It maintains two integer counters,
one that tallies the total number of calls to the analysis routine—that is, the
number of conditional branches—and one that counts the number of branches
taken.

Execution and Output

The syntax is branch app report_proc. The first argument is the application
name, while the second is the name of the procedure to halt on—just leave that
blank for now. The tool downloads and launches the application immediately; hit

Analysis Tools Construction Kit 06-143

ENTER to get the data, then x-ENTER to quit. Your output will look something like
this:

Fig. 06-02: Branch Output

As you can see, this just reports the total number of conditional branches, and the
percentage that were taken. Don’t you feel enlightened?

The trouble is, this tool violates one of my analysis principles: Don’t ask
questions if you’re not going to use the answer. In this case, just what exactly are
you going to do with the information that 45% of your conditional branches are
taken? You don’t even know whether that’s good or bad!

If you think back to PS2Counter from the last lesson, you’ll realize that this tool
doesn’t do anything the EE performance counters can’t do. In fact, the
performance counters do it better, since they measure every instruction,
instrumentable or not, and don’t slow down the application’s performance at all.

But this tool’s real sin is that it treats all conditional branches the same. Some of
those conditional branches are Branch Likely, in which case we want them taken.
Furthermore, we really need the count for each individual branch, so that we
know which ones to tweak and which to leave alone.

The whole point of ATtaCK, though, is that you can write and modify tools as
needed. So let’s do exactly that and turn this program into something really
useful.

Branch: Improvement

Despite its shortcomings, Branch is still a sample program, and we don’t want to
destroy it. But the easiest way to create our new tool, BranchPred, is to modify
Branch. Besides, this is a good opportunity to give you experience in modifying
existing ATtaCK tools.

The first thing to do is change the Access Paths settings in the original Branch
project from “Project Relative” to “Absolute Path.” This won’t break the original

Analysis Tools Construction Kit 06-144

project, and it will make sure that the new project compiles properly wherever we
put it. Be sure to change the library path (found under “User Paths”) and the
include path (found under “System Paths”) in both the instrumentation-tool and
analysis-code projects, as show below:

Fig. 06-03: Change Access Paths

Once you finish changing the access paths, close each project to save the new
settings. Now copy everything in Examples\Branch to a new folder elsewhere on
your drive, named BranchPred. Don’t bother renaming any other files, although
you probably do want to go in to the “x86 Target” settings and change the output
filename from branch.exe to branchpred.exe.

Our basic goal is to add the ability to measure each branch’s prediction
individually. While we’re at it, we’ll fix how Branch Likely instructions are
handled, so that they count as missed predictions when not taken. This will
require a number of small changes to both the instrumentation tool and analysis
code, but nothing very big.

For making these changes, you’ve got two choices. The hard way is to figure out
how to make them yourself, based on my step-by-step description. The easy way
is simply to download the “new and improved” versions of the C files from the
course supplemental material file—just save these new files on top of the old ones
you copied from the original Branch folder.

Navigation and Instrumentation
Open branch_inst.c, so that you can either make the following changes yourself
(yay!) or see the final results (boo!):

1. Add <atckps2.h> to the list of headers. This file contains the PlayStation
2-specific definitions, which we’re going to need.

2. We’ll need a global pointer to a buffer of brdat_t structures, to hold the
individual branch statistics. We’ll also need a global counter to hold the
number of instrumented branches (and thus the size of the buffer). Call
these pBuffer and nBranches.

Analysis Tools Construction Kit 06-145

3. We need a counter—call it branchID—declared at the start of
Instrument(). This counter gets passed in as a new argument for the
TraceBr() analysis routine. It’s then incremented after every branch
that’s instrumented.

4. The analysis routine will need to be told whether the branch is likely or
unlikely, so that it knows whether to log a taken branch as a hit or a miss.
This will be done by a new function called IsBranchLikely(), which
bases its decision on whether the branch instruction’s “pseudo-opcode”
matches a list of known Branch Likely opcodes.

5. In the analysis code, we’ll add an “is branch likely” flag as an extra
argument to TraceBr(); in the instrumentation loop, we pass the return
from IsBranchLikely().

6. After the instrumentation loop finishes, and we know how many branches
there are, set nBranches equal to branchID. Then allocate a buffer of
nBranches brdat_t structures, storing the pointer in pBuffer.

7. Finally, add an instrumentation call to a new analysis routine,
Initialize(), at the start of the program. This routine takes a pointer to
the buffer, which means that we must declare the BrDat structure, then
pass ATtaCK the number of buffer elements (nBranches) and the buffer
address (pBuffer).

Analysis Changes
We’re not done with the instrumentation tool yet, but this is the logical time to
look at the changes to the analysis code. Open branch_anal_ps2.mcp, then open
branch_anal.c to make the following additions:

8. BranchData becomes a pointer to a brdat_t structure, rather than a
brdat_t structure.

9. TraceBr() now takes three arguments: branchID, predicted and
actual. You saw in the instrumentation call what those arguments are.

10. BranchData.nbranches becomes BranchData[branchID].nbranches.

11. BranchData.ntaken becomes BranchData[branchID].ntaken, and is
only incremented if predicted equals actual.

12. We need a simple Initialize() function, which initializes BranchData
with the brdat_t pointer passed to it.

Close branch_anal.c and make the analysis-code project. Now all that’s left are
the changes to the output code, which we’ll tackle on the next page.

Analysis Tools Construction Kit 06-146

BranchPred: Analysis

Output Changes
The only remaining function to change is PrintData(), as follows:

13. Before, the target’s BranchData variable was a structure. Now it’s a
pointer to an array of structures. So now we need to read the contents of
the pointer, then use that address to read the contents of the buffer.

14. Copy the entire iteration loop from Instrument() here, so that we can
turn branch IDs into source filenames and line numbers. Don’t forget to
copy the declaration of the branchID counter, too!

15. Change the call to atck_img_write() at the end of the image iteration
loop to atck_img_release().

16. Replace the call to atck_inst_callbefore() inside the iteration loop
with a call to the new function AnalyzeBranch().

17. At the end of PrintData(), zero out the results buffer and write it back to
the target.

Last, we need to create the AnalyzeBranch() function that reports the results of a
single branch. It receives the branch ID and a handle to the instruction in question,
and performs the following tasks:

18. Return immediately if the branch was never reached (i.e., if
pBuffer[branchID].nbranches equals zero).

19. Calculate the percentage of time the branch was predicted correctly. If that
value is greater than or equal to 50%, the branch is fine and we don’t need
to report anything about it.

20. If that value is less than 50%, however, report the source filename and line
number of the branch, whether it’s currently likely or unlikely, and how
often the prediction failed.

Execution and Output
Apart from the tool’s name, the syntax hasn’t changed from the regular Branch
program: branchpred app. The tool downloads and runs the application as
before, but now the output is much more informative:

Analysis Tools Construction Kit 06-147

Fig. 06-04: BranchPred Output

Interpretation
Most likely, your application will have a number of mispredicted branches. Now
what?

First, remember that you can (and should!) ignore most of them. In the sample
output above, for example, there are three branches that happen millions or even
billions of times, and six other branches that happen at most a few hundred times.
Only those three most common ones merit any attention at all; the rest are
irrelevant.

When you look at the source code in question, you’ll find that these branches
occur in two places: if statements and loops. Of the two, if statements are easy to
optimize; loops require some tinkering.

To change the branch prediction of an if statement, just reverse the order of the
clauses. For example, consider the following example:

if (x < y)

 a++;

else

 b++;

In assembly, this becomes the following pseudocode:
test x - y

if non-negative goto BClause

a = a + 1

goto Done

BClause:

b = b + 1

Done:

Analysis Tools Construction Kit 06-148

Looking at it this way, you can immediately see where the mispredicted branch is:
the “if negative goto BClause” instruction. (The “goto Done” instruction is
an unconditional branch, which by definition is always correctly predicted!) In
this example, x is usually greater than or equal to y. Thus, by reversing the order
of the two clauses, like so:

if (x >= y)

 b++;

else

 a++;

…then we eliminate the misprediction:
test x - y

if negative goto BClause

a = a + 1

goto Done

BClause:

b = b + 1

Done:

Fixing loops is more of a challenge. You can’t simply reverse the direction of the
comparison, because the compiler is, in effect, creating an if statement at the
bottom of the loop for you. What you have to do is replace the C loop syntax with
your own “hand-rolled” version, in which you write the if statement so that you
can get the direction right. An even better option is to replace that if statement
with a bit of inline assembly to use one of the Branch Likely instructions. Both
those techniques are outside the scope of this course, however.

Improvements
This is a much better tool than the original Branch, but it’s still not perfect.

For one thing, the output ought to be sorted, so that the first branches on the list
are the ones most deserving of attention. Don’t cull the unimportant branches out,
however—if the user is converting a function to assembly anyway, fixing branch
prediction is basically free, and so it’s worth doing even when the gains are
marginal.

A more substantive change would be to sample over time, rather than compiling a
grand total of all procedures. Adopting the frame-by-frame collection mechanism
of PS2Counter, for instance, the tool could collect ten frames of data at a time,
then stop and let the target gather the information.

Sampling over time like this allows you analyze branch prediction in different
circumstances, For example, clipping functions tent to have lots of branches, and
they behave differently in different situations. Observing their behavior in real-
time could tell you, for instance, that when performance matters most (when the
most partially-clipped objects are on screen, let’s say), the branch prediction is at
its worst. Since that doesn’t happen as often, the total branch prediction statistics

Analysis Tools Construction Kit 06-149

are pretty good, but you still want to flip the branches—most of the time you’d
happily sacrifice some best-case performance to boost your worst-case
performance.

Looking for Inlining Opportunities

Inlining is the process of taking the body of a function call and placing it directly
into the calling routine. Doing so saves the cost of a function call, at the expense
of making the program slightly larger.

The term is primarily associated with C++ because that language allows you to
suggest to the compiler which functions would be suitable for inlining. However,
it’s an important technique in any language, and it’s possible to do by hand in C
or C++. Indeed, that’s the only reliable way to do it, since a C++ compiler is
never required to honor your inlining suggestions.

So when would you inline? The rule is “whenever speed is more important that
compactness.” In practice, this means that if you have a function that is frequently
called from a small number of locations, it’s a good candidate for inlining—the
frequent calls make the function-call overhead significant, while the small number
of call sites means that inlining won’t increase the size of the program very much.

Unlike many optimizations, this isn’t an “either-or” tweak. You can inline a
function in one location, and “outline” it (that is, leave it as a normal function
call) in another. C++ does exactly that whenever you use a pointer to an inlined
function—it creates an “outline” copy and gives you a pointer to it. This is why
functions can be declared as both virtual and inline in C++.

Inliner
This tool uses static and dynamic analysis to recommend candidates for inlining.
Static analysis is used to determine which functions are small and simple enough
to be viable candidates. Then, dynamic analysis tracks the number of calls made
from each call site to these functions. As mentioned before, a simple function that
gets called a large number of times from a small number of locations is an
excellent candidate for inlining.

I’ve written this tool in C++ for a few reasons. Partly it’s an experiment—I’d
never written an ATtaCK tool in C++ before, and wanted to see how well it
worked. Partly it’s a demonstration, so that the hard-core C++ programmers
taking this course don’t feel left out. But mostly it’s to take advantage of the
Standard Template Library. This program has to create and maintain a number of
lists, and STL makes that task much, much easier.

Alas, hastily written C++ is one of the gravest programming sins one can commit.
I don’t recommend the C++ style of this program to anyone—it accomplishes its
mission, which is the best I’ll say of it. Still, this program and the earlier
TRCTool can give you some ideas on how well-written C++ can really benefit
you in creating ATtaCK tools.

Analysis Tools Construction Kit 06-150

This is another tool that’s not included as part of the ATtaCK distribution, so
you’ll need to download it from the course supplemental material folder. Once
you’ve downloaded and unzipped the project (inliner.mcp), open it and then
open the instrumentation tool’s main file, inliner.cpp.

Pretty sparse, isn’t it? I took the lazy-man’s approach to C++ programming and
stuck all the code in one big object, in this case called RunContext. Using objects
like this has about as much in common with “object-oriented programming” as
chicken feed does with chicken salad, but it’s quick and easy. As I’ve said before,
the key to getting the most out of ATtaCK is to learn how to put together tools
quickly to tackle specific problems—Inliner took me all of two hours to write.

Okay, with the mea culpa is out of the way, look at inliner.cpp long enough to
see what it’s doing. It creates a RunContext object on the stack, then invokes the
InitSession(), BuildCandidateList(), Instrument() and Run() methods of
that object.

Now open up the real main file, RunContext.cpp.

RunContext Object

InitSession() Method

This function and the destructor that follows it demonstrate the virtues of writing
C++ programs in ATtaCK. The InitSession() method handles all the boilerplate
initialization code that goes into the start of every ATtaCK program. With some
very slight modifications, it (and the rest of the RunContext object) could be
made completely generic, giving you a base object from which to inherit for other
programs.

BuildCandidateList() Method

Our tool’s first task is to use static analysis to build a candidate list. Toward that
end, we define a Candidate object that will hold all the information we need
regarding a particular candidate procedure. The RunContext object then creates
and maintains a vector of these Candidate objects.

To do this, it iterates over every procedure in every image. A new Candidate
object is constructed using the procedure handle and the image’s ID. Then that
object is queried to find out if it’s a valid candidate—we’ll see exactly what that
entails later on, when we examine the Candidate object in detail.

If the object is a valid candidate, it’s added to the list. Otherwise, it’s deleted. In
either case, the loop continues until all procedures have been checked. Remember
that procedure handles, like most ATtaCK handles, last until the program has
been released, not the image, so we’re not running any risk of having the handles
invalidated by exiting the loop.

Instrument() Method

Now we need to create a list of every call site that targets one of the candidate
procedures. The process to do that is very simple: Iterate over every call site, and

Analysis Tools Construction Kit 06-151

check to see whether its target address matches the address of a candidate
procedure.

That’s precisely what the Instrument() method does. The target address of each
call site is passed in to the FindTargetInList() method, which scans the
candidate list to find a match. Assuming the target is in the candidate list, its
associated Candidate object is returned. This, along with the ATtaCK instruction
object representing the call site, is used to create a new CallSite object, and then
the call site is instrumented with a call beforehand to the LogCall() analysis
routine.

After the iteration loop is finished and we have a count of the total number of call
sites instrumented, a buffer of atck_uint32_t counters is allocated. This buffer
is passed to a standard Initialize() analysis routine. The instrumented program
is then written out.

We haven’t finished with the RunContext object—there’s still the download,
execution and reporting code left to cover. However, to understand the rest of the
tool, we need to look at the Candidate and CallSite objects and the analysis
routines. Let’s do that next, then come back to RunContext.

Inliner: Instrumenation and Analysis

Candidate Object
Both the Candidate and CallSite objects are defined in Candidate.h and
implemented in Candidate.cpp.

Constructor

The constructor does a substantial amount of work. Not only does it retrieve and
store the procedure’s important information, such as address and source code
location, it also performs the check to see whether the procedure is a valid
candidate.

First, we calculate how many cache lines this procedure spans. I’ll explain what
this means next page, and we’ll discuss the cache in detail in Lesson 07.
Basically, though, cache lines are fixed 64-byte blocks of memory. To figure out
how many of these blocks a procedure spans, we AND its address with 63, to see
how far into the first block the procedure begins. Then we add that to the total
number of instructions, add 63 (so that we still count a final, incomplete cache
line) and divide by 64.

If the number of cache lines exceeds an arbitrary threshold—ten, in this case—
then we assume that the impact on the cache of inlining the procedure outweighs
the benefits of removing the function-call overhead.

Assuming the procedure is small enough overall, we then iterate over every
instruction in it, much as we did in PS2Counter. If an instruction is a backward
branch, then the procedure most likely has a loop, which disqualifies it—even just

Analysis Tools Construction Kit 06-152

a few passes through a loop consume far more time than the function-call
overhead, so there’s no point in inlining procedures with loops.

DoesAddressMatch() Method

This inline method tests the object’s address and image ID members against the
specified ones. This is used to search through the list of candidates to find a match
for a particular call-site’s target. This is also used by an operator==() method to
see whether two Candidate objects refer to the same procedure.

Display() Method

This method demonstrates another nice feature of C++ for ATtaCK tools. The
Candidate object is responsible for displaying its own profile information, so that
the calling program doesn’t need to know how the object is implemented or what
data it contains. When we look at the RunContext object’s display code, you’ll
see how clean this makes things.

By the way, if we were using stream I/O in this program, better style would have
been to make this method an overloaded operator<<() function instead.

CallSite Object
Just as the Candidate object stores information about a candidate procedure, a
CallSite object encapsulates information about a call site targeting one of those
candidate procedures. Its methods can be summarized very quickly:

• The constructor fetches and stores the source filename and line number for
the instruction representing the call site.

• The analysis code will gather a set of counters, one for every call site.
Those counters will then be copied into their corresponding CallSite
objects using the SetCallCount() method.

• The DoesCandidateMatch() method is used by the tool’s display code to
filter through the call-site list, so that it can print just the call-sites that
target a specific candidate procedure.

• As with the Candidate object, the CallSite object is responsible for
printing out its own profile information using the Display() method.

Analysis Code
The analysis code, found in anal_code_PS2.c, barely requires any explanation,
since it’s in C—you’ve seen lots of code like this. The Initialize() function
sets up the buffer of atck_uint32_t counters, while LogCall() simply increments
one of those counters.

Analysis Tools Construction Kit 06-153

RunContext Object: Download and Execution
The download and execution code of RunContext is designed to be completely
generic. If you reuse this object in your own ATtaCK tool, you only have to
override the output function, the HandleStop() method.

Run() Method

This method first calls LockDevice(), which initializes the device connection as
required. Then it downloads and runs the program. Note that the this pointer is
passed to atck_idownload(). The event handler, a static method of this object,
will receive this pointer so that it can call the right object’s HandleStop()
method.

Note that we don’t restart the target after stopping it here, we simply return. This
tool is designed to run the application and fetch the data just once—you’ll see
why when we look at the output code.

LockDevice() and UnlockDevice() Methods

This code is designed to support multiple instances of the RunContext object—
that is, multiple programs downloaded and running at the same time. I’m not sure
why I did this, since I doubt very much anyone will ever actually download two
programs at once. However, ATtaCK supports it, so I figured I might as well.
Certainly the code was easy.

The ATtaCK handle to the device connection is stored in a static member. If this
member hasn’t been initialized, LockDevice() initializes the connection. It then
increments a lock count, so that we know when it’s safe to disconnect.

The disconnection is handled by UnlockDevice(), which is called by the object’s
destructor. If the device is initialized, then the lock count is decremented. When
the lock count goes to zero, the device is disconnected and its handle set to NULL.
This exact same mechanism, by the way, is used on the object’s session and
config handles as well.

Since multiple RunContext instances all share a single device connection, they all
share a single event handler as well. Thus, the event handler is a static method. As
mentioned earlier, this method receives a pointer to the RunContext object
associated with the program that generated the event. If the event is
ATCK_TEVT_STOPPED, this pointer is used to invoke the object’s HandleStop()
method. This mechanism could have been extended to the other event types, but
they almost never have special handling associated with them.

HandleStop() is responsible for retrieving and displaying the profile data. By an
amazing coincidence, that’s all that’s left to cover in this program, so let’s get
right to it.

Analysis Tools Construction Kit 06-154

Inliner: Output, Interpretation and Improvements

RunContext Object: Output
You’ve already seen the code that actually prints out the profile information—
that’s in the Candidate and CallSite objects’ Display() methods. All the
RunContext object has to do is decide which objects to print out and the order to
print them in. That happens in HandleStop().

HandleStop() Method

First, if we don’t already know the address of the target’s buffer, we need to fetch
it: Read the symbol table to find the address of the pointer, then read that address
to find the address of the buffer.

Next, upload the target buffer to our local copy. Since our call-site list consists of
C++ objects, it would have been awkward at best to copy the target buffer directly
to this list. Instead, we loop through the list, saving each element of the profile
buffer to its corresponding CallSite object.

Now we sort the CallSite list by target address, so that we can conveniently
print each candidate’s associated call sites. To do this we use the STL sort()
function. Much like the qsort() function we’ve already used, this requires some
form of comparison function. This being C++, a simple function pointer would be
far too prosaic; instead, sort() takes a reference to a “functor,” an object that
behaves like a function pointer by implementing an operator()() method. The
functor in question, CompCallSites, is found in Candidate.h, and simply
compares the two sites based on target address.

Once the list is sorted, the rest is easy. First we iterate through every Candidate
object, printing its information. Then we iterate through the entire CallSite list,
looking for the first one that matches the current candidate. Since that list is
sorted, once we find one that matches, we can continue iterating, printing each
one until one stops matching. At that point, we know that there won’t be any more
sites in the list for this candidate, so we go on to the next one.

Notice that after we print out a call site, we delete it from the list. This speeds up
the search for subsequent candidates, but makes it nigh-impossible to resume the
program after displaying the information once. That shouldn’t be necessary. If
you want to be able to collect the data in batches, though, you’ll need to replace
the sorting mechanism with one that uses a separate list of pointers—that list gets
sorted, and entries from that list get deleted, leaving the original call-site list
untouched.

To see the result of all this code, type inliner app on the command line. You
should get something like this:

Analysis Tools Construction Kit 06-155

Fig. 06-05: Inliner Output

Note that the only “candidate” here isn’t a very good one. Actually, I didn’t have
a sample program with any good candidates, so I had to lift the cache-line
threshold just to get any output at all. A real game application will have plenty of
viable candidates, however.

Interpretation
As you can see, the output becomes your roadmap for inlining: A function that is
called a large number of times from a small number of locations is a prime
candidate.

If you were purely concerned about speed, of course, you’d inline everything.
However, as a practical matter, there comes a point where tiny speed gains are not
worth making your code hundreds of times bigger. More importantly, tiny gains
aren’t worth the effort of actually inlining the code—remember, your time is a lot
more valuable than the CPU’s.

Actually, even if speed were your only concern, inlining would often be the
wrong choice, thanks to the instruction cache. As you may recall, each cache line
is a block of memory containing 16 instructions; the cache can hold 256 of these
blocks. If your program is just running straight through, without any branches,
then the cache is irrelevant. However, once you start looping and branching, the
cache matters a great deal.

In particular, it’s extremely important that all the code from the top to the bottom
of a loop, including any functions in which that loop calls, fit within the cache.
That’s one of the ways inlining helps—a distant function probably won’t be in the
cache, but an adjacent instruction will be. But on the other hand, if the inlined
function itself blows the cache, due to its size or its own function calls, then the
effort is wasted.

When you do decide to inline a function, simply adding the inline keyword may
not help much, since the compiler is free to ignore your suggestion. Even if it
decides to inline the function, it does so everywhere, which may do more harm

Analysis Tools Construction Kit 06-156

than good. We just spent a lot of effort figuring out the best places to inline, and
it’s a shame to have that knowledge go to waste.

To inline a function by hand, you’ve got two choices: C macros or assembly
language. Of the two, macros are obviously much easier to write and maintain.
Odds are, though, that if a function is really worth your time to inline, it’s
probably worth your time to move it into assembly language, where you can
perform other optimizations at the same time.

Improvements
Since inlining is so cache-sensitive, we should incorporate some measure of
cache-awareness into Inliner. At a minimum, the tool should count the number of
calls to different functions each candidate makes. A procedure that calls just one
function a thousand times doesn’t consume nearly as much cache space as a
procedure that calls ten functions once each.

To do the job right, you need to have a pretty accurate model of how the cache
works. The PS2Cache tool that we’ll cover next lesson includes such a model.
PS2Cache uses dynamic analysis to build a nearly-perfect map of the
application’s cache usage. Inliner doesn’t need that level of accuracy, though, and
could get by with static analysis. All it needs is some sense of what inlining a
particular function will do to the cache usage.

There’s another type of performance tweak that’s related to inlining, called loop
unrolling. With inlining, you make your program larger to cut down on the
number of function calls you make; with loop unrolling, you make your program
larger to cut down on the number of branches. A function is a good candidate for
inlining if it is called a large number of times from a small number of locations; a
loop is a good candidate for unrolling if it is executed a large number of times but
only runs through a few passes each time.

You get the idea: Loop unrolling is really just inlining done with basic blocks
rather than procedures. Turning Inliner into “Unroller” is every bit as easy as it
sounds. There’s even some benefit to performing both analyses at the same time,
so that you get a picture of how the two interact. For instance, Inliner right now
excludes procedures that have loops, under the assumption that the loop blows
away the benefits of inlining. However, if analysis determined that the
procedure’s loop was a good candidate for unrolling, then suddenly that function
might become a good candidate for inlining.

This is getting into the realm of computer-aided software engineering—there’s
big money in this field if you build something truly innovative! Computer
processing power keeps getting cheaper, while programmer time keeps getting
more expensive. The obvious solution is to use computers to write programs, and
people who discover clever solutions to that problem are going to become rich.
Someday the only code that humans write will be the code that tells computers
how to write the rest of the code.

Did that make sense? Well, never mind, let’s move on to our last program for this
lab.

Analysis Tools Construction Kit 06-157

Detecting Load Delays

The EE Core does a lot of things at once. When operating at peak efficiency, it
issues two instructions every cycle. Really, though, each instruction takes several
cycles to work its way through the pipeline, so the EE is often processing a dozen
instructions at once. With all of that going on, one would expect to have problems
trying to use a register that an earlier instruction modified.

For the most part, everything works smoothly, no matter what you do—even
when two simultaneous instructions are both using the same registers, which is
more than I can say for the Pentium. However, there’s still one situation that
causes problems: If one instruction tries to read a register that the immediately
preceding instruction loaded from memory, the EE has no choice but to wait until
that load completes. This delay won’t be very long—just a few cycles—but when
each instruction takes about half a cycle, a delay of even a few cycles really hurts.
Combine this with a cache miss and the delay gets even longer.

The prudent PlayStation 2 programmer avoids this “load delay” whenever
possible, by rearranging his code so that some other instruction comes between
the load and its first use. The trouble is, it’s easy to forget to do that, since the
most natural way to write code is to load the register and then use it. In fact, I’d
go so far as to say that’s the right way to code: Most of the time, it’s more
important to make the code readable and easy to write than it is to squeeze those
extra few cycles out of it.

And, of course, if you’re writing C code, you don’t have much control over this.
The CodeWarrior compiler does about as good a job as possible when you turn on
optimization, but it just doesn’t have the intelligence that a human being does.

Thus, there will come a time when you need to scan your code for this problem.
Armed with a list of every load delay, you can then evaluate each and decide how
much effort it’s worth to fix. Well, lo and behold, you can write an ATtaCK tool
to generate that list. You don’t even need to use dynamic analysis—you can do it
all with static analysis, which means you can even scan code compiled with non-
CodeWarrior compilers.

RegStall
This one isn’t on the CD, so you’ll have to download it from the supplemental
material folder. Once you do, open RegStall.mcp. Note that there’s only one
target, since it’s just a static analysis tool—and there’s just one source file, since
it’s a simple analysis tool!

Open inst_tool.c. This file, and indeed this whole program, has just two
functions, main() and Analyze(). Of these, main() isn’t very interesting, just
handling the usual initialization and command-line parsing tasks before it calls
Analyze(). That’s where the real work happens, so let’s focus on it.

Analysis Tools Construction Kit 06-158

Analyze()

The first thing this function does is allocate a buffer to hold disassembly text. The
reporting code will print the disassembly of offending instructions, so that you
know which register is causing the load delay.

Next, we allocate three register-set objects: prevwrite, which will store the
registers loaded by the previous instruction; curread, to store the registers read
by the current instruction; and result, a temporary set used to store the
intersection of the two. This mechanism is the heart of the tool, so rest assured
we’ll examine it in detail very soon.

The outer iteration loops are boilerplate. First we iterate over the images in the
application, then over the procedures in each image.

The procedure iterator in turn iterates over each procedure’s basic blocks. Just
before that loop, though, it clears prevwrite—by the time a function call
transfers control to the procedure, any value loaded by the instruction in the call’s
delay slot will be ready for use, so the first instruction of a procedure can never
suffer from load delay.

Also note that there are two pointers maintained outside the basic-block loop,
pprevinst and poldinstit. The former holds a handle to the previous
instruction, for the sole purpose of letting us print its disassembly out when we
find a load delay. (Since writing then reading a register cause a delay, it’s useful
to print both the instruction that caused the delay and the immediately preceding
instruction that loaded the register.)

However, keeping this old instruction handle around presents a problem. For
efficiency, we’re using iterator-lifespan instruction handles. Remember that the
atck_instit_new() method takes an extra argument, a flag that says whether the
instructions returned by that iterator should last for the lifespan of the image or
the lifespan of the iterator. Since any production application will have many,
many thousands of instructions, each of which takes up quite a few bytes within
ATtaCK, we really want to use iterator-life instruction handles.

We iterate over the instructions within a single basic block, and then free up the
iterator. Thus, the instructions from one block would not normally be available in
the next block, yet the last instruction in a basic block could easily cause a load
delay. To resolve this, we don’t release the old instruction iterator right away.
Instead, at the end of each basic block, we release the previous block’s iterator,
and then store the current block’s iterator in poldinstit.

After clearing those variables, we start the basic block iterator. As promised, for
each basic block we iterate over the instructions. Skip over what we actually do to
those instructions—I’ll cover that next.

After the instruction iterator finishes, we see whether there’s a poldinstit lying
around, and if there is we release it. After that, we set poldinstit equal to pinstit.

At the end of the basic block iterator, we do that same operation again: If
poldinstit isn’t null, then we release it. Then we release the bblock iterator and
exit to the procedure loop. When that completes we release the procedure iterator,

Analysis Tools Construction Kit 06-159

release the image and exit to the image loop. When that completes, we’re done—
we release everything and exit.

So what little work this program does is contained within a few lines inside the
instruction iterator loop. Let’s look there next.

Analysis and Output
The first thing that happens within the instruction loop is that curread gets
cleared by a call to atck_regs_remall(). Then atck_inst_inregs() adds to
curread the set of registers read by this instruction. The set must be cleared first
because atck_inst_inregs() adds the registers to the set, rather than replacing
the set’s contents with the new registers.

Next we use atck_regs_intset() to set result equal to the intersection of
curread and prevwrite. The latter, remember, contains the register loaded by
the previous—we’ll see it get set a few lines from now. Calculating the
intersection of the two sets means that if prevwrite’s register appears in
curread, it will appear in result as well; otherwise the set will be empty.

If result contains one or more registers, counted by atck_regs_num(), then we
know it’s not empty, which means we know that the current instruction reads a
register loaded by the previous instruction. We then print out diagnostic
information: the instruction’s source file, line number and disassembly, as well as
the disassembly of the previous instruction. (Now you see why we had to jump
through hoops to keep pprevinst available!) Note that it’s not possible to get
here without pprevinst being valid—this will never get called for the first
instruction in a procedure—and so we don’t have to check for NULL.

After that test, regardless of its outcome, we clear prevwrite. Then we check to
see whether the current instruction is a load, using the convenient ATtaCK
method atck_inst_isload(). If this instruction is a load, then we set prevwrite
to the registers written to by this instruction—it’ll just be a single register, the one
loaded.

Finally, we set pprevinst equal to pinst, and continue the loop. And that’s the
end of the interesting code. The rest of the program wraps things up with the usual
boilerplate.

Interpretation
Here’s what the output will look like:

Analysis Tools Construction Kit 06-160

Fig. 06-06: RegStall Output

“Okay, it looks like this ‘load delay’ thing is happening pretty often. Now what?”

Well, there’s not much you can do in C. Make sure optimization is cranked all the
way up—instruction scheduling (which includes preventing load delays) kicks in
at optimization level 3. That helps, but it doesn’t make the problem go away—the
sample output above was run against a program that was compiled with the
maximum optimization.

What you’ll need to do to really solve this problem is move code into assembly.
That’s obviously a drastic step, too drastic to do just to prevent load delays.
Instead, you should be using this tool in conjunction with all the others—Inliner,
PS2Cache, etc.

Look for functions that consume a significant percentage of your execution time,
and that have a lot of different performance problems as revealed by the tools.
Those are the best candidates for moving to assembly. The “start-up cost” of
converting a C function to assembly is high, while the cost of each individual
optimization—inlining, loop unrolling, instruction sequencing, branch prediction,
etc.—is comparatively very low. You want to convert as few separate functions as
possible, but you want each of those functions to include as many different
optimizations as possible.

Also remember the 80/20 rule: There will be some small portion of your program
where tweaks like this will make the most impact. Don’t waste time tweaking
anywhere else. On the other hand, once you’re already tweaking a particular
function into assembly, you should always use RegStall to scan it for load delays.
The incremental cost of swapping instructions around to prevent load delays is
very small, easily justified by the payoff.

Improvements
I wrote RegStall in less than an hour, so there’s plenty of room for improvement!

First, it’s not completely accurate. When ATtaCK steps through a procedure, it
does so in order of address, not in order of execution. This program assumes that

Analysis Tools Construction Kit 06-161

the basic blocks are executed in order, one after the other, but that’s not the
case—almost by definition, since basic blocks are defined by alterations in the
flow of control.

When branches are actually taken, of course, then the timing of the load delay
basically becomes irrelevant. So really, the only time we should consider an
instruction at the start of a basic block is if the preceding basic block ends with a
conditional branch. Only then—and only if that branch falls through—is it even
possible to see a load delay at the start of a block.

More interestingly, we could combine this tool with others into a “megatool.” As
discussed above, the best candidates for hand optimization in assembly are
functions that have a lot of separate problems. You could run each tool separately
and then fold their results together by hand, but if you find yourself doing that
very often, you’ll save time in the long run by folding the tools together.

The reporting for such a megatool would sort everything by function. Each
problem incident would have a “score” associated with it—ideally the score
would be the rough number of cycles the problem wastes. You’d then sort
functions by their score, from highest to lowest, and for each function list every
individual problem and the number of times it occurs.

Note that in order to get the score correct for the statically analyzed problems,
you’d need to multiply by the number of times the problem was encountered. For
example, let’s say a load delay gets a score of 3. You’d want to insert
instrumentation at the start of that load’s basic block to count the number of times
it happens, and then multiply the score by that amount.

In fact, this is a good improvement for SimpProf, too. If you remember SimpProf,
it slows down the program somewhat, because it adds a lot of instrumentation.
However, you could use these other tools’ static analysis to screen out functions
whose internal profile won’t be very interesting: If function X() doesn’t have any
mispredicted branches, load delays or other internal problems, then you’re not
going to be optimizing it, and if you’re not going to optimize it, you probably
don’t need to profile it at all.

Ultimately, though, it all comes down to your personal optimization technique.
Keep in mind one of my guidelines from Lesson 05: Don’t ask questions when the
answer doesn’t matter. If you’re not looking for functions to hand-optimize with
assembly, then don’t bother gathering detailed lists of potential assembly tweaks!

Just One More!
That concludes our penultimate lesson. Next up is Lesson 07, another lab, in
which we’ll look at memory problems and memory analysis tools.

Analysis Tools Construction Kit 07-162

Lesson 07: Analyzing Memory and Cache
Usage

Our final lesson is another lab, covering four tools to solve common memory
problems. As usual, we’ll talk about improving these tools as well as how to use
them as-is.

Catching Misaligned Memory Accesses
In general, memory accesses on the PlayStation 2 must be aligned on a multiple
of their size: word loads must be aligned on word boundaries, halfword stores on
halfword boundaries, and so forth. Most chips have this restriction. Accesses that
violate this rule generate an exception—a very powerful detection tool!

However, the EE’s “multimedia extensions” to the MIPS instruction set work a
little differently. Those extensions feature two instructions, LQ (Load Quadword)
and SQ (Store Quadword) that operate on 128 bits at a time, a very handy feature
for game operations

Like the EE’s other memory-access instructions, these only work on multiples of
their size, namely 16 bytes. However, unlike the other instructions, invalid
addresses don’t generate exceptions. Instead, the bottommost four bits of the
address simply get masked off.

At first glance, this may seem like a helpful feature: “Neat, if I screw up, the
application won’t crash!” But in fact it’s not very helpful at all. After all, if the
bits being masked off are non-zero, you’ve probably made a mistake, either in
your algorithm or in your memory allocation. Now, when would you rather find
out about that mistake: the minute it happens, or after a week of desperate
debugging and analysis as you try to figure out why the first three pixels of your
textures are always random colors?

PS2Quad
That’s where our first tool of this lesson, PS2Quad, comes in: It looks for and
catches these misaligned accesses, generating a “pseudo-exception” by halting the
system.

The concept behind PS2Quad is extremely simple. The instrumentation loop
looks for every LQ and SQ instruction, and inserts a call to analysis code before
each one. The analysis routine check’s the effected address’ bottom four bits, and
halts the target if any of them are non-zero.

PS2Quad is located in the Examples folder of your ATtaCK installation—the full
path is probably C:\Program Files\Metrowerks\ATtaCK for
PS2\Examples\PS2Quad. Within that folder is the Inst folder, containing the
instrumentation-tool project ps2quad_inst.mcp. Open that project, then open its
only source file, ps2quad_inst.c.

Analysis Tools Construction Kit 07-163

Instrumentation

The Instrument() function uses a basic iteration loop to step through every
image in the program, then every procedure in each image, then every basic block
in each procedure, then every instruction in each basic block.

For each instruction, we retrieve its “pseudo-opcode.” This is an ATtaCK-defined
enumerated type that indicates what the instruction basically is. By comparing this
value to ATCKPS2_OP_LQ and ATCKPS2_OP_SQ, we check to see whether the
instruction in question is one of the quadword access instructions, LQ or SQ. While
we’re at it, we make sure the instruction can be instrumented with
ATCK_EFFADDR—if it can’t, no point in proceeding further with it.

Assuming this is an instrumentable quadword instruction, we insert an
instrumentation call before it. This instrumentation calls the QuadCheck()
analysis routine passing it the image ID number, the address and the effected
address of the instruction. We’ll see how those are used in a moment.

That’s all the instrumentation loop has to do. After that, the loop finishes, the
instrumented application is written out, and the tool downloads and runs the
program. Let’s see what the analysis code will do—open up
Anal\ps2quad_anal.mcp, then open its only source file, ps2quad_anal.c.

Analysis

There’s just a single results structure, QuadDat. The tool is going to halt the
program immediately upon a misaligned access, so there’s no need for a buffer of
multiple results.

The QuadCheck() routine receives the image ID, the instruction’s address and
the address that instruction is trying to access. If that address ANDed against 0x0F
is zero—that is, if all of the bottom four bits are set—then the address is
quadword aligned, and the routine simply returns.

However, if it’s not, then we need to raise our “pseudo-exception.” The values
passed into the routine are stored in the QuadDat structure, the target is stopped
and the program outputs the diagnostic information.

Output

The RunIt() and HandleEvt() functions are more or less cut-and-paste from
other ATtaCK tools, so we can ignore them. To the extent that anything
interesting happens in this tool, it happens in PrintMisalign().

First, this function declares the quaddat_t structure to ATtaCK, so that it can read
the entire structure at once. It then gets the address of the target’s structure, and
uploads its contents into the local copy.

Next, the function needs to find the offending instruction. It can look up the
instruction by address, but first it needs an image handle. We couldn’t pass an
image handle to the analysis routine, but we did pass an image ID number, which
is now in our local copy of quaddat.

Analysis Tools Construction Kit 07-164

The GetImg() function returns an image handle based on an image ID number. It
does this simply by iterating through the images in the program until it reaches the
specified ID.

Once we have the instruction handle, we can start dumping out information about
the misaligned access: the instruction type (LQ or SQ), the source filename and
line number and the offending address.

To make the output more useful, we then disassemble a forty-line window around
the instruction. If you’ll remember back to Lesson 02, we discussed iterating from
one object to its siblings. The best way to do that is to step out to the parent, then
iterate across the parent. We do that here by getting the basic block that contains
the instruction, then the procedure that contains the basic block. This procedure is
then passed to PrintDisasm(), a helper function.

PrintDisasm() disassembles a 40-byte “window,” five instructions on either side
of the offending quadword access. This window begins at addr_start (the target
instruction’s address minus 20) and runs to addr_end (addr_start plus 40).

First, the function prints out the procedure’s name, and allocates a buffer to hold
the disassembly text. Then it iterates through every basic block in the procedure,
then through every instruction in each basic block. If an instruction’s address falls
within the window, its disassembly text is fetched and printed.

And that’s all there is to PS2Quad. Normally I’d show you the tool’s output, but
like they say, no news is good news—most programs won’t have this particular
bug, so for most programs there is no output. Certainly I couldn’t find a sample
program that had the problem.

Improvements

This tool’s almost too simple to improve! To be really useful, though, it needs to
run all the time—the nature of the quadword access problem means that you
won’t usually know you need to look for it. The overhead of PS2Quad is very
small, so you should probably fold this into the other tools. That way, whenever
you’re performing one form of analysis, you’re also watching out for this bug,

Hunting Down Memory Leaks

What’s the worst bug you’ve ever had to track down? More than half the time
when I ask people that, they tell me about a memory leak. Leaks are notorious for
being easy to commit and hard to track down.

To have a hope of finding the leak in hours rather than days (or weeks!), you need
a good memory-leak detection tool. The programmer simply not releasing the
memory causes some leaks, and inspecting the code can spot those. More often,
though, the leak occurs because a pointer gets modified (and thus can no longer
be used to release the block), or worse yet gets overwritten entirely, orphaning the
block.

Analysis Tools Construction Kit 07-165

Following every memory pointer around for its entire lifespan, watching for it to
change, is simply not something human beings can do. Computers are great at it,
though, and tools to do exactly that have been available on the PC for many years
now. These tools are indispensable, but they generally don’t exist on game
platforms.

So let’s write one! ATtaCK gives us all the pieces we need to track memory
allocations. The process is simple:

• Log every call to malloc()—the bytes requested and the pointer returned

• Log every call to free()

• Run through the logs, eliminating matched pairs of malloc()/free() calls

• Anything left in the list is a leak

The thorniest problem is managing these logs. At eight bytes per call, they can get
big very quickly. Many applications use malloc() to allocate large numbers of
small structures, so in a worst-case scenario the log could consume as much
memory as the application’s data!

To keep that from happening, all the analysis and log management should be done
on the host. The target should just gather the data, as quickly and minimally as
possible. When the target’s buffer is full, it should halt itself and let the host read
and clear the buffer. That way, most of the logs are stored in the host’s RAM
rather than the target’s.

This tool—we’ll call it Plumber, since it stops leaks—isn’t included in the
ATtaCK distribution, so you’ll have to get it from the supplemental material
folder. Once you’ve unzipped the project, open up plumber.mcp, then open
insttool.c from the Instrumentation Tool folder.

Navigation and Instrumentation
As usual, we’ll skip the typical initialization code and go straight to
Instrument(). This function performs the usual steps of declaring our data
structure and analysis routines, then iterating through every call site in every
procedure in every image. For each call site, the name of the target function is
retrieved.

If that name is “malloc”, then obviously this is a call to malloc(), so we
instrument it. Conceptually, we just want to log the bytes requested and the
pointer returned. However, in practice, we can’t count on registers not changing
across the function call. Therefore we need to read the bytes requested before the
call, and the pointer returned after the call.

To do this, we add instrumentation before the call that passes the contents of
register ATCKMIPS_REG_GPR4. In assembly code, this register is known as a0, and
it typically holds the first argument of C function calls. In this case, that argument
will be the number of bytes to allocate. Next, we add instrumentation after the call
site to get the pointer that malloc() returns. This pointer comes back in register
v0, which in ATtaCK-speak is ATCKMIPS_REG_GPR2.

Analysis Tools Construction Kit 07-166

For both instrumentation calls, we also pass the callsite ID. Notice that this ID
starts at 1, not 0. Later on, we’ll use a callsite ID value of 0 to indicate a list entry
that’s already been resolved.

If the call target’s name is “free”, then this is a call to free() and our job is
much easier. free() doesn’t have a return value, so all we need is
instrumentation before the call to log the value of ATCKMIPS_REG_GPR4. As with
malloc(), we also pass in the callsite ID.

Analysis Routines
Plumber’s analysis code is complicated because of that split between “before” and
“after.” If we were interrupted in between these two instrumentation calls by
another allocation, there’s no telling what state the list would wind up in.
Certainly the profile would become useless. Thus, we need to ensure that no other
analysis routines can possibly run in between the two calls that surround
malloc(). Sure enough, ATtaCK gives us a mechanism to handle this—mutexes.

Initialize()

As usual, this gets called at the start of the application. And as usual, it receives a
pointer to a buffer allocated by ATtaCK, saving that pointer in a known variable
so that both the host and target can find it.

Here, though, Initialize() also receives the number of elements in the buffer.
We need to track the buffer size in the analysis code, because when we’ve filled
the limited buffer space we’ll stop and let the host read and clear the buffer. That
way, we don’t have to allocate a buffer large enough to hold every memory
allocation.

Finally, we initialize the mutex variable. All this requires is passing the variable’s
address to atcktarg_initlock().This initialization must be done in code that’s
guaranteed to be executed single-threaded. Since analysis routines called using
atck_callbefore() run before the program even starts, this fits the bill.

BeforeAlloc() and AfterAlloc()

These are really just one routine split into two halves.

Before the allocation call, we lock the mutex. The subsequent while loop looks
strange, but ignore it for a minute—suffice it to say that it’s ensuring the buffer
has room. In any case, by the time we make it past the loop, we know that we’re
holding a lock to the mutex. That means that if the application is allocating
memory in another thread (and thus locked the mutex in that thread before us),
that thread will have to finish first before we can proceed.

Once we’re past that, we set the bytes member of the current buffer entry equal to
caller_a0, which are the contents of register a0 passed to us by ATtaCK. This is
the number of bytes requested. We also save callsiteID in the structure’s
callsiteID member. Then we return, which allows the system to proceed.

Analysis Tools Construction Kit 07-167

The application branches to malloc(), allocates the block, and returns, at which
point AfterAlloc() activates. The pointer to the allocated block comes back in
v0, passed to us by ATtaCK. This value is stored in the ptr member of the current
structure. Then, the log entry now being complete, we increment the buffer index.
That marks the end of our critical section, so we release the mutex.

At this point, if the buffer is now full, we halt and let the host read and clear the
buffer. Note, however, that if another thread is waiting on the mutex, that thread
will execute before we get to this call—it wakes up the moment
atcktarg_unlock() is called. That’s why BeforeAlloc() had to make sure the
buffer wasn’t already full—in effect, the call to atcktarg_lock() could result in
the buffer index incrementing.

Look back at BeforeAlloc(). Now we can understand what’s going on in that
while loop. If the buffer is full, then we need to halt and allow the host to clear it.
This requires releasing our mutex, since we can’t halt while we’ve got a mutex
locked. Then the loop halts the target. Presumably the host clears the data and
resumes the target, at which point we lock the mutex again. Thus, it’s not possible
to leave this loop without a) the buffer having room, and b) holding the mutex.

BeforeRelease()

Calls to free() are easy, since free() has no return value. Thus, this function
can be done all at once rather than split. We still need to grab the mutex in case of
multithreading, though, since our analysis routine can still get interrupted. You
can see that this function is literally just BeforeAlloc() and AfterAlloc()
pasted together. The one difference is that bytes member is set to zero, indicating
that this call is a release.

That’s the entirety of the analysis code. In spite of having to jump through one
extra hoop, it’s still pretty simple. Next up: download, execution and output,
which is where all the heavy lifting gets done.

Plumber: Execution and Output

Execution
The Run() function is pretty much the same routine you’ve seen before. It
downloads and runs the application immediately. The user can pause the target
and fetch the buffer by hitting ENTER, or he can simply let it run—when the buffer
is full, as we’ve seen, the target will halt itself. Since the analysis routines are
protected by a mutex, the host won’t be able to halt the target in the middle of a
memory call, so the buffer is guaranteed always to be valid.

In either case, whether halted by the user or by the analysis code, when the target
stops it generates an event. The event handler then calls FetchAndClear() to
fetch and clear the contents of the buffer.

Analysis Tools Construction Kit 07-168

FetchAndClear()

First, this function reads the contents of the analysis code’s global variables
TheBufferIndex and TheBufferPtr. The first gives the number of log entries
currently in the buffer, while the second is the address of the buffer itself. Then
the function reads that number of entries from the specified address. These new
log entries are stored in a temporary buffer, the one originally allocated and
passed to ATtaCK in Instrument().

The temporary buffer needs to get appended to our permanent results buffer. First,
though, that buffer has to be expanded to make room for the new entries. We
calculate the number of bytes the buffer already contains, and the number of bytes
the buffer needs to grow by. If the buffer hasn’t been allocated yet, then we create
it using malloc(); otherwise, we expand it using realloc(). Now we copy the
new bytes into the buffer, starting at the end of the existing bytes, and add the
number of new entries to the count of existing entries.

Finally, we clear the target’s TheBufferIndex variable. That’s all we have to do to
“clear the buffer.” We don’t need to zero-out the buffer itself: Unlike most of the
other programs, this tool isn’t counting, and so it’s not important that the counters
be reset to zero.

By the way, describing this process has made me realize that I’m wasting time. I
don’t need the temporary buffer at all, because I can just read directly into the
permanent buffer, offset by the number of items already present. However, there’s
no point in changing it now, since the code works. The cost of the extra copy
operation is almost totally irrelevant.

This presents a good lesson: ATtaCK tools should emphasize speed of
programming over efficiency—at least on the host side—because you’ll be
running them on developer machines with plenty of processor speed and RAM.
Hardware is cheaper than programmers; so trading hardware time for programmer
time is always worth it.

As its last act, FetchAndClear() resumes the target. Eventually the user will hit
x-ENTER to kill the application, at which point control returns from Run() to
main(), which then calls AnalyzeResults(), the reporting function.

Output
The output code is much more involved than for other tools, because it actually
performs a portion of the analysis. The idea here is to sort the log by allocated
address, then in order of occurrence. In the resulting list, any memory allocation
that is properly released will appear as a malloc() immediately followed by a
free(). If a malloc() appears by itself, then we know that there’s no free()
associated with it and it’s a leak.

To perform the sort, we first create an array of pointers to elements in our results
array. This level of indirection allows us to sort the array without disrupting its
internal order. Since the array is already sorted by the order in which the calls
happened, we don’t want to lose that order—we need to know whether the

Analysis Tools Construction Kit 07-169

free() for a particular address happened before or after that address was
allocated!

We use the standard C library function qsort(), which is reasonably efficient but
more importantly is really easy to use. This function sorts an array in place, taking
a pointer to the buffer, the number of entries to sort, the size of each individual
entry and a pointer to a comparison function.

The comparison function we use here is
CompareMemLogsByPtrThenSequenceID(). Describing the function almost takes
less time than naming it: The entries are sorted by ascending value of ptr; if two
entries have the same value, then they are sorted by their position in the original
list (so that a free() always comes after its associated malloc()). The mutexes
in the analysis code guarantee that entries will always be added to the log in order,
so the order of the original list is the order the calls happened chronologically.
That’s why indexes into the original list are referred to as “sequence ID.”

With the list sorted, we can now run through it to find mismatched allocations and
releases. First, every allocation gets added to a running tally of allocated bytes
and allocated blocks. Then, for any malloc() immediately followed by a free(),
we add the allocated bytes to the “bytes freed” counter and increment the
“number of freed blocks” counter. Then we clear out both the malloc() and the
free() from the sort array by setting their callsiteID members to zero.

Once all that is done, we see whether our “blocks allocated” counter matches our
“blocks freed” counter. If so, then we congratulate the user and quit. Otherwise,
we report each offending allocation.

To do this, we sort the list again, this time by callsiteID. The comparison
function for this is called (take a deep breath!)
CompareMemLogsByCallsiteIDThenSequenceID(). It sorts the list in order of
ascending callsiteID. All entries for a given callsite are then sorted by their
position in the original list.

Now we reiterate over the program to get every malloc() and free() callsite.
For each site, we then increment through the results list until we find a
callsiteID greater than or equal to this site. If the first ID we find is greater than
the current one, then we can move on to the next callsite—thanks to the sort, we
know that there aren’t any entries in the entire list for this site.

But if we find an ID that equals the current one, then we know that this site was
responsible for one or more memory leaks. (Remember, the matched
malloc()/free() pairs had their callsiteID values zeroed out.) We then print out
the diagnostic information for the site, listing every entry for this site still in the
list. Here’s what the output looks like:

Analysis Tools Construction Kit 07-170

Fig. 07-01: Plumber Output

Note that most programs will have a “memory leak.” If you’re going to keep a
block of memory until the program terminates, there’s no pressing need to release
the memory, so many people don’t. However, trying to free every block you
allocate has the advantage of eliminating that chaff during debugging. In any case,
armed with a list of exactly which allocations never get freed, you shouldn’t have
any problem sifting out those “intentional” memory leaks from the unintentional
ones.

There’s another type of error this tool reports, unallocated releases. This occurs
when free() is called with an invalid pointer. The most likely cause of this is
incrementing your only copy of an allocated memory pointer.

Monitoring Stack Depth

On the PC, memory is relatively easy to come by. More to the point, the
consequences of running out of memory aren’t too drastic—some unused part of
the operating system gets paged out to disk. At worst, your app’s performance
dies, but at least the app itself doesn’t crash.

On the PlayStation 2, memory is much more of a premium. First, you’re trying to
keep more data in memory, because reading from the DVD is slower than reading
from a hard drive. Second, when you run out of memory, that’s it, game over—
there’s no virtual memory manager to cover your tracks. So every byte is
precious.

On the PC, you generally don’t worry about the stack. If, during debugging, you
ever run out of stack space—assuming it’s not caused by an infinite-recursion
bug—you simply increase the stack allocation and go on with your life.

On the PlayStation 2, it’s not so simple. You want the stack to be as small as
possible, but you also can’t afford to ever run out of stack space. The constraints
are especially severe if you want to put your stack in scratchpad RAM, of which
you only have 16K!

Analysis Tools Construction Kit 07-171

This analysis tool instruments your application to determine the deepest stack it
ever uses. During development, you can allocate an overly large stack while you
collect this depth information. Just before release, you trim your stack to the
minimum you need (plus some safety margin)

DeepStack
This project is found in the Thrill Seeker Tools folder (probably C:\Program
Files\Metrowerks\ATtaCK for PS2\Thrill Seeker Tools), in the subfolder
StackDepth. Open inst\stackinst_ps2.mcp, then open stack.h.

This file defines the data structure that our analysis routines will gather. It has two
members, a procedure ID and an address. Not only does this tool measure how
deep the stack gets, it also tells you exactly which sequence of calls resulted in the
deepest stack.

Now open stack_inst.c. The main() is a boilerplate, handling initialization,
allocation of two buffers—one for deepest stack, one for current stack—and
driving the rest of the program. The work gets done in the functions
DoInstrument(), DoRun() and DoPrint(). Before we look at them, though, we
should probably look at the analysis routines.

Analysis
Open anal\StackAnal_ps2.mcp, then open stack_anal_ps2.c.

As mentioned, there are two buffers, one for the current call stack and one for the
deepest call stack. In addition, there are counters to store the number of calls in
each stack, and variables to hold the deepest stack address.

The Initialize() function is pretty standard. It receives buffer pointers from
ATtaCK, stores them and zero out the counters. Note that stacks start at high
addresses and build downward, so the starting values for the maximum-depth
variables are the highest possible values.

The RecordDeepestStack() function is a utility routine that copies all the
“current” variables to their “deepest” counterparts.

The ProcedureCall() function gets called before every procedure call, receiving
the procedure ID and the function’s stack pointer after the frame is set up. The
first thing that happens in this function is the address is checked to see whether
it’s in the region reserved for interrupt handlers. An interrupt handler might call
back into the target application, at which point the target function would use the
interrupt handler’s stack rather than the application’s original stack. We’re not
interested in measuring the interrupt handler stack, and since its address will be
much lower than the application stack’s address, we need to filter it out.

If we pass that test, though, we add the current stack information to our call stack.
The current address is set to the new stack address. The procedure ID and stack
address are pushed into our buffer, and the stack depth is incremented. Finally, if
the new stack address is less than the deepest one to date, we call
RecordDeepestStack() to save this stack as the deepest one.

Analysis Tools Construction Kit 07-172

The ProcedureEnd() function has only one task to perform: It decrements the
stack depth as the stack frame gets released at the end of the procedure.

Finally, the StackUpdate() function gets called whenever any instruction
modifies the stack pointer (register 29). The address is recorded, but the stack
depth isn’t increased, since we’re still within the same procedure. Again, if the
new address is below the heretofore deepest address, we call
RecordDeepestStack().

Armed with this understanding of the analysis routines, you could probably figure
out the instrumentation tool on your own, but we’ll go ahead and look at it.

Instrumentation

DoInstrument() first declares the Initialize() routine, adding it to the start of
the application. It also declares the other routines so that they’re available while
we iterate over the application. Then it allocates a register-set object, which we’ll
need to figure out whether any given instruction modifies ATCKMIPS_REG_GPR29,
the stack register.

Next we iterate over every image, then over every procedure within each image.
Each instrumentable procedure gets a call beforehand to ProcedureCall(),
which receives the procedure ID and the contents of register 29. Every procedure
also gets a call afterwards to ProcedureEnd(), which doesn’t take any
arguments.

Now we iterate over the procedure’s basic blocks and then over each block’s
instructions. For each instruction, we clear the register set and use
atck_inst_outregs() to fill it with every register this instruction modifies. If
register 29 is a member of the resulting set, then this instruction modifies the
stack pointer, and so we instrument it with a call after to StackUpdate(), passing
the new value of register 29 resulting from the instruction. (A call before would
pass the original value of register 29, not the new one.)

The iterator loops finish normally, with each image getting written out since this
is a dynamic analysis tool. Finally the entire program gets written out, and
DoInstrument() returns to main(), which will then call DoRun().

Download and Execution

DoRun() is just more boilerplate that you’ve seen before. It has one interesting
feature, though—it was originally written for earlier versions of the ATtaCK API,
and so in the comments you can see some unfamiliar function calls. That’s just of
historical interest. In terms of present-day functionality, DoRun() just launches the
application immediately and loops until it’s finished.

Output

Finally, DoPrint() is called to display the results. This function does something a
little more elaborate than most output routines.

Analysis Tools Construction Kit 07-173

First, it iterates across the application to put all the function names into an array.
This array can then be used to match labels to procedure IDs, making the output
more human-readable.

For each level of the application’s deepest stack, DoPrint() displays the function
name and the stack address. It then subtracts this level’s stack address from the
previous level to display how many bytes were allocated.

Fig. 07-02: DeepStack Output

Interpretation

Okay, so what should you actually do with the information that your application
consumes 944 bytes of stack space? If you’re not pushing the limits of system
RAM, then do nothing and leave well enough alone.

Most likely, though, you need all the space you can get. Or, if your stack is small
enough, you want to move it to scratchpad RAM, to speed up the application and
save cache space for more important data. The linker control file allows you to
specify how big (_stack_size) and where (_stack_addr) the stack should be.
However, that’s an advanced subject outside the scope of this course—you’ll have
to read the LCF documentation that came with CodeWarrior for more
information.

Improvement

This is another one of those programs that are pretty hard to improve: It does what
it does. The best possible “improvement” would be to combine this program with
other ones, so that no matter what tool you’re running, you’ve also got the stack
information.

You really need to always monitor stack depth, so that when it comes time to trim
the stack to the minimum size you need, you’re confident that you’ve covered
every possible situation. Toward that end, even if you don’t merge this tool with
others (such as SimpProf), you could at least add code-coverage to this tool, so
that at the end of the run it tells you which routines weren’t called. Your test

Analysis Tools Construction Kit 07-174

session must run every routine in the app at least once for you to have any
confidence at all in your stack depth figure.

Analyzing Cache Usage
Our last sample program is probably the single most valuable one of the bunch.
The other programs are all useful, but you could write them yourself without too
much difficulty.

This program is much more advanced. It uses a mixture of static and dynamic
analysis to actually simulate the behavior of the PlayStation 2’s data and code
caches, so that it can tell you exactly where and when your application is missing
the cache.

The importance of good cache usage cannot be overstated. Poor cache usage can
kill the performance of even the most well-optimized assembly code; savvy cache
usage can make even unoptimized C code run fast enough for release.

The cache isn’t the most important aspect of PlayStation 2 optimization—that
honor belongs to keeping the VU0 and VU1 pipelines full, a topic outside the
scope of this course. But it’s the most important aspect of EE Core optimization,
and certainly if your EE core code is slow, you’re going to find it very difficult to
keep the vector units happy.

PS2Cache
It’s much easier to say what this program does than to explain how it does it. The
analysis routines simulate the behavior of the cache. Instrumentation calls this
cache simulator every time an instruction reads from or writes to memory.

To simulate the operation of the instruction cache, normally we’d need to add
instrumentation every time an instruction is executed. However, thanks to
ATtaCK’s static analysis, we can simply add instrumentation at the head of every
basic block. Within the block, we know that every instruction will be executed in
order, so we can figure out ahead of time what the cache behavior will be.

Every time the simulator determines that the cache is hit or missed, it increments
the appropriate counter for the procedure that caused the cache activity. Actually,
it’d be a simple matter to increase the resolution, so that it logs the cache
performance of every instruction.

Aside from using the frame-at-a-time collection mechanism that we saw already
with PS2Counter, the instrumentation tool doesn’t do anything out of the
ordinary. All the heavy lifting is done in the analysis routines—understand those
and you understand the program. But to understand those, you need to understand
how the cache works.

Analysis Tools Construction Kit 07-175

The PlayStation 2 Caches

Instruction Cache

The PlayStation 2 has two caches, a 16K one for instructions and an 8K one for
data. For now, let’s just look at the instruction cache—the data cache works
exactly the same, apart from being read/write instead of read-only.

The instruction cache has 128 “lines,” each of which consists of two “ways”; each
way holds 64 bytes. This adds up to 128 x 2 x 64, or 16K. You can think of a way
as a small buffer of super-fast RAM. When the EE executes instructions, it first
checks to see whether the instruction is in a cache way. If it is, it reads from that
rather than memory. Otherwise, it loads 16 instructions into the way and
continues.

So what are lines? Lines are how the EE organizes the ways. Imagine if you were
writing software to simulate a cache—not coincidentally, we’re about to! How
would you check to see whether an address was already cached? The slow way
would be to store, for each way, the address it’s caching, and simply scan the list
of 256 ways to see whether the requested address was there. That might be good
enough for software, but it’s wildly impractical in hardware.

Instead, the EE organizes the ways into an array of 128 pairs of ways. It then
indexes this array by shifting the address right six bits (dividing it by 64) and
ANDing the result with 127. What this means is that a given address will always
be found in one of the two ways of a specific cache line, if it’s to be found in the
cache at all.

This also means that two addresses can both expect to occupy the same cache
line. For example, the addresses 0x100EE00 and 0x16BCE00 can both occupy just
one line, line 56. That’s where the ways come into play: If way 0 of line 56
already holds 0x100EE00, then 0x16BCE00 will get stored in way 1. If both ways
are full, then the line least-recently filled will be reused.

The Data Cache

As mentioned, the data cache is very similar to the instruction cache. (Almost as if
they planned it that way!) The data cache has just 64 lines, still of two 64-byte
ways each. Data lines are indexed by shifting right 6 bits and then ANDing the
result with 63.

Just like the instruction cache, the data cache stores the mapped address, a “least-
recently-used flag” bit and 64 bytes of data for each way. Since the data cache is
read/write, it also stores a dirty flag bit. The dirty flag indicates that the contents
of the cache way do not match the contents of the mapped RAM.

When would this happen? Basically anytime you write. When you write to
memory, the cache first makes sure the destination is mapped to a full cache way,
as for a read. Then it writes the data to the cache, but not the mapped RAM.
Instead it just marks the way as dirty. As long as that way remains mapped to the
same address, it remains dirty. When that way gets mapped to a different address
due to a read or write miss, however, the way is written to memory, in an

Analysis Tools Construction Kit 07-176

operation known as “writeback.” If your app never misses the cache again, the
data will never get written to RAM. (But how would you know?)

Oh, and in case you’re wondering: The scratchpad RAM isn’t cached, because it’s
just as fast as the cache. (It’s essentially part of the cache.) When you consider
that the scratchpad is twice as big as the entire data cache, you can understand
why it’s so important to use the scratchpad properly. And in addition to the
scratchpad RAM, you can lock individual ways in the data cache to turn them into
64-byte blocks of scratchpad RAM. But both those topics are beyond the scope of
this lesson.

PS2Cache
So armed with our new understanding of how the cache operates, let’s see how
PS2Cache simulates this behavior.

Analysis
Open Examples\PS2Cache\Anal\ps2cache_anal.mcp (by default located in
C:\Program Files\Metrowerks\ATtaCK for PS2\). Within that, open
ps2cache_anal.c.

Once we’re past the boilerplate, the first thing we see is a way_t structure. This is
the data structure that simulates a single way. We described each way as holding
the address, a bit-flag for whether it was used recently and 64 bytes of data. Well,
we’re just concerned with the cache’s overall behavior—we’re not actually
caching anything—so we don’t have the 64 bytes of data. But we’ve got the
address, called pfn_v, and the LRF bit-flag, r. (The labels make sense if you read
the hardware documentation for the cache. Don’t try to understand them right
now.)

In addition, there’s the aforementioned dirty-flag bit for the data cache, as well as
a bit to indicate whether a way is locked. The dirty flag is used for simulating
writebacks; the locked flag is ignored, since this version of the tool doesn’t
simulate cache locking. Both flags are ignored for the instruction cache, of course,
but for convenience and clarity we use the same way structure for each cache.

These structures are grouped together into a two-element array, which then
becomes the line_t structure. The caches themselves, ICache and DCache, are
arrays of these structures (with 128 and 64 elements respectively).

Next we’ve got the usual stuff any analysis tool needs: a pointer to a results
buffer, and the same countdown and enable variables that we saw in PS2Counter
back in Lesson 05. If you don’t remember that program’s details, you should look
there for more information.

The Initialize() function works as advertised, setting up the variables and
clearing both cache arrays. Notice that pfn_v is set to 1. Pfn_v actually holds the
address shifted left one bit. The bottommost bit is zero if the address is valid—
i.e., if the way is filled with data—or 1 if the way is empty. The actual PlayStation

Analysis Tools Construction Kit 07-177

2 cache uses a very similar but not identical mechanism, which we don’t have to
worry about—this is a perfectly fine simulation of that system.

The Enable() and Disable() routines are cut-and-paste from PS2Counter. The
important thing to remember is that our analysis routines will check the boolean
variable Collect; if that is false, then we don’t gather any data.

This is the last I’m going to talk about Collect; you’ll see it in every other
routine, but I’m going to act as though it’s always true. Let me just say this: The
cache simulation runs all the time, regardless of Collect, as it must to be
accurate. Collect just determines whether we’re actually going to measure the
results of the simulation this frame.

DWrite(), DRead() and IRef() simulate the behavior of data writes, data reads
and instruction reads, respectively. Let’s look at them in the reverse order, since
that’s actually how they make the most sense.

IRef()

This routine receives a procedure ID (for indexing the results buffer), the address
of the first referenced instruction shifted right six bits, and the number of
instructions that will be referenced in this way. Normally that number is 16, but if
a basic block ends before the end of the 16-instruction way, the number will be
less.

As promised, the ICache array is indexed by shifting the referenced address right
six bits and ANDing it against 127 (0x7F). The instrumentation tool handles the
shift-right for us, so all we need to do is the AND.

The “tag” is the address, stored in the format used by the cache itself. Each cache
way stores not the full mapped address, but just that address’s page frame
number. (Page frame numbers are abbreviated PFN. Our way structure holds the
PFN, combined with the “valid flag” bit, in the structure pfn_v. I told you the
name made sense!)

Page frame numbers are addresses shifted right 12 bits. The address has already
been shifted right 6 bits, so we just need to shift it another six bits to get the PFN.
To turn it into a value suitable for storing in pfn_v, we then shift it left one bit—
remember, a way is valid if pfn_v’s lowermost bit is zero.

Now we get the cache line for this index, and check both that line’s ways to see
whether either one is a) valid and b) maps the referenced address. If so, we
increment this procedure’s “referenced instruction” counter by the number of
instructions in this way.

If not, though, things get interesting. First, we log a miss, and increment the
reference counter anyway—after all, the instructions get referenced regardless of
whether the cache misses, it just takes longer.

Now we need to figure out which cache way will get filled. The confusing
statement !((pline->w[0].pfn_v | pline->w[1].pfn_v) & 1) basically
evaluates as 1 if the bottommost bits of both ways’ pfn_v members are 0, or 0
otherwise. That is, if both ways are valid, then we have to choose between them

Analysis Tools Construction Kit 07-178

based on LRF flags. If only one is valid, however, then the non-valid way gets
filled.

If both ways are valid, then we XOR the two LRF flags. This is exactly how the
hardware does it. A way’s LRF flag gets inverted whenever that way is filled. The
upshot of all this, which you can readily work out for yourself if you wish, is that
ways get filled in the following order: 0, then 1, then overwrite 0, then overwrite
1, and so forth.

Next, the r bit (the LRF flag) gets XORed against 1, which inverts it as we just
saw. Finally, the tag gets stored in the way to indicate that this way is now filled
with that particular address.

The data cache uses two functions, one to simulate reads and the other writes.

DRead()

The data cache works like the instruction cache, except that it can be both read
and written, and has only 64 lines. So, not DRead() works just like IRef(),
except that it makes provision for writeback events, and it indexes the 64-element
DCache array.

Another difference is that we have to shift the address right six bits (which is what
SZWAY_LOG2 is defined as) ourselves to get the index, and 12 bits to get the PFN.
This is because we get this address from ATtaCK’s ATCK_EFFADDR dynamic
argument, and there’s no way to tell ATtaCK to shift the value right six bits for
us. This will become clear when we look at the instrumentation code.

If either way matches our tag, we chalk up a data read without a miss and
continue. Otherwise, we chalk up the read and the miss, and then simulate the
cache-fill behavior: Figure out which way is going to be filled, then flip its LRF
bit and store the tag. Since this cache is writable, we have to check to see whether
the way is dirty. If it is, then we log a writeback event. In either case, it’s not dirty
anymore, so we clear the dirty bit.

You might be wondering why this function doesn’t look more like IRef().
Frankly, I wonder that too—there’s no actual difference in the result of the two
functions, but IRef() is written in a clunkier form. I guess it was written first and
never got cleaned up.

DWrite()

Fortunately, DWrite() looks exactly like DRead(), with one exception: On a
cache hit, we mark the specified way as dirty, to reflect the results of the write
operation.

And that’s the cache simulator! Next we’ll look at the instrumentation code.

Instrumentation
Most of the instrumentation discussion in PS2Counter applies here, too, because
the two tools are very similar. They differ in the innermost loops, of course.

Analysis Tools Construction Kit 07-179

The first instruction in each basic block, and every 16th instruction thereafter, gets
instrumented with a call to IRef(). Remember that there are 16 instructions in a
cache way. The instrumentation call passes the procedure ID, the instruction’s
address shifted right six bits, and the number of instructions to load into this
line—either 16 or the number remaining in the basic block, whichever is lower.

If an instruction is a load, then it gets instrumented with a call to DRead(). If the
instruction is a store, then it gets instrumented with a call to DWrite(). Both
routines take the procedure ID and the dynamic argument ATCK_EFFADDR. As
discussed, there’s no way to shift this argument right six bits here in the
instrumentation tool, so we have to let the analysis routine do that (at the cost of a
few run-time cycles).

If the instruction has the CACHE opcode, it’s one of the special EE instructions that
manipulate the cache—for instance, this is how cache lines are locked. This
version of the tool doesn’t simulate cache locking, and truth be told it’s an
extremely advanced procedure. If you need to work with cache locking, then you
understand it well enough to modify this tool yourself!

And that’s it for instrumentation.

Download, Execution and Output
This really does work just like PS2Counter, so refer there for more information.
As with that tool, this one only gathers a single frame of data at a time. Unlike
that tool, though, the analysis code still has plenty of work to do even when not
collecting data—otherwise the cache simulation would become invalid.

Ironically, the cache simulation instrumentation wrecks the application’s own
cache performance. So what’s being simulated is how the cache would be
behaving, if only there weren’t all these function calls every 16 instructions and at
every load and store. When you try out this tool, you’ll see that it significantly
degrades your application’s performance. This tool is not one that you’ll be
running all the time!

At any rate, when the user hits ENTER, a single frame of data is collected and
reported. By now you can figure out what’s going on here without my help. The
typical output looks like this:

Analysis Tools Construction Kit 07-180

Fig. 07-03: PS2Cache Output

Interpretation
This one’s simple. “Cache misses are bad, m’kay?” Some cache misses are
necessary, but that shouldn’t stop you from doing everything in your power to
avoid all of them.

You avoid I$ misses by tightening your code so that your key loops span as few
cache lines as possible. In the Blow sample program analyzed above, for instance,
you’ll note that there are no I$ misses—the entire render loop fits within the
cache. So the more compact your code the better, which is just another good
reason to move operations out to the vector units rather than handling them in the
MIPS core. The other way to really squeeze your code down is to move your tight
inner loops into assembly, and use inlining to eliminate branches.

Beyond that, watch for coincidences where your code happens to jump among
routines separated by 8K—you’ll wind up missing the cache because of the way
ways share lines, even if the code in question is smaller than 16K. This is
something that a special-purpose ATtaCK tool could detect, even just using static
analysis. See “Improvement,” below, for a discussion of that idea.

As for D$ misses, the only way to avoid them is to organize your data or your
algorithms in a cache-friendly manner. Let’s say you have an AI pathfinding
routine that frequently scans your map data, which is stored as a 2D array with
rows more than 64 bytes across. Traversing this grid vertically will cause a cache
miss every row. Instead, organize the map into chunks, where a particular cell’s
neighbors are kept within 64 bytes of that cell. Or move the map to scratchpad
RAM—that’s exactly the kind of thing it’s there for.

Improvement
As mentioned, this tool doesn’t simulate cache locking. It’s also not smart enough
to tell that an address is in the scratchpad and thus won’t be cached. The former is
hard to fix; the latter is easy—just test the address to see whether it’s in the range
0x70000000 to 0x70003FFF. In either case, if you need this feature, you

Analysis Tools Construction Kit 07-181

understand how to add it—ATtaCK is certainly much easier than PlayStation 2
optimization!

As mentioned above, coincidence can cause you to blow your instruction cache
inadvertently. It wouldn’t be hard to write a static tool to scan for this. For each
procedure, determine the range of addresses it calls, shifting them right by six bits
and ANDing them with 127 as the cache does. Then look for any function that
calls another with overlapping cache lines. Simply by rearranging the order of
functions in your C source file, you can probably break up these overlapping
pairs.

If you’re really seriously using PS2Cache, you need a more detailed output than it
currently supports. Right now it gives a good overview of the entire application,
at a per-procedure level. A more detailed version would allow you to specify a list
of procedures for which to provide an instruction-level profile, so that you know
exactly which instructions are blowing the cache. Again, if you need it, then
you’re advanced enough to write it yourself.

That’s All, Folks!
And with that, we’ve reached the end of the course. I hope I’ve given you the
confidence and inspiration to write your own ATtaCK tools. These sample tools
are nice, and give you a good head start on some common analysis tasks, but you
won’t tap into the real power of ATtaCK until you start developing custom tools
that target your specific code problems.

Thanks for coming, and good luck with your programs!

How To Contact Metrowerks

U.S.A. and International

Metrowerks Corporation
9801 Metric Blvd., Suite #100
Austin, TX 78758
U.S.A.

World Wide Web http://www.metrowerks.com/games

Games Support Team ps2_support@metrowerks.com

Sales, Marketing, & Licensing games@metrowerks.com

Phone 800-377-5416

Fax 512-997-4901

Analysis Tools Construction Kit 07-182

Quiz Answer Key

Quiz Lesson 01

1. The lessons are the most important part of this course. What’s the second
most important part of the course?

B The example programs. Correct. The second most important part of the course is the
wide range of sample programs, which demonstrate practical solutions to ATtaCK
problems.

2. True or false: Regression testing is the most common method of detecting
code errors.

B False. Correct. Regression testing is very powerful, but many programs, especially
games, aren’t suited for it without substantial work. The most common method of
detecting code errors is human testing (playtesting). You can develop ATtaCK tools
to assist these testers, in addition to writing tools for programmers.

3. What’s the difference between using ATtaCK and simply writing analysis
code directly into your program, for instance by using asserts?

B ATtaCK works with the binary image rather than the source code. Correct. The
difference is that ATtaCK can add analysis code to your program’s binary executable
image, without disrupting your source files or requiring you to recompile.

4. Which team member should develop ATtaCK tools, and why?
C A senior programmer, because analysis and optimization are critical. Correct. Code

analysis is an important task that deserves the attention of senior programmers.

5. True or false: ATtaCK analysis code is written and compiled just like any
other PlayStation 2 program.

B False. Correct. ATtaCK analysis code is substantially different from normal
PlayStation 2 applications. For example, it uses different project settings, it can’t
access the normal Sony libraries, and it doesn’t have a main() function.

Quiz Lesson 02

1. How many instructions are in each basic block?
D. None of the above. Correct. A basic block consists of a sequence of instructions that

do not change the flow of control—in other words, that do not contain any branches
or calls. One block could contain anywhere from one to millions of instructions.

2. When ATtaCK iterates through all the procedures in an image, which of
the following will appear in the list?

C. Both. Correct. ATtaCK searches the program for function calls, but also reads the
symbol table. Thus, procedures that are never called show up as well as procedures
that do not have symbols.

3. Which of the following is most likely to be a legitimate ATtaCK function?

Analysis Tools Construction Kit 07-183

B. atck_iprog_close(atck_iprog_t*). Correct. This function begins with
atck_, has an object name as its second word, and takes a handle to that object as its
first argument. It could easily be legitimate—in fact, it is!

4. You have two instruction-object handles, X and Y. Comparing them, you
learn that X is less than Y. What do you now know about these two
instructions?

D. X and Y represent two different instructions. Correct. ATtaCK’s handle management
is completely opaque; there is nothing you can learn from the relative values of two
handles. However, if X is less than Y, then X and Y are not equal. Since all handles
to the same object will be the same, you know that X and Y are not the same
instruction.

5. True or false: You cannot write ATtaCK instrumentation tools in C++.
B. False. Correct. Instrumentation tools can be written in C++, and indeed there are

many advantages to doing so. Analysis code cannot be written in C++.

6. You can use a procedure handle to create an iterator for three of these
object types. Which one can not be iterated across in a procedure?

A. Instructions. Correct. Procedures can create iterators for their basic blocks, entry
points and call sites. Only basic blocks can create instruction iterators.

7. True or false: The last instruction in a basic block will always be some
kind of branch, call or return.

B. False. Correct. On the EE, the instruction immediately following a branch executes
while the branch is being resolved. The second-to-last instruction in a basic block
will always be some kind of branch, but the last instruction could be almost
anything.

8. Which of the following objects needs to be released after use?
B. Image. Correct. You only need to release image objects, using

atck_img_release() or atck_img_write().

9. Of the following, which can appear multiple times within a basic block?
D. None of the above. Correct. Basic blocks are defined as sequences of instructions

that are always executed together. Thus, they are only entered at the beginning, and
can only be exited at the end.

10. True or false: Before ending your ATtaCK session, you must free any
strings returned from methods like atck_appname().

B. False. Correct. The strings returned from ATtaCK methods last as long as their
parent objects do—for programs, that’s until the program is closed, while for
everything else that’s until the containing image is released. In no case should you
try to free these pointers yourself.

Pop Quiz Lesson 03
BeforeProc(06)

BeforeEnt(0600)

BeforeBB(0600)

BeforeInst(060000) / AfterInst(060000)

Analysis Tools Construction Kit 07-184

BeforeInst(060001) / AfterInst(060001)

BeforeInst(060002) / AfterInst(060002)

AfterBB(0600)

BeforeBB(0601)

Entry point instrumentation only gets called if the procedure is actually entered
there.

BeforeInst(060100) / AfterInst(060100)

BeforeInst(060101) / AfterInst(060101)

BeforeInst(060102) / AfterInst(060102)

BeforeInst(060103) / AfterInst(060103)

BeforeInst(060104) / AfterInst(060104)

BeforeInst(060105) / AfterInst(060105)

The call instruction finishes before the call itself takes place.

BeforeInst(060106) / AfterInst(060106)

The instruction in the delay slot also happens before the call.

AfterBB(0601)

A basic-block ends when its last instruction ends, before the call takes place.

BeforeCall(0600)

BeforeProc(1E)

AfterProc(1E)

AfterCall(0600)

BeforeBB(0602)

BeforeInst(060200) / AfterInst(060200)

BeforeInst(060201) / AfterInst(060201)

BeforeInst(060202) / AfterInst(060202)

AfterBB(0602)

AfterProc(06)

Quiz Lesson 03

1. Which of the following is an advantage that sampling has over
instrumentation?

B. Convenience. Correct. Sampling is more convenient, because the target application
doesn’t need to be modified at all. However, sampling is generally slower, less
accurate and less selective.

2. True or false: Instrumentation can be added both before and after entry
points.

B. False. Correct. Instrumentation may only be added before an entry point.

Analysis Tools Construction Kit 07-185

3. True or false: Calls added to the same object execute in the order they
were added.

A. True. Correct. Calls added to the same location through two different objects, on the
other hand, execute “bottom up”—for example, a call before an entry point happens
before any calls before the basic block that entry point begins.

4. True or false: Instrumentation added after a call site is guaranteed to be
executed.

B. False. Correct. Some procedures never return to the caller. Use
atck_call_returns() to check for these procedures.

5. Which of the following lines of code is not required in ATtaCK analysis
code?

B. #include <atcktargps2.h>. Correct. This header file contains constants
needed on the PlayStation 2. Many analysis routines won’t need these constants at
all.

6. True or false: Analysis routines are unable to communicate with the host
directly.

A. True. Correct. The only way analysis routines can send data to the host is by writing it
to memory, which the host can then read.

7. Which of the following is a valid return type for an analysis routine?

C. void. Correct. Analysis routines are always void functions.

8. True or false: You have to be careful when instrumenting branches on the
PlayStation 2, to avoid displacing the instruction in the “branch delay”slot.

B. False. Correct. ATtaCK handles all implementation details like this for you—you
never have to worry about instrumentation code breaking your program.

Quiz Lesson 04

1. Where can you find the file referred to by <syscfg>?

C. The directory containing atck.lib. Correct. The default system configuration file
syscfg.txt is found in the lib\ps2 subdirectory, which also contains the
ATtaCK library files.

2. True or false: An ATtaCK tool can monitor the status of the target system
without using an event handler.

A. True. Correct. While event handlers are probably the best way to monitor the target,
you can also poll it using atck_status().

3. True or false: The event-handler arguments devID and progID must be
pointers to structures.

B. False. Correct. ATtaCK does nothing with these arguments other than remember
them and pass them to the event handler. They can contain any value at all, as long
as it can be cast into a void*.

4. True or false: The ATtaCK config-file system only lets you read, not write, files.

A. True. Correct. However, the config file format is simple text, so you can easily create
your own functions to write out these files.

Analysis Tools Construction Kit 07-186

5. True or false: The only way to create a new iprog handle is by calling
atck_iopen().

B. False. Correct. You also get a new iprog handle back from
atck_finish_write().

6. Which of the following is not an option expected by atck_connect()?

D. devID. Correct. devID is an argument expected by atck_connect(), while
the rest are options that atck_connect() expects to find in the configuration file.

7. Which of the following functions may not be called from within an event
handler?

A. atck_stop(). Correct. Event handlers may not call functions that will themselves
generate events, such as atck_wait() and atck_stop(). atck_kill() and
atck_continue(), although they affect the target’s execution, do not generate
events.

8. When an application has locked a mutex using atcktarg_lock(),
how can the application be halted or interrupted?

C. By the host stopping the target with atck_kill(). Correct. When an application
has locked a mutex, it may not be halted or interrupted except by atck_kill().

9. True or false: Every member in an ATtaCK structure declaration needs to be named.

B. False. Correct. ATtaCK only cares about the structure’s layout, and so ATtaCK
declarations do not permit you to name members.

10. True or false: You are not required to use the special ATtaCK memory-
allocation methods such as atck_malloc().

A. True. Correct. These methods exist for your convenience only and are purely
optional. However, if you allocate memory with them, you must free that memory
with atck_free(), not the normal C runtime free() function.

Quiz 05: Designing Analysis Tools

1. True or false: The only purpose of analysis tools is optimization.
B. False. Correct. Analysis tools are useful for all aspects of debugging, of which

optimization is just one part.

2. True or false: Changing your algorithm is often the best way to fix not
only performance problems but bugs of all kinds.

A. True. Correct. You should try to fix bugs at as high a level as possible.

3. Which of the following is always feature of a well-designed ATtaCK tool?
C. Simplicity. Correct. ATtaCK tools should be focused, lightweight and simple.

4. True or false: The best place to analyze your data is on the target, in the
analysis routines.

B. False. Correct. Notwithstanding the name, analysis routines should be as streamlined
as possible, only gathering the minimum data required. Put the code that actually
processes the data on the host.

Analysis Tools Construction Kit 07-187

5. True or false: It’s easiest and safest for analysis routines to read registers
directly, rather than relying on ATtaCK to pass them in.

B. False. Correct. Not only is it easier to use ATtaCK to read the registers, but it also
ensures that the value doesn’t change in between the instrumented instruction and the
analysis routine.

6. Which of the following is a valid ATtaCK analysis-routine declaration on
the PlayStation 2?

A. “GetTarget(valaddr)” Correct. Keywords such as regv64 and valaddr warn
ATtaCK to expect a dynamic argument flag. The instrumentation call itself tells
ATtaCK which dynamic arguments to use.

7. Which of the following is a valid place to use ATCK_EFFADDR?
C. atck_inst_callbefore(). Correct. ATCK_EFFADDR is only valid with

instrumentation added before an instruction using atck_inst_callbefore().

8. True or false: You must always use atck_inst_isallowed() to verify that a
dynamic argument is safe before trying to instrument an instruction with it.

B. False. Correct. Many dynamic arguments, such as registers, are always safe with
instructions and never need to be checked.

9. True or false: An address is all that’s required to completely identify any
instruction in a program.

B. False. Correct. Since each image has its own address space, you must have both an
address and an image ID to identify an instruction.

10. Which of the following does a MIPS application (that is, a PlayStation 2
game) store on the stack?

B. Local variables. Correct. Function arguments and return addresses go in special
registers, while local variables go on the stack.

