I\

metrowerks:

Software Starts Here

CopyrigntO 2001 Metrowerks Corp. All Rights Reserved

Analysis Tools Construction Kit

Lesson 01: Introduction and Overview 01-1
Why ATtaCK ? 01-1
CourseMaterials 01-2
Analyzing Applications 01-4
The Analysis Tools Construction Kit 01-6
The ATtaCK Process 01-7
Developing ATtaCK Tools 01-10
Creating Stationery 01-11
BareBones: TheWorld’'s Least-Useful ATtaCK Tool 01-18
L esson 01 Quiz 01-22

Lesson 02: Examining an Application 02-23
Anatomy of an Application 02-23
ATtaCK Types: Objects 02-26
ATtaCK Types. Data Types 02-29
Startup and Shutdown 02-31
Navigating with Iterators 02-33
Finding Code Structures 02-36
Querying Code Attributes 02-40
A Static Analysis Tool 02-47
L esson 02 Assignment 02-53
Lesson 02 Quiz 02-54

Lesson 03: Instrumenting an Application 03-56
I nstrumentation Concepts 03-56
Instrumentation Calls 03-58
Instrumenting an Application 03-60
I nstrumentation Sequencing 03-63
I nstrumentation Sequencing—Instructions 03-65
Creating Analysis Code 03-67
Declaring Analysis Code 03-69

A Minimal ATtaCK Tool 03-71

ProcCount: Navigation and Instrumentation 03-72

ProcCount: Analysisand Output 03-74
L esson 03 Assignment 03-76
L esson 03 Quiz 03-78
Lesson 04: Running and Analyzing an Application 04-79
Execution Concepts 04-79
Executing an Application 04-81
Configuration Objects 04-83
ATtaCK Events 04-86
Controlling the Application 04-88
Critical Sections 04-90
Communicating with the Application 04-93
Arraysand Structures 04-94
A Simple Profiler 04-99
SimpProf: Navigation 04-100
SimpProf: Instrumentation and Analysis 04-101
SimpProf: Execution and Output 04-103
L esson 04 Assignment 04-105
L esson 04 Quiz 04-107
Lesson 05: Designing Analysis Tools 05-109
The Road Ahead 05-109
Principles of Code Analysis 05-109
Designing Analysis Tools 05-112
Dynamic Arguments 05-114
Working with Registers 05-118
M easuring Performance Counter Events 05-121
PS2Counter: Analysis Code 05-124
PS2Counter: Instrumentation 05-127
PS2Counter: Navigation, Execution and Output 05-129
L esson 05 Assignment 05-131
L esson 05 Quiz 05-133

Lesson 06: Profiling Applications 06-135

Verifying Code Compliance 06-135

TRC: Initialization and Navigation 06-136
TRC: Analysisand Reporting 06-139
Analyzing Branch Prediction 06-141
Branch: Improvement 06-143
BranchPred: Analysis 06-146
L ooking for Inlining Opportunities 06-149
Inliner: Instrumenation and Analysis 06-151
Inliner: Output, Interpretation and | mprovements 06-154
Detecting L oad Delays 06-157
Lesson 07: Analyzing Memory and Cache Usage 07-162
Catching Misaligned Memory Accesses 07-162
Hunting Down Memory L eaks 07-164
Plumber: Execution and Output 07-167
Monitoring Stack Depth 07-170
Analyzing Cache Usage 07-174
PS2Cache 07-176
How To Contact Metrowerks 07-181

Quiz Answer Key 07-182

Lesson 01: Introduction and Overview

Why ATtaCK?

Why You Need This Course

Metrowerks Analyss Tools Congruction Kit, ATtaCK, is a powerful new framework
for developing custom profiling and debugging tools. The robust APl enables you to
develop anything from a disassembler to a cache smulator, while the smple
programming modd lets you write quick "throw-away" tools tailored to answer specific
guestions. This course will cover both ends of that spectrum, teaching you how to write
sophisticated, generd-purpose andyzers as wel as smple, one-off tools.

Y ou should take this course if you are planning on using ATtaCK to analyze your
PlayStation2 gpplication’s performance. Y ou will get the most out of this course if you
have experience using profiling tools on other platforms, plus an extensve knowledge of
EE assembly programming. However, part of the power of ATtaCK isits smplicity—
you don’'t have to be an expert to use it. Aslong as you're comfortable with C
programming, you can learn how to create ATtaCK tools.

There are seven lessonsin this course. The first lesson introduces the concepts behind
ATtaCK, waks you through itsingdlation and configuration, and generdly givesyou
the "big picture.” The next four lessons cover the complete ATtaCK AP, from opening
an goplication al the way to running it on the target system. Thefind two lessons are
labs, each examining four "red-world" analysis tools for you to adopt, adapt and
improve.

How to Take This Course

In an idea world, people are congtantly profiling and optimizing their applications as
they program. In the real world, most people don’t bother to profile their applications
until they hit a performance problem, a which point they need answersright away. If
you'rein that Situation, take heart: Y ou' re the exact person I’ ve designed this course for.

By dedicating yoursdf full-time to the subject, you can become proficient in ATtaCK in
just afew days, and can masgter it within aweek. In a classroom environment with alive
teacher, each lesson should take half a day. Online classes tend to go at adower pace, but
even then, you can cover dl seven lessons within a single work-week without quite
abandoning dl your other responghilities.

And trust me, that week will be well spent. | strongly recommend doing al the classesin
this course in sequence, in as short atimeframe as possible.

Everything you need to learn isin this course. Reading the documentation aswell is
certainly agood idea, but it's not necessary. There are, of course, afew places where |
cop out and point you to the docs, rather than copy six pages of tables into the course. But

Analysis Tools Construction Kit 01-1

for the most part, you'll only need to crack the manua for obscure details, precise
definitions or other background information.

Prerequisites

Obvioudy, to get the full benefit from this course you'll need the ATtaCK Framework

for PlayStation 2. That in turn requires Metrowerks CodeWarrior Professiona for
Windows/x86 (R6 or higher) and Metrowerks CodeWarrior for Sony PlayStation 2 (R2.5
or higher). ATtaCK lets you get alot of information out of your gpplication without ever
actudly running the program, but if you want to try dl the sample programsin the course
you'll need access to a T10000.

To take this course, you should:
Be comfortable with C programming
Be familiar with the use of the CodeWarrior IDE
Be familiar with PS2 devel opment
To get the maximum benefit out of the course, you should aso:

Be comfortable with analyss tools on other platforms, such asVTune for Intel
x86

Be familiar with EE assembly language
Have a PS2 gpplication that you want to profile

Course Materials

Lessons

If you're reading this, you obvioudy know where the lessons are. Y ou can proceed at
your own pace through the course—you' ve got full accessto dl the lessons. If you skip
ahead, though, be prepared to back up and review, because | generdly only cover a
subject once!

Examples

After the lessons themsalves, the examples are the most important part of this course. The
example programs are dl usable astoolsin thelr own right, and they make great starting
points for building your own custom tools.

Many of the example programs are included as part of your ATtaCK ingdlation. (If you
haven't ingalled ATtaCK yet, don’t worry—that’s coming later in this lesson.) The other
examples can be found in the "supplementa materid™ folder.

Analysis Tools Construction Kit 01-2

Documentation

Online documentation should be part of your ATtaCK distribution. However, this course
is designed to give you a basic understanding of ATtaCK for the PlayStation 2 without
reading the documentation at al. We |l cover every function in the entire AP, but not in
the level of detall the docs give—ingtead, we'll just look at how the functions are usually
used. If you find yoursdf working on advanced tools later on, you'll probably want to
read the docs to pick up the subtleties I’ m skipping.

Also, note that this course is written specificaly for PlayStation 2. When ATtaCK
becomes available for another platform, the course will most likely be adapted to that
platform. If not, then you can gill use this course—most of ATtaCK is platform-
independent, after al. Just be sure to read the platform-specific AP docs dongside the
lessons, so that you can see where they diverge.

Quizzes

Thefird five lessons indude interactive multiple-choice tests a the end. These are
"graded,” in the sense that there are right answers you' re expected to give. Aim for a
perfect score—if you get a question wrong, it probably indicates atopic you should look
a agan.

Exercises

Unlike quizzes, the exercises aren't graded. They're sample problems, red-world (or a
least redigtic) Stuations you might face. As such, they don't redly have "right” answers.
Instead, | explain how | would approach the problem, which can give you ideas for your
own tools.

Only Lessons 02 through 05 have exercises. There s not much point in having exercises
in this lesson—we're just getting Sarted, so you' re not ready to tackle rea-world
problems yet. The last two lessons, on the other hand, arelabs, in which we Il examine
many sample programs. In a sense, those lessons are nothing but exercises!

Instructor Interaction

Depending on when you take the course, you may have the opportunity for live chets,
access to web message boards, email Q and A, and other indructor interaction. If thisis
available, the main course website will give the schedule and links. If not, though, don't
worry—the course has been written to stand aone.

By the way, the person writing this course is Stephen Beeman. While | hope to aso teach
this course, the person teaching the course may be someone else entirely. Please don't
give him or her ahard time over my lessond

Analysis Tools Construction Kit 01-3

Course Conventions

Many lessons have notes, text running in an indented paragraph. Notes are information
tangentia to the main text, but till useful or a least interesting. Y ou should read the
notes after you finish reading the rest of the lesson, or when the text says " see notes."

Oh, and literdl code and other text that should be typed as written follows the standard
practice of appearing in Courier, | i ke this.

Analyzing Applications

Andysisis defined as"an examination of acomplex, its dements, and their relations.”
That pretty much sums up therole of andydsin programming: an examindion of an
goplication, its functions and their relationships. Specificaly, code andyss answers two
questions. "Is everything working as expected? If not, why not?' Thefirg question is
detection. The second isdiagnosis.

Detection

The most common method of detection is human testing: Smply having a human run the
program and see what breaks. A more sophisticated method is regression testing, where a
program’ s output is automatically compared to expected output. However, that is not so
essy for game programming: Most problems are aesthetic, and require a playtester to
Spot.

Relying so much on human-monitored testing, detection often doesn't use any tools. That
however, isamistake: People don't use tools because they’ re unaware of what's
available, because for the longest time there smply weren't good andysis tools avallable
for game programming and especidly for game platforms.

However, computer assistance can greetly amplify the power of human testing. In some
cases, it can replace the need for testing.

Regression testing we' ve dready mentioned. It's hard to do with games, but still possible.
For example, physicsroutines, Al routines and Smilar code often produce output that can
be predicted (either determinigticaly or gatisticaly). This alows aregresson andyss

tool to compare the program’ s output with the expected output; if they don’t match, then
you' ve detected a problem.

Unfortunatdly, while a powerful technique, thisdmaost aways requires custom tools.
More to the point, it dmost dways requires specia changes to the gpplication, breaking
subsystems out into standa one testbeds and so forth. So we won't cover this subject
much in this course, but you should keep it in mind—you might figure out away to apply
the ideas to your code.

More relevant are bounds checkers and memory-leak detectors. In away, these are
regression analysis tools too. Bounds checkers test the app againgt the expected behavior
that arrays bounds won't be overstepped and memory won't be trashed. Leak detectors

Analysis Tools Construction Kit 01-4

test for the expectation that al the memory alocated gets rel eased before the end of the
program.

Code vaidation tools operate the same way. They test the gpp against the expected
behavior that no illegal parameters get passed to functions, or no illegad API routines get
called.

One code validation tool that works on source code is cdled lint. | strongly recommend
using this program, which is avalable in severd versons... some freeware, some not.
This program looks for source errors, ranging from obvious, such assaying "if (x =3)"
rather than "if (x == 3)", to subtle errors, such as misplaced semicolons and the like.

But code vdidation can work on compiled code, too. One of the programswe will look at
looks for trashed registers. If you write in assembly, this can be handy. If you writein
C/C++, you might not see much use for this, but it can catch compiler bugs. I’ ve found
three genuine compiler errorsin my programming career (never in Metrowerks

compilers, | must add!), and in each case atoal like this would have saved me days of
searching.

Detection tools can aso help human testers do their jobs. A code coverage toal like
Visud Coverage, for ingance, smply checks to see what functions (or what lines within
functions) have been executed. This lets the tester know when every part of the gpp has
been exercised, so that he can fed confident he's given the app a thorough test.

Diagnosis
If detection is playtesting, then diagnosisis debugging: Once we know a problem exigts,

we track down the cause. Of course, the line between detection and debugging can be
fuzzy, because often when we detect a problem we diagnose it a the same time.

For ingtance, you might put an assert in your code o that, when afunction falls, it
generates an error message. That's detection. If that error message contained information
about what the program was trying to do—that is, if it contained diagnostic
information—then the assert would be adiagnostic tool as well.

Diagnosis presents a specia chalenge with large, complicated programs like games,
because you cannot alway's recreate the exact problem. Detection tools are thus very
important: Every time the problem occurs, the tool will give information to the playtester,
and (hopefully!) the playtester notesit for you. Diagnostic tools that can be used quickly,
or even dl the time, are dso important—if the playtester can immediately gather some
diagnodtic information, that makes intermittent problems much easer to find and fix.

But generdly, diagnosisis a separate process performed by the programmer with separate
tools. A debugger isthe most familiar diagnostic tool, for instance.

Another diagnostic tool is amemory alocation tracker. A leak detector just tells you that
memory has lesked, or might tell you that an alocation of 16 bytes leaked. An alocation

tracker tells you "the memory alocated on line 146 of gameloop.c never gets released.”
Armed with that kind of info, fixing the problem is usudly pretty essy.

Analysis Tools Construction Kit 01-5

A profiler is another diagnogtic tool. Speed problems are, after dll, just another kind of
bug. A good profiler diagnoses these bugs, telling you why—or at least where—they’re

happening.
This discusson is by no means exhaugtive. The point isto get you thinking about tools.

Game developers are used to making do with poor tools and, in my experience, need
some reeducation as we enter the age of better toals.

The Analysis Tools Construction Kit

Okay, now that I’ ve told you stuff you probably aready knew, we' re going to get to the
suff you don’ t know.

What is ATtaCK?

ATtaCK, the Analyss Tools Congtruction Kit, is an application framework to creste
custom anadysis tools. The previous page gave you a pretty good idea of what analyss
tools are, so now dl you need to know iswhat an gpplication framework is.

A framework issmply alibrary of code that provides a specific set of related festures. If
the features supported by the framework include facilities for initidizing, quitting and
other gpplicationspecific activities, you have an gpplication framework.

In this case, the ATtaCK framework provides functions not only for initidizing and
quitting, but also for loading and examining target applications, defining andys's code,
adding instrumentation cdls into the target, and controlling a remote devel opment
sysem.

What Does ATtaCK Do?

ATtaCK tools can be used for both detection and diagnosis. They perform analyss two
ways, by observing the gpplication run on the target platform and by smulating the
gpplication’s behavior.

Running on the target platform means adding anays's code. Asserts are analysis code—
code that doesn't contribute to your program, but smply gathers and reports data.
ATtaCK lets you add anaysis code without recompiling—you write and compile the
code separately, and then use ATtaCK (in a process cdled insrumentation) to insert that
code into the target application.

Simulating the target’ s behavior means looking at the code and figuring out what the

CPU will dowithit. You do thison atrivid levd al the time—when you look at your
source code and seethe line"x = x + 1," you know that the CPU is going to increment the
vaue of x by 1. ATtaCK does the same thing, just on abigger scae.

But in dl this discusson of what ATtaCK does, the important thing to remember is that
ATtaCK isa construction kit—it doesn’t do anything unlessyou tdl it to! To get the most
out of ATtaCK, you will have to design and build your own andysistools. This requires

Analysis Tools Construction Kit 01-6

you to understand not only the mechanics of ATtaCK, but also the principles of code
andyss and the specifics of your gpplication. In Lesson 05, we'll spend sometime
talking about this concept.

Thisisan unusud gpproach—most andysistools, including Metrowerks own
CodeWarrior Analysis Tools package—come ready-to-use, with generic interfaces able
to handle any application. The ATtaCK approach requires more effort on your part, but it
offers greater rewvards. ATtaCK can handle any analysis task, even ones unique to your
gpplication—and we al know how unique game code can be!

Another advantage is subtle but important. Other andyss tools have an interface that you
must learn. The interface for ATtaCK is essentialy C, which you aready know. You
know how to describe sequences of activity in C; ATtaCK does dl the work, so that
decription isdl you redly need to perform the andysis.

A "ready-to-use" tool with the power and flexibility of ATtaCK would certainly have to
incorporate some kind of scripting language to drive its behavior. Once you haveto learn
ascripting language, why not make that language C? And once you' re writing a program
in C, why not compile that program into a stand-aone tool thet you can give to your
programmers and playtesters? The ATtaCK approach truly rewards the effort.

And, truth be told, many andysis tasks are common across al gpplications, and for some
of those tasks we provide you with pre-built tools. ATtaCK comes with five tools itsdlf,
and this course includes five more. Best of dl, Snce these tools are built with ATtaCK
and we provide you the source code, you can adapt and extend them al you want.

And redlly, developing ATtaCK toolsis not that difficult—ajunior programmer can do it,
athough analysisisimportant enough thet it merits the atention of your team’s senior
coders. The ATtaCK framework does dmos dl the work for you. All you haveto dois
figure out what information you want to collect from your gpplication and write code to
do that.

Of course, with a seven-lesson course dedicated to the subject, ATtaCK may not seem
ample. But this one course will teach you how to use ATtaCK as adebugger, aprofiler, a
code-coverage tool, a code vaidation tool, a memory leak detector, and more. It's much
easer than learning six different toolsin aweek, none of which might be competible with
each other!

The ATtaCK Process

Thetypicd ATtaCK tool comprises two programs, an insrumentation tool and analyss
code. The ingrumentation tool is asmple Windows command-line program that opens a
target gpplication, examinesit, inserts insrumentation calls and runs the application on
the target system. The andysis code is alimited PlayStation 2 program that ATtaCK
merges with the target application; the insrumentation cals invoke functionsin the
analysis code to gather data.

Analysis Tools Construction Kit 01-7

Although every ATtaCK todl is different, each one hasto perform certain sepsin its
instrumentation tool and andys's code:

1.

Read in user options. At aminimum, the tool needs to know the name of the
target application. How you accomplish thisis completely up to you—you can
hard-code them if you fed likeit, but better practice isto read them in from the
commeand line.

Initialize an ATtaCK session. ATtaCK manages dl its resources using asesson
object. All your tool hasto do is cdl one smple function to create and initidize a
session; ATtaCK handlesthe rest invisibly. Initialization is covered in Lesson 02.

Open application. ATtaCK loads the gpplication in from the disk and prepares it
for andysis. If you're going to add insrumentation code, the tool will eventualy
create anew gpplication; the filename for that new program is specified here at
this step. The open function is covered in Lesson 02.

Step through code using iterators. Most analysis tools will need to process
every function in the target gpplication. Thisis done using iterators, specia

objects ATtaCK createsto let your tool step through every code element one at a
time. Code iteration is perhaps the most important concept in this entire course, o
we' ll be beating the subject to death in Lesson 02.

Declare analysis routines and data structur es. Andyss routines are functions
you write to gather data from the target application a run-time. Y our
ingrumentation tool will use ATtaCK to modify the target application to cdl

these routines, and s0 you must tell ATtaCK the names and definitions of the
routines. Likewise, you must declare to ATtaCK the layout of any data structures
that you want to pass back and forth to the analysis code. Analysis routines are
covered in Lesson 03; data structures are discussed in Lesson 04.

Add instrumentation callsand/or perform static analysis. Insrumentation
cdls are code inserted into the target application to gather data at run-time, and
are covered in Lesson 03. Static andlysis congsts of examining the gpplication
code directly, without running it, and is covered in Lesson 02. But redlly, this step
isthe entire point of ATtaCK, and one way or another all the remaining lessons
will cover it!

Write out or closethe application. Theinstrumentation calls added to the target
goplication create a new version of that application. Thisis saved to disk, either to
run later or into atemporary file to download and run immediately. If you're just
doing gatic anayds, you won't be writing anything; ingead you smply close the
application. Writing is covered in Lesson 03; closing is covered in Lesson 02.

Download and run ingrumented application. ATtaCK handlesall
communication with the target system, downloading and launching your
ingrumented application. Y ou have a small measure of interactive control from

the host—you can pause, resume or hdt the target—~but for the most part you just

Analysis Tools Construction Kit 01-8

10.

11.

12.

run your instrumented gpplication the way you' d run any other program on the
target system. We Il come back to thisin Lesson 04.

Analysis code gathers data in instrumented application. Asthe insrumented
gpplication runs on the target system, your originad code executes callsto the
analysis code added by ATtaCK. The andlysis code performs three " subtasks':

9A Allocate space for analysis data. The data your analyss code collects hasto
go somewhere until the host system isready to receive it. That somewhereis
memory on the target system, which the analyss code must dlocate
somehow. Usudly you dlow ATtaCK to handle this for you. We Il look at
this subject briefly in Lesson 03, and in more detail in Lesson 04.

9B Initialize analysis data. Once you' ve got a buffer dlocated for the data, you
need to initidize the data before collection begins. Y ou may adso want to re-
initidize the data. Again, there are waysto let ATtaCK handle thisfor you,
or you can do it by hand. Thisisaso covered in Lesson 04.

9C Gather analysis data. At its Smplest, andyses code just increments
counters. Since you want to keep your andysis code as lightweight as
possible, "smplest” is usudly how thingswind up being. Thisis covered in
Lesson 03, to the extent that you need me to teach you how to increment a
vaiable...

Read data from instrumented application. As the gpplication runs on the target
system, the instrumentation code you added captures data and tores it in a buffer
on the target. When you' ve compiled enough data for andlys's, you use ATtaCK
to read that buffer back into your andysistool. Thisis covered in Lesson 04.

Analyze and output results. At this point, you ve compiled a set of data about
the target application, by capturing data from a live gpplication and/or by
daticaly examining the application’s machine code. All that remainsisfor you to
andyze, store and display your results. The bad newsis, this is something
ATtaCK can't help you with. The good newsiis, hey, that’swhy you get paid the
big bucks. I've done my share of profiling and optimization over my dozen years
in the games business, and in Lessons 05 through 07, I'll share some of what I've
learned.

Close ATtaCK. Being agood citizen of the programming world, you dways free
what you' ve dlocated, destroy what you' ve created and otherwise clean up after
yourself. Right? ATtaCK makes this as easy as possible and we'll cover it in
Lesson 02.

Analysis Tools Construction Kit 01-9

Developing ATtaCK Tools

Installing ATtaCK

The first step toward developing ATtaCK toalsis, of course, to ingal it. Whether you
received ATtaCK by download or on a CD, the ingtallation package should have come
with ingtructions, so start with those.

Make a note of whatever folder you ingal ATtaCK into, because you'll need it often
through the rest of thislesson. By defaullt, thiswill be something like C: \ Pr ogr am
Fi | es\ Met rower ks\ ATt aCK for PS2.I'll refer toit as"your ATtaCK folder."

Once that’ s done, you need to make sure that your PATH environment variable is set
properly. ATtaCK usesthis varigble to search for at ck. dI I , which iswhere the ATtaCK
librarieslive. Thisfileisfound in thebi n\ ps2 subdirectory of your ATtaCK folder, so
you need to add the full path to that subdirectory to your PATH varigble.

Variable Mame; Path

Variable Yalue:

Figure 01-01: Setting the Search Path on Windows 2000

On Windows 98/Me, PATHISS&t in aut oexec. bat . On Windows 2000, thisvariableis
much harder to get to: Right-click on My Conput er and select Properti es... Then click
on the Advanced tab and hit Envi ronnent Vari abl es... Findly, sdect the Pat h varidble
and hit Edi t .

Using the CodeWarrior IDE

Each ATtaCK tool is composed of an instrumentation tool and a set of analysis code. The
indrumentation tool is a standard Windows gpplication built with any Windows C/C++
compiler (preferably CodeWarrior!), while the analysis code is alimited PlayStation 2
program that must be compiled with CodeWarrior for PlayStation 2.

Analysis Tools Construction Kit 01-10

If you're not familiar with the CodeWarrior for Windows IDE, there sa
CodeWarriorU.com course on the subject you should take. Go to
http://www.codewarrioru.com for more information.

Redly, though, if you need ATtaCK, then you' ve probably adready built a PlayStation 2
goplication usng CodeWarrior, so | fed pretty safe in assuming that you know how the
IDE works. Besides, it'sjust an IDE—I’m sure you' ve dedlt with these before.

Neverthdess, there are a number of project settings that have to be "just right” to make
ATtaCK work. Y ou might not have ever dedlt with some of these settings before, so that
is asubject we need to cover. Whilewe' re at it, we'll look at project stationery,
CodeWarrior's mechanism for setting up new projects with default settings.

Thisis very important for ATtaCK—because ATtaCK apps, especially the analysis code,
have some specid features, they require alot of changes from the norma project defaullts.
Stationery will let you make those changes just asingle time, then duplicate them in dl
your future projects. That's atremendous time-saver, so let’s go ahead and create
ATtaCK project stationery now.

Creating Stationery

Stationery isjust anorma project located in the Stationery folder below your
CodeWarrior ingtalation. Y ou cregte Stationery by cregting new projectsin the stationery
folder. Each new project, of course, isitself crested with Stationery, which we' |l specify.

Creating the Project

A single CodeWarrior project can have multiple targets. Normaly, each of these targets
isjust adifferent configuration of the program for one platform. For example, I'm sure
you're familiar with "debug” and "release’ builds.

However, CodeWarrior is designed for cross-platform development. Beyond just having
different settings, each target can use a different compiler and be built for a different
platform. Thisistremendoudy convenient for ATtaCK tool development, because it
means our instrumentation tool and analysis code can share the same project.

Open up CodeWarrior. Go to New... Select Enpty Pr oj ect . Give it aname—ATt aCK
Tool will do—and hit oK. It doesn’t matter where this project is, because once we're
finished creating the Stationery, we re going to moveit.

Creating the Folders

Use Explorer, File Manager or aplain old DOS prompt to go to the new folder containing
your project. Create the following subfolders:

I nst , which will hold the instrumentation tool
Anal , which will hold the analysis code

Analysis Tools Construction Kit 01-11

Shar ed, which will contain any project-specific include files shared between the
indrumentation tool and andys's code

And Bi n, which iswhere each target’ s output will be placed
Now go back to CodeWarrior.

Creating the Targets

All projects must have at least one target. We need two, so we' |l have to add one. From
the menu, sdlect Proj ect > Create Target ... Inthe didog box that comes up type
Anal ysi s Code and hit ENTER.

Click on the project window's Targets tab to see our two targets. Double-click on the
origind target, the one called "ATtaCK Toal." Thisbrings up the "Target Settings' didog
box, which we'll be seeing alot of for the next few pages. Right now, change the target
nameto ! nstrunent ati on Tool , and make surethelinker issettow n32 x86 Li nker.
Hit ok. Now double-click on the new "Analysis Code" target, changeitslinker to M PS

PS2 Linker and hit oK.

1ol x|
Ilﬂ Instrumentation T acl j B ¥ @ S
Files | Link Oider Targets |
il Targets W
L Instrumentation T ool =]
Analysiz Codel

i gAnalysis Code Settings

rﬂ T arget Settings Panels IE Target Settings
= Target =
- Target Settings Target Name: |Analysis Code
’;E;T;?HE:?S Linkes: [win32 ¥86 Linker =]
- Runtime Settings Pre-linker:[None
- File Mappings tac0S B8K Linker

- Source Trees Pastlinker: MIPS P52 10F Linker

- wBE Target Output Directany,: : e
= Language Setings Ma;;DgnM:rge iy
{Project}
E::EH \':j nguage i I0F LibLD Linker
e wanngs MacDS PPC Linker]

- Windows RC j ey | i
in32 %86 Linker
= Code Generation I | eepiobeDtes
> %86 Processor
‘.. GGlobal Optimizations

)

Figure 01-02: Changing the" Analysis Code" Target’s Linker

Which other target settings are available depends entirely on the target’ s linker. Thus,
when you change the "Anayss Code' target from Windows to PlayStation 2, you can
see that the settings available change as well. For ingance, the "Windows RC" language
settings get replaced with settings for the"GNU DVP Assembler” and "MW GAS
Assembler.”

Now that the two targets have the proper settings available, we need to, well, set them.
We'll start with the easier of the two, the "Ingrumentation Tool" project.

Analysis Tools Construction Kit 01-12

Using Two Separate CodeWarriors

The main text describes the ideal situation, in which your CodeWarrior for Windows and
CodeWarrior for PlayStation 2 ingtallations share the same folder. This lets you combine the
instrumentation tool and analysis code into a single project.

If you have two separate installations of CodeWarrior, your ATtaCK tools will have to be
split into two separate projects, too. Y ou can ill follow this lesson’s instructions—just put
each target in its own project.

Setting the Instrumentation-Tool Target

Double-click on the "Instrumentation Tool" target again. The target settings are grouped
into "pands’ of related options. Y ou pick which pane to view and modify by clickingin
the lig in the left-hand pane. After modifying a pand, it'sagood idea to save your
changes by hitting the App! y button. (Hitting ok closes the didog, so don't do that until
we' re completely done.)

The"Target Settings' pand only needs one modification: Click on the Choose... button to
change the output directory from the project folder to the Bi n subfolder. When you hit
oK, the directory will now appear as{ Pr oj ect } Bi n.

Next, select the "Access Paths' pandl. This has two "sub-panels” one for user paths and

one for system paths—the latter are the ones referenced by #i ncl ude <fil enane. h>.
Make surethe User Pat hs radio button is selected and hit Add... Use the folder ligt to
browse for your project’s shar ed folder and hit oK. Then hit Add... again to find and add
the ATtaCK library folder, Lib\ps2. (If you have adefault ATtaCK ingdlation, this

folder will beC: \ Program Fi | es\ Met r ower ks\ ATt aCK for PS2\ Li b\ ps2.) Beforeyou
hit oK, though, change the droplist at the top of the didog from Pr oj ect Rel ative to
Compi | er Rel ative.

Now change the radio button to Syst em Pat hs. Add three more compiler-relative paths.
W n32-x86 Support\Headers, W n32-x86 Support\Libraries andMsL. Then add
the ATtaCK include folder (C: \ Progr am Fi | es\ Met r ower ks\ ATt aCK f or

PS2\ | ncl ude), aso compiler-reative. The figure below shows how the paths should

look:

Analysis Tools Construction Kit 01-13

§ T argets pY
‘. Instrumentation T aal :I
@ Analysiz Code

i @ Instruments 7 _%}%{}&1
R Target Settings Panels H Access Paths
= Target A € User Paths [Always Search User Paths
- Target Settings & System Paths
- [= Paths
- Build Extras Hj System Paths
- Runtime Settings W B T ompilert
- File Mappings W {2 Compiler P in32-#86 SupportiHeaders
- Sounce Trees v B Y Compiler fwind2-«86 SupportiLibraries
- 4BE Target Ml {Corpil= i SL
& Language Settings Please Select an Access Pat 5 2=l
- C/C++ Language i
| - CC++ i amings Path Type ICDmpiIer Relative j
- wfindows AC
= Code Generation b :
. E-_] Magellan -
b w06 Processar E||:| Metrowerks _I
‘. Global Optimizations -] ATtacK For PS2
= Linker L -1 bin
b BatchRunner Post... '
i &[] Documentation
- w86 Dizazzembler LI _fdd &[] Examples =
Include
Factorm []--% f
{:l Licensing_P32 7]
#-{_] Release Notes
-] Thrill Seeker Tools i
=107 Cadetarrine b
1| | 3

(0] 4 I Cancel |

Figure 01-03: Setting the" Instrumentation Tool" Target’s Access Paths

The"Build Extras' pand isfine. On "Runtime Settings,” change the working directory to
Bi n. On "Fle Mappings," add anew file extenson by entering . | i b inthe"Extenson”
edit field, changing the "Compiler" droplisttoLi b 1 nport x86, and hitting Add.

"File Mappings' and "Source Trees' are d o fine. On "x86 Target,” make sure the
project typeisAppl i cati on (EXE) . Onthe"C/C++ Language' panel, make sure
everything is off except Enabl e bool Support . Now skip al the way down to the "x86
Linker" pand. Change the "SubSystem” from W ndows GUI to W ndows CUl —thisisa
commeand-line tool, not a GUI toal.

That' s dl the settings that need to change for this target, o hit oKk to close the "Target
Settings' didog.

Analysis Tools Construction Kit 01-14

Using ATtaCK without CodeWarrior

The ATtaCK library uses the standard format, so you can build ATtaCK tools with any
Windows C/C++ compiler. However, you'll have to deal with two separate IDES, and you
lose dl the advantages of a dua Windows/PlayStation 2 installation—your instrumentation
tool and analysis code will have to live in separate projects. You're really much better off
using CodeWarrior for both halves of your ATtaCK toals.

No matter what, you'll have to use CodeWarrior for PlayStation 2 to build analysis code.

Adding Instrumentation - Tool Files

From the menu, sdlect Proj ect > Create G oup... and create afile group called ATt acK
Li brari es. Select that new group and goto Proj ect > Add Fi | es... Browsefor thefile
atck. |i b (located in your Li b\ ps2 folder). Note that you'll have to change the "show
filesof type" droplist from sourcefilesto library files

Using the same process, create agroup called MSL ANSI Li br ar i es. Thisfolder will
hold the standard C libraries, so that we ve got accessto functionslikepri nt f () . Add
the library files angcx86d.lib (found in the MSL\ MSL_C\ MSL_W n32\ Li b\ x86
subdirectory of your CodeWarrior ingdlation) and mwertld.lib (found in W n32- x86
Suppor t\ Li braries\Runtine).

Now create aW n32 SDK Li brari es group, which will—you guessed it'—hold the
Win32 SDK libraries. (Even if you don’t think your application uses any Win32
functions, it actualy does—the standard C libraries use them "behind the scenes" so you
have to link to the Win32 libraries no matter what). To this group add gdi 32. 1 b,
kernel 32.1i b anduser32.1i b, dl foundinthew n32- x86
Support\Libraries\Wn32 SDK subdirectory.

Finaly, creste agroup caled | nst runment ati on Tool , to hold the source filesfor the
ingrumentation tool. With that group highlighted, sdlect Fi 1 e > New... from the menu,
click onthe"Hle" tab and sdect "Text File€' from thelist. Give the new file the name

i nsttool.c,andclickon Set ... to placeitinthel nst folder. Check the"Add to project"
box, and make sure that the "Instrumentation Tool" target is checked but that the
"Andyss Code' target is not. Hit oK.

WEe re basically done with this target, but let’s do one more thing for polish. The
ingttoal.c file should now be open. Thisfile will get copied into every new project we
create with this stationery, so we might aswell save oursdves alittle bit of work. Add the
following code to the top of thefile:

#i ncl ude <atck. h>

#i ncl ude <at ckps2. h>

Close and savei nst t ool . c.

Analysis Tools Construction Kit 01-15

Setting the Analysis-Code Target

The steps to get the andysis-code target set properly are basically the same as for the
indrumentation-tool target. Start by double-clicking the"Andysis Code" target.

Once again, on the "Target Settings' panel, change the output directory from the project
folder to the Bi n subfolder. Next, select the "Access Paths' pand, and add the same two
foldersto the user paths as were added for the instrumentation tool: { Pr oj ect } Shar ed
and{ Conpiler}...\ATtaCK for PS2\Lib\ps2.

Now change the radio button to Syst em Pat hs. Here you only need to add two compiler-
relative paths. the ATtaCK include folder ({ Conpi | er } ATt aCK for PS2\ I ncl ude) and
the PS2 Support subdirectory of your CodeWarrior ingtalation ({ Conpi | er } PS2
Support).

The "Build Extras' and "Runtime Settings' pands are fine, but "Fle Mappings' in't.
Add anew file extenson by entering . o in the"Extengon” edit fidd, changing the
"Compiler” droplistoLi b I nport M PS, and hitting Add.

Onthe"MIPS Bare Target" panel, change the "Project Type" to Appl i cat i on, the"Hle
Name' to anal code. el f, the"Byte Ordering” toLi tt 1 e Endi an, and the"Smdl Data’
threshold to O.

On the"C/C++ Language' panel, make sure everything is off except Enabl e bool
Suppor t . Now skip all the way down to the "MIPS Bare Linker" panel. Make sure
"Generate ELF Symbol Table" is checked, and change "Entry Point” from __start to
at cktarg_start. That'sthelast of the target settings, so hit oK.

Adding Analysis-Code Files

Inthe"Files' tab, select the "ATtaCK Libraries’ group and goto Pr oj ect > Add

Fi | es... Browsefor theLi b\ ps2 folder and add thefilesat ckt arg. | cf andat cktarg. o
to the "Andyss Code' target. (Again, remember that you will have to change the "show
filesof type" droplist to "dl files' in order to see thesefiles)

Analysis Tools Construction Kit 01-16

=10 x|

Iﬂ &nalyziz Code j R 4 @ -

Filies |I:Iver|a_l,ls| Targetsl

¥ | File | Code | Data |lﬂ;.|i |
[55] & nalysiz Code
EHZR Instrumentation T ool 1]

R = TR T TR

=k Select files to add...

=& Lookin: IEPSE j = |‘=‘j€ E-

(Y EN

Y stk lib

tckkarg.o
syacfg, bxk

File narne: I"atcktarg.u" "atcktarg lcf! Add

Files of type: |ﬁ|| Filess [%] | Cancel |

Figure 01-04: Adding Filesto the Analysis-Code Project

Aswe did with the instrumentation tool, we' |l set up asource file to be created dong
with the project, ready to add code. Create agroup caled Anal ysi s Code. With that
group highlighted, sdlect Fi | e > New... from the menu, click on the "Fil€" tab and sdlect
"Text FHle' from theligt. Give the new filethe name anal code. ¢, and click on Set ... to
placeitinthe Anal folder. Check the "Add to project” box, and make sure that the
"Andyss Code' target is checked but that the "Instrumentation Tool" target is not. Hit
oK.

The new file will open for editing, so give it these contents:
#i ncl ude <atcktarg. h>
#i ncl ude <atcktargps2. h>

#pragnma force_active on

Y ou don't have to include any other headers for libraries—indeed you can’'t incdlude
them, because analysis code cannot access the Sony libraries. Likewise, you can't have a
mai n() functionin thisfile, because thet’s provided by ATtaCK. (You'refreeto call a
function mai n() if you want, but it won't be the entry point for your andyss code.)

Analysis Tools Construction Kit 01-17

The#pr agma directive is there to keep the linker from "optimizing away" dl our code:
Since it sthe target gpplication, not the andlysis code, that cdlls the routinesin thisfile,
the linker does't think any of them are used, and will save space by throwing them
avay!

Close and save anal code. c, then close and save the entire project.

Finishing the Stationery

To turn this project file into stationery, we have to clean up the project folder and move it
to the CodeWarrior sationery folder. Use your favorite file shell to open the project
folder. In addition to the folders you created, it should contain afolder CodeéWarrior
created called ATtaCK_Tool_Data. Delete that folder and dl its contents, but leave the
other folders done.

Now movethe ATt aCK Tool project folder inits entirety into your CodeWarrior
dationery folder. Thisfolder isjust off the main directory containing CodeWarrior, and
will be named something like C: \ Pr ogr am

Fi | es\ Met rower ks\ CodeWarri or\ Stati onery.

Andtha’sit! The next timeyou sdectFi | e > New... inthe CodeWarrior IDE, ATt acK
Tool will be available as Sationery for the new project. But don't take my word for it—
go to the next section and we'll try it out!

BareBones: The World's Least-Useful ATtaCK Tool

WEe re going to jump right into some code, mostly to test your ingtdlation. Don't be
intimidated! I’ m not going to take the time right now to explain what each line does,

except to say that every ATtaCK library routine beginswith at ck_, and every ATtaCK-
supplied t ypedef beginswith at ck_ and endswith _t . Just walk with me on how each of
the steps discussed earlier is represented in the code bel ow.

Thistool isvery smple, and its behavior is easy to describe. It iterates through every
procedure in the target application, adding an instrumentation cal to each one. The
insrumentation cal amply increments a counter. Thus, the program counts the number
of function cals your target gpplication makes.

Likel sad, thisisthe least-useful ATtaCK tool in theworld. But it'll establish whether
you've got everything ingaled properly, and dso give you an initia sample gpp so that
you can see the basics of an ATtaCK tooal.

Creating BareBones

Let’s make a project to make sure everything works. Sdlect Fil e > New..., highlighting
the ATt aCK Tool dationery, and name the new project bar ebones.

Analysis Tools Construction Kit 01-18

Open anal code. c. Replace its contents with that of bar ebones- anal . ¢ inthe
"supplemental materia” folder. Then openi nst t ool . ¢ and replace its contents with that
of bar ebones-inst.c .

Now open the "Target Settings' didog for the instrumentation-tool target, go to the "x86
Target" pand and change the name from nonane. exe to Something alittle more
appropriate, such asbar ebones. exe.

Save dl that, and we' re ready to see whether everything works.

Compile-Time Troubleshooting

Sdlect thebar ebones. ncp project window and hit F7. It should build one of the two
targets, most likely the instrumentation tool. Once that target compiles properly, select
the other target from the droplist at the top of the project window and build it. If errors
occur during either of these builds, awindow will open up. Don't worry about
warnings—Yyou'll get a least two warnings in your andyss-code project, but they don't
meatter. Here are some errors you may see:

Undefined Symbols/Header File Not Found

Y our access paths are wrong—check Access Pat hs under Tar get Setti ngs for each
project. If you're having trouble with relaive paths, just cop out and use absolute paths.

License Error

Y our CodeWarrior for PlayStation 2 ingtdlation must be licensed to compile the analysis
code. If you receive alicense error, refer to your CodeWarrior documentation for more
details.

Anything Else

Check for typosin your code, athough if you just copied what we gave you, it should be
fine—we ve checked! Also check to make sure that none of the standard PlayStation 2
libraries are incdluded in your analysis-code project—the only files you should be linking
to are ones you write yoursdlf, and ATtaCK files (which al begin with "at ck," naturaly
enough).

If you gtill have problems, you can reach Metrowerks tech support at
ps2_support@metrowerks.com, or call (800) 377-5416 inthe U.S. - for customers outside
the U.S. call +1(512) 997-4700.

Instrumentation Troubleshooting

Now that you' ve successfully built the program, let’stry it out! Open a DOS window and
change to the project’ s Bi n subdirectory, whereyou'll find bar ebones. exe. Firg, run it
without an gpplication at dl, to make sure your environment is properly st.

Analysis Tools Construction Kit 01-19

Next, pick a PlayStation 2 gpplication and type bar ebones fi | ename—be sureto
include the full path to your application! This should smply report a count of the number
of procedures in the gpplication. Note that this count will be higher than the number of
routinesin your code—even asmple "Hello, World!" program will have about 300
functionsin it, thanks to the C runtime code, startup functions and other library routines.

Here are some errors you might encounter:

‘barebones’ is Not Recognized

Thefilebar ebones. exe can’'t befound. Either you're in the wrong directory—you need
tobeinthel nstrunentati on Tool subdirectory of your Bar ebones project folder—or
you compiled the analysis-code target rather than the instrumentation-tool target.

Unable to Locate DLL

This error means your DOS PATH variable either hasn't been set or is pointing to the
wrong directory. Type just PATH at the command prompt and make sure the bi n\ ps2
subdirectory of your ATtaCK folder isincluded properly.

Unable to Open Analcode.elf

Y ou probably compiled just the instrumentation-tool target without also building the
andydss-code target, or you're running bar ebones. exe from somewhere other than the
Bi n directory.

License Error

ATtaCK will only function when licensed. Thisinformation should have come with
you're your ATtaCK ingtdlation package; if not, contact Metrowerks License
Department at license@metrowerks.com.

Run-Time Troubleshooting

Now, using the same gpplication, type bar ebones -r fil ename. Thiswill givethe same
function count as before, but will dso download the gpplication to your T10000 and run

it. Let the gpplication run on the target for awhile, and then hit any key to end the
program. Y our fina output should look something like this

Analysis Tools Construction Kit 01-20

[*]command Prompt
omputer Entertainment Inc.

I0F DECI2Z manager Uersion B.9.2
Copyright 1999.2088 <(C> Sony Computer Entertainment Inc.

DECI2 manager stapt.
Reboot serwvice module.(99-11.-18)>
Load File service.(?9.11-85%>
Multi Threaded Fileio module.<99-11-15>
iop heap service (99-11-83>
Downloading... 18%
e
. 55
P
.. P22
.. 188
» module wersion B.1.1 {C>SCEI
to stop program and get data
: fname hostB:d: usprrslocals/scesiopsmodulesssio2man.irx args B arg
toid 31, ret B
: fname hostB:d: usrslocalsscesiopsmodules-padman.irx args @ arg
toid 32, ret B
Procedures were called 1148 times.
D:~Codelarrior~Examplesssce2B@@ wul blowsblowv.elf contains 488 procedures.

Figure 01-05: Sample Output of Barebones.exe

Hangs

If the program seemsto hang, it cannot find the T10000. Refer to cwconuti | and its
documentation for debugging.

What's Next

That's it for Lesson O1. In the next lesson, we' ll sart covering the ATtaCK API, and
you' |l experiment more with the capabilities of this powerful framework.

Debugging Analysis Code

The analysis code won't be part of the symbolic debugging info so normal debugging isn't
possible. The code can’t communicate with the target application or send messages to the
host, so "pri nt f debugging” isout. All you can do is step through the disassembly.

Moral: Keep your analysis code simple. Write as little code as possible, and make sure the
code you do write is so straightforward that it can’t conceal any bugs.

Analysis Tools Construction Kit 01-21

Lesson 01 Quiz

Thisquiz will be abreeze, because thislesson mostly covered introductory
materid. Y ou can expect there to be more questions in the next lesson!

1.

The lessons are the most important part of this course. What' s the
second most important part of the course?

A The documentation.

B The example programs.

C Ingtructor interaction.

D A PlayStation 2 development system.

True or flse: Regression tegting is the most common method of
detecting code errors.

A True
B Fdse

Wha' s the difference between using ATtaCK and smply writing
andyds code directly into your program, for instance by using asserts?

A ATtaCK doesn't modify your program

B ATtaCK works with the binary image rather than the source code.
C ATtaCK doesn't require any work on your part.

D Thereisno difference.

Which team member should develop ATtaCK tools, and why?

A A senior programmer, because ATtaCK tools are very
complicated.

B A junior programmer, because ATtaCK tools are very easy.

C A snior programmer, because andysis and optimization are
critical.

True or fase: ATtaCK andysis code is written and compiled just like

any other PlayStation 2 program.

A True

B Fdse

Analysis Tools Construction Kit

01-22

Lesson 02: Examining an Application

In our second lesson, you'll learn how to use ATtaCK to break your application
down into its basic dements. Well then look at our first red ATtaCK tool.

Anatomy of an Application

Lesson Objectives

If you'll remember our discussion of the ATtaCK processin the last esson, you'll
seethat | promised we d cover five sepsin this lesson: initidization, reading
system options, opening target gpplications, stepping through code using iterators,
and closng ATtaCK.

| know, | know, five out of eeven sounds like alot for one lesson. Redly, though,
we're going to spend most of our time walking through code. The rest, from
initidization to shutdown, are just boilerplate housekeeping tasks that will take
you about ten minutesto learn. You can't have an ATtaCK tool without that stuff,
but studying it isn't very edifying, o we Il cover it as briefly as possible.

Code navigation, on the other hand, is the heart and soul of ATtaCK. At a
minimum, your tools will need to step through the target program just to examine
it, disasssemble it and otherwise reved itsinner workings to you. "Red" tools, the
kind your boss expectsto justify ATtaCK’s price tag, do more: They actudly
modify your gpplication to insert andys's code.

That doesn't just happen by itsdf—you have to tell ATtaCK what code goes
where. The "what code" part comesin Lesson 03. Firgt, you need to become an
expert on "where." And the first step toward that isto learn how ATtaCK models
your gpplication.

Anatomy of an Application

Any anadysistool must model the target application in some logica way, so that
you can examine it and identify the code you want to monitor. The IDE, for
ingtance, modds an application as a collection of files and lines. When you want
to insert a breskpoint into your code, you do so by marking a particular line of a
particular file.

The IDE presents your gpplication asfiles and lines ultimately because that' s the
way you seeit. The IDE isatool for getting information out of your head and into
the computer. ATtaCK, on the other hand, isn't particularly concerned with how
you see things (sorry!). Asatool for getting information out of the CPU, ATtaCK
models your gpplication the way the CPU seesit: asa series of instructions.

Now, alarge gpplication might have hundreds of thousands of indructions, which
would get tedious to step through. Fortunately, there' s a shortcut: Aslong asa
sequence of indructions is only entered at the beginning and only exited at the
end, you can just tredt it as one mega-ingruction—a basic block. Apart from the
handful of ingructions that take a variable number of cyclesto execute, you can

Analysis Tools Construction Kit 02-23

assume that a single basic block will dways consume the same amount of time
and have the same potentid Sde effects every timeit runs.

Let's pause here for me to point out that ATtaCK can break down your
gpplication into basic blocks reliably only because it looks at every branch and
cdl in the entire program. ATtaCK isomniscient and infdlible. It's not possble
for your program to ever jJump into the middle of a basic block, because if any
jump in the entire gpplication targeted the middle of that block, ATtaCK would
have split the block in two. Thisisjust one small example of the very extensve
processing that ATtaCK does behind the scenes. ATtaCK tools are easy to write;
ATtaCK itsdf most assuredly was not!

ATtaCK’s Limitations

ATtaCK is designed to be language-agnostic, but it's really most comfortable with C
or assembly language. C++ presents afew "gotchas' to watch out for.

Firgt of al, whenever you use ATtaCK to read the name of a C++ function, you'll
have to unmangle the name yourself.

Second, C++ virtud methods are called indirectly, usng vtables—ATtaCK knows
where indirect calls take place, but can't tell what methods are getting called.

Procedures

Moving up the hierarchy, basic blocks can themsdves be grouped together. Y our
aoplication is amost certainly structured into functions or procedur es. ATtaCK
defines a procedure as a collection of basic blocks that, once entered, is only |eft
via one or more known exit points. The procedure includes dl the basic blocks
that are branched to, but not those that are called. (Just to review the distinction:
A call trandfers execution with the expectation thet the program will return to the
ingruction following the cdl; a branch transfers execution with no expectation of
coming back.)

Their entry points define procedures. An entry point is ATtaCK’sterm for the
target of a procedure call. Every procedure must have at least one entry point; if it
didn’t, it wouldn't be a procedure. ATtaCK finds procedures by reading the
symbol table and looking at the target of every cdl in the program. This means
that a procedure in the symbol table will show up in ATtaCK eveniif it's never
cdled. Conversdly, a procedure with no entry in the symbol table—for instance, a
relative cal within an assembly module—will aso show up in ATtaCK, dthough

it won't have a symbolic name, of course.

If your gpplication is written in C/C++, each procedure has one and only one
entry point, a the opening curly brace. The Stuation in assembly is more
complicated: A procedure could have multiple entry points, and might not even
have an entry point at the beginning. How? Well, it depends on your definition of
the word "beginning." The execution of a procedure must dways begin a an entry
point. However, when ATtaCK gathers together al the basic blocks of that
procedure, it sorts them by ascending address. If the procedure branchesto a

Analysis Tools Construction Kit 02-24

block with alower address than the entry point, that block will be the beginning
of the sorted list.

Assembly procedures present other opportunities for confuson. Let’s say your
program has two functions that perform the same basic cleanup tasks before
returning. To save space, you end each of those functions not with areturn but
with a branch to the common find code, which performs the clean-up and then
executes the actua return. From your point of view, these are two separate
procedures. ATtaCK, on the other hand, sees them as one single procedure with
two entry points. The ruleis that each basic block belongs to one and only one
procedure; any time two or more procedures can reach abasic block, ATtaCK
folds those together into one.

The Rest of the Story
Therearejust afew ATtaCK terms |l eft before the modd is complete.

A call site isjust afunction cal. Mot of these will be to procedures within your
program, in which case there will be an ATtaCK-identified entry point & the
target of the call. When you call OS code that lives outsde your application, there
won't be an entry point, athough you will be able to query for the target address.
When you call avirtud function, ATtaCK doesn’'t even know the target address.

Animage comprises dl the basic blocks that share a single address space. For
example, in aWindows program, the application itsdf would be one image, while
each .DLL it loaded would be another. On the PlayStatiorns2, each code overlay
would be a separate image. However, the current version of ATtaCK doesn't
support code overlays, so you'll only see one image per program.

Findly, the program is your application itself. As mentioned before, on the
PlayStation 2 there' s a one-to-one relationship between programs and images, but
ATtaCK dill treats the two separately.

Top-Down Review

It'seasier to define each part of the ATtaCK model by starting at the bottom and
working up. On the other hand, it's easier to get the big picture by starting a the
top and working down, so let’ s review that way:

Y our application is a program.

Each program is made up of one or more images; on the PlayStation 2, there can
be only one.

Each image is made up of procedur es, which are defined by the presence of one
or more entry points. Entry points are usudly the targets of call sites.

Each procedure is made up of basic blocks.
Each basic block is made up of instructions.

This top-down Structure is exactly how you'll use ATtaCK to step through your
application: First you get a handle to the program, then you use that to get a
handle to an image, then you use that to get a handle to a procedure, and so forth.

Analysis Tools Construction Kit 02-25

ATtaCK Types: Objects

ATtaCK Objects

ATtaCK uses objectsinterndly to maintain its state information. Every ATtaCK
function either acts upon one or more of these objects, or crestes and returns a
new object; most do both!

Pointers to opague types represent these objects. For example, a session object is
represented by a pointer to typeat ck_sesn_t , not by avariable or structure of
typeat ck_sesn_t . Your program should never try to ingantiate the underlying
type directly, nor should it ever de-reference, del ete or free() oneof these
pointers. Always use the specific ATtaCK functions to manipulate objects. To
emphasize this, we'll dways refer to these pointers as handles.

Y ou might want to create asmal header file that defines an opaque type for each
handle. For example:

typedef atck_sesn_t* HSESSI ON;

will dlow you to subsequently declare variables such as
HSESSI ON hSessi on;

Depending on your persona coding style, this may be clearer to you. It certainly
isto me, but then my mind has been warped by a decade s worth of Windows
programming. Remember that the purpose of ATtaCK isto enable you to create
new, custom anaysis tools quickly. If wrapping the ATtaCK handlesin your own
types, obeying your own naming convention, helps you do that then by dl means,
go right ahead!

"Methods" and "Attributes”

Conceptudly, ATtaCK objects have methods, functions that operate on their data.
They aso have attributes, data they expose to your program. Since the ATtaCK
API iswritten in straight C, however, these methods and attributes aren't
implemented as members of the objects themsdlves, but are instead separate,
globa functions.

Almost every ATtaCK function takes, asitsfirst argument, ahandle to an
ATtaCK object. For example, the function to open anew application,

at ck_open() , takes asitsfirs argument a handle to a session object.

at ck_open() isthus"amethod of the sesson object,” even though asfar asthe
compiler’s concerned it’s not a member of anything.

Similarly, object attributes are not exposed as C-style structure member varigbles.
Instead, each attribute has an access method. For example, the number of images
contained within a program is an "dtribute’ of the program object. Thisvadueis
returned from the access function at ck_ni ng() , which tekes asitsfirgt (and only)
argument handle to a program object.

At therisk of some short-term confusion, we Il continue to cal these functions
"methods’ and "attributes" even though from the compiler’ s perspective they're

Analysis Tools Construction Kit 02-26

nothing of the kind. Asyou learn more about the ATtaCK API, you'll see how
this concept makes it much easer to remember each function’s name and
arguments.

Code Objects

Code objects represent the "anatomical elements’ we discussed in the previous
section: program, image, procedure, entry point, cal ste, basic block and
ingtruction. These objects have dtributes, which are used to examine your
goplication. For ingance, theat ck_ent _t object contains the address, symbolic
name, file name and line number of agiven entry point, and the handle of the
procedure object that contains the entry point.

These objects are created invisibly as needed as you step through the code. You
do not need to release them—they are owned by their parent object, and freed
when it isfreed. The program is the parent of each image, while theimages are
the parents of every other object.

Handles are unique and consstert. Y ou can never have two different handles for
the same object at the same time. For example, if you use two iterators to step
through the basic blocks in a procedure, both iterators will return the same
sequence of handles. This means that you can Smply test two handles for equaity
to see whether they reference the same underlying structure in the application.
Handles are not persstent, however. If you run the tool twice in arow, you will
get different handles for each run.

Code objectswill be covered in detall later in this lesson.

Code Object Abbreviation Object Type
Program None (see below) atck_prog_t
Image img atck_img_t
Procedure proc atck _proc t
Entry Point ent atck_ent t
Cdl Site cal atck_call_t
Basic Block bb atck_bb_t
Instruction inst atck_ingt t

Table 02-01: Code Objects

The abbreviation listed for each object is used throughout ATtaCK, such asin the
object’ s type name. The abbreviation is dso used to identify that object’s
methods. For example, every method of the call Site object is of the form

at ck_cal | _nmet hodname() . The program object is a pecid case here: It isthe
"default” for methods, so methods of the program object are of the form

at ck_met hodnane(), not at ck_pr og_met hodnane() .

Analysis Tools Construction Kit 02-27

State Objects

These objects maintain the sate information for ATtaCK. Y ou must create and
destroy them yourself, usng the ATtaCK functions provided.

Type Definition Covered In
atck sesn t Seﬁon, the top-levd ATtaCK | esson 02
- = object
A program downloaded to the .
atck_run t target sysiem Lesson 04
A st of registers referenced by an -
atck reg t Sruction Lesson 05
atck_imgit_t
atck oprocit t Iterators to step through images, Lesson 02
P o procedures, entities, cal gtes,
alok_entit_t basic blocks and instructions,
atck_cdlit_t repectively
atck_bbit t
ack_ingtit_t

Table 02-02: State Objects

Other Objects

These objects are, like code objects, maintained by ATtaCK. You don't haveto
destroy them, dthough in some cases you have the option of doing so.

Type Definition Covered In
atck_cfg t éptsi%tnc;f system configuration L esson 02
dotort | oI TP L o
atck_iprog_t Qg&ﬁogm;gig&gém reedy to Lesson 04
At | et tohe o Lesson 04

Table 02-03: Other Objects

What About C++?

I’m sure the C++ programmers out there are already jumping up and down,
asking "Why aren't these real objects?” The answer is"No reason why not—be
our guest."

Serioudy, therewould be alot of advantages to wrapping the ATtaCK APl ina
st of C++ objects. For one thing, you' d get much stronger type checking, which

Analysis Tools Construction Kit

02-28

would help prevent mistakes. The API would aso be much cleaner:
entry. Get Address() iseaser to undersand than at ck_ent _addr (pent) . The
API’s pretty smple and consistent now, though, so those aren't killer advantages.

What would be killer is the convenience of constructors and destructors. Not only
would these amplify the AP for the various cleanup functions, they’d aso handle
the "bailerplate” code invisibly. For instance, the default ATCK Sesson
condructor could automaticaly load the default system configuration file, abit of
code that basically never changes. A quickie set of wrapper classes | dapped
together reduced the size of Lesson 01's BareBones.c by 20%, and the more
complex your iteration tasks the more savings you' d see.

Wrapping ATtaCK in C++ isn't dl peaches and cream. Not everyoneis
comfortable with C++, so you might be reducing the pool of programmers able to
write and maintain your ATtaCK tools. More to the point, creating a proper, well-
conceived set of C++ wrappers would take time away from actudly using the
tools. Quickie classes like the ones | dapped together will probably do you more
harm than good; C++ is not very forgiving of programmers who don’t plan ahead.

So what' s the bottom line? If your shop dready uses C++, and you plan on using
ATtaCK for more than one project, then you should serioudy think about creating
C++ wrappers. It'll probably be a draw on the first project, and then pay for itself
every project after that. But ATtaCK redly iseasy to use eveninits straight-C
incarnation; so don't fed like you're missing out if you gtick to the plain vanilla
API.

Now, if you want something really bleeding-edge, consder this: By wrapping the
ATtaCK functionsin aset of COM objects, you could write your anaysistoolsin
scripting languages such as Perl, Python, JavaScript—anything for which a
Windows Scripting Host interpreter exigts. I’'m not sure you redly gain anything
by doing that, but it’d be cool!

ATtaCK Types: Data Types

Fundamental Types

ATtaCK isdesigned for cross-platform use. Obvioudy there are two platforms
right off the bat: the PC, where the insrumentation tool runs, and the PlayStation
2, where the target gpplication runs. Beyond that, future versions of ATtaCK may
run on different hogt platforms, such as the Mac, or may andyze different target
platforms, such as next-generation consoles. By and large, any ATtaCK toolsyou
create today will run with little or no modification on future platforms.

Toward that end, ATtaCK provides the usua suspects: fundamenta typesto
representi nt s, bool s andf | oat s of various Szes. There are dso constants
defined to show the maximum ranges for these types. These types and congtants
are summarized in the table below.

Analysis Tools Construction Kit 02-29

Type Definition Range

ATCK_INT16MIN to

atck_int16 t 16-bit Sgned integer ATCK_INTI6MAX

ATCK_INT32MIN to

atck_int32_t 32-bit Sgned integer ATCK_INT32MAX

ATCK_INT64MIN to

atck_inté4 t 64-bit sgned integer ATCK_INTBAMAX

dck vine t | L6-Ditunsigned 0t0 ATCK UINT16MAX
- - integer -

ack uintz2 t | 327 Pitunsigned 0t0 ATCK UINT32MAX
- = Integer -

ack ving4 t | B4-Ditunsgned 0to ATCK UINT6AMAX
— - integer -

ok bool T A boolean of Either ATCK_TRUE or
— = unspecified sze ATCK_FALSE

atck float32 t A four-byte float N/A

atck_float64 t An eght-byte float N/A

Table 02-04: Fundamental Types

Target Addresses

On the PlayStation 2, addresses are 32 hits, the same size as on the PC. However,
that might change for other targets and hogtsin the future. To handle this

properly, dwaysusetheat ck_addr _t typeto hold target addresses; its value can
range from O to ATCK_ADDRMAX. Although at ck_addr _t isessentidly just an

at ck_ui nt 32_t , you should always use the specia addresstype. Never use an
integer type, and especidly never use ahost pointer type, to store target

addresses; no good can come of it.

Target Mutex Variables

In order to protect critica sections on the target, and to handle multithreaded
target code in general, ATtaCK provides a mutua-excluson lock system for
andlyss code. These mutex variables are dways of thetype at ckt arg_I ock_t,
which should be treated as an opaque fundamenta type. Mutex locks are covered
in Lesson 04.

Enumerated Types

Flags

Many ATtaCK functions take flag-like arguments or have flag-like return values.
ATtaCK gores these usng enumerated types. One example of thisisdiscussed in
the notes below, the at ck_endi an_t used by at ck_byt eor der () . Since these

Analysis Tools Construction Kit 02-30

types redly only have meaning in the context of ther functions that’swhere we'll
discuss them. For a consolidated reference to them, see page ATK-45 of the
online documentation.

Endianism

The PlayStation 2 and PC are both little-endian, but some target/host combinations
may have different byte-ordering. It only matters for vaues that cross the host-target
boundary. Theat ck_addr _t type, for instance, is aways stored in host byte order,
even when it holds an address on the tar get.

Y our analysis code runs on the target, but its information gets uploaded to the hogt.
Even then, ATtaCK can automatically resolve any byte-order differences for you—
see Lesson 04.

Opcodes and Registers

Y ou can query an ingruction for its opcode and the registersthat it uses. The

at ck_op_t type represents a"pseudo opcode” vaue for an ingtruction, which
identifies the function performed by the ingtruction but doesn’'t necessarily
correspond to an actud hardware opcode vaue for the target processor—athough
for the PlayStation 2 they basicadly do. Smilarly, at ck_r eg_t identifies atarget
processor register.

These types will be discussed more when we look at ingtruction attributes later in

thislesson. They're dso described in the online documentation—see page ATK -
232 for opcodes and page ATK-50 for registers.

Startup and Shutdown

Now that you' ve got the big picture, we'll talk about building an ATtaCK toal.
The very least you haveto do isinitidize ATtaCK at the beginning of the
program and close it down at the end, so we Il sart with that. Y ou might want to
refer back to BareBones.c aswe go.

Error Handling

A function thet returns ahandle will return NULL to indicate an error. A function
thet returns afundamenta type will typically return O or ATCK_FALSE in case of an
eror. In ether case, the framework will aso write a diagnogtic message to
stderr.Snce ATtaCK tools are just smple command- line programs written for
use by programmers, the most gppropriate response to an error isusudly just to
exit.

Startup Tasks

Initialize an ATtaCK Session

atck_sesn_t* atck_session(const char* ver, atck flags_t
flags,...)

Analysis Tools Construction Kit 02-31

This function must be cdled before any other ATtaCK functions. It initidizesthe
framework and returns the resulting session object. In the future, atck_session()
might take multiple parameters, but right now it accepts only two: ver, atext
string specifying the version of ATtaCK the tool expects, and flags, abit-flags
integer that controls the behavior of the sesson. These arguments have only one
legd vaue each: ver must bethedring " 1. 0", and flags must be the constant
ATCK_FLAGS_NONE.

Save off the returned handle, because asyou'll see, just about every other
function in ATtaCK requiresit.

Open Application

atck_prog_t* atck_open(atck_sesn_t* session, const char*
appfile,

const char* analysisfile, atck _cfg_ t*
config,

const char* outfile)

This function opens appfile, the target gpplication. The returned program handle
can be used to iterate through the application’s code.

The parameter analysisfile isthe filename of the compiled target andysis code
that will be used by the instrumented gpplication. Thistopic is covered in Lesson
03. If you will not be adding any instrumentation code to the gpplication, you may
passin NULL instead.

The parameter outfile is the filename template to use when writing out the newly-
indrumented images. Since an gpplication might have more than one image, the
template dlows you to specify a naming scheme by which new image filenames
can be generated as necessary.

The format for thistemplate is covered in the documentation on page ATK -69 of
the documentation that came with your ATtaCK ingalation. However, heré sa
boilerplate definition that will almaost dways work for you:

"<di r ><base>_t ool nane<suf >"

Thistemplate, which is used by al the example programs, places the new
executable in the same directory asthe origina one, adding " _t ool name" to the
end of the base name but keeping the file extension the same. Replace toolname
with your tool’s name, such aspr occount .

If you intend to download and execute the instrumented program immediately,
and are content to throw the program away once the profiling sesson is done, you
may pecify NULL for the output filename. ATtaCK will then use temporary files
to hold the instrumented program.

If you will not be adding any instrumentation code to the gpplication, you may
passin NULL instead. Y ou may aso passNULL if you intend to immediately
download and run the gpplication after ingrumenting it. In this case, ATtaCK uses
temporary files to hold the instrumented program, deleting them after your tool
exits.

Analysis Tools Construction Kit

02-32

Finally, the parameter config would be used to specify aset of configuration
options. However, the PlayStation 2 version of ATtaCK doesn't recognize any
such options for use with at ck_open() —there s only one way to open a
program! —and 0 you should just pass NULL.

Shutdown Tasks

Write Out or Close the Application
void atck_ing_release(atck_ing_t* inage)

This function doses the specified image, rleasing dl the procedures, entry
points, cal stes, basic blocks and indructions it contained.

If you add insrumentation code to an image, closeit with at ck_i mg_wri t e()
instead, discussed in Lesson 03.

Close ATtaCK

voi d at ck_endsessi on(atck_sesn_t* session)

This function closes the active session, shutting down ATtaCK. After you cal
this, you may gill work with and display the data your tool has gathered, but no
ATtaCK functionswill be available.

Asdiscussed earlier in thislesson, any state objects you create—in particular,
iterators—must be freed individualy. Y ou must dso closeimage objects
individudly. Y ou don't have to worry about any other objects, though, because
they belong to and will be freed by the session.

Navigating with Iterators

Okay, you've successfully initialized ATtaCK and your application is open. Now
what? Well, mogly you iterate.

Step Through Code Using lterators

The textbook definition of an iterator is"an object associated with alist thet is
capable of traverang the list, accessing the dements one at atime.” That pretty
much hits the nail on the head, so letslook a the definition one piece a atime.

"an object associated with a list..." When ATtaCK loads the target
goplication, it runs through it and builds ligts of itsimages, procedures, entry
points, cal sites, basic blocks and ingtructions. There is an iterator type
associated with each one of theseligs.

"... that is capable of traversing the list..." ATtaCK iterator objects have
methods that move to the head or tall of the list, and that step forward and
backward.

"... accessing the elements one at atime." The traversd methods each return a
handle to one code dement from the list. For indtance, every timeyou tell a

Analysis Tools Construction Kit 02-33

procedure iterator to "move next," it returns a handle to the next procedurein
thelist.

lterator Types

There are iterator types for each of the six ligts, as shown in the table below.
Remember that, aswith al ATtaCK objects, you only ded with handlesto these
objects, so to declare an iterator varigble you'd use:

atck _procit_t* procedures;

Iterator types dl follow a consstent naming convention, at ck_obj i t _t , where
obj istheabbreviation for the object type returned by the iterator. Theimage
iterator, for indance, isat ck_i ngit _t.

Iterator Methods

The iterator objects have methods but not attributes. The function names dl
follow aconggtent pattern: at ck_obj it _acti on() . For example, the "'move
next" method for a procedure ("proc”) iterator is called at ck_pr oci t _next (),
while the same method for a basic-block ("bb") iterator isat ck_bbi t _next () .

As methods, these functions dways take a handle to the iterator object itsdlf as
ther first and only argument.

atck_obj _t* atck objit_first(atck _objit_t* self)
atck_obj _t* atck objit_last(atck _objit_t* self)

The _first () mehodreturnsthefirs dement inthelist, while | ast () returns
thelast dement inthe lit. If and only if thelist is empty, both functions will
return NULL.

atck_obj _t* atck _objit_next(atck_objit_t* self)
atck _obj _t* atck _objit_prev(atck _objit_t* self)

The _next () method returns the next eement after the eement most recently
returned by theiterator, or the first element if the iterator was just created. If the
most recent element returned wasthe last in the ligt, or if thelist is empty,

_next () returnsNULL.

The _prev() method returns the previous e ement before the dement most
recently returned by the iterator. If the most recent dement wasthefirs intheli,
or if the iterator was just created, or if thelist isempty, _prev() returnsNULL.

Y ou might be wondering how alist could be empty—after all, the target
gpplication is pretty much guaranteed to have one of every code ement, right?
Wi, that’ strue, but ATtaCK may not be able to read into every procedure in
your gpplication. If, for example, abadly-formed cal ingtruction wound up
pointing to your application’s global variable space rather than to actua code, the
resulting "'procedure” would probably contain illega ingructions and generd
nonsense.

ATtaCK’s a pretty no-nonsense framework, so faced with a Stuation like that it
just marks the procedure as "unreadable” (ATCK_ATTR_NOREAD) and moves on.

Analysis Tools Construction Kit 02-34

The procedure object itsdlf is Hill available, but many of its atributes will return
zero or NULL. If you request any iterator from that procedure, or a basic-block
iterator from an entry point contained in that procedure, the iterator will be empty.

Creating Iterators

Each lig is an attribute of its containing object. For example, the ligt of imagesin
aprogramis an attribute of the program object. Y ou’ d thus expect that the
functions to create new iterators are methods of the containing objects—and
you'd beright!
atck_ingit_t* atck_ingit_new(atck_prog_t* self)
atck_procit_t* atck_ing_procit_new(atck_ing_t* self)
atck_entit_t* atck _proc_entit_new(atck_proc_t* self)
atck _callit_t* atck _proc_callit_new(atck_proc_t* self)

By now, these functions should be sdf-explanatory. The only question is sorting:

Since PlayStation 2 gpplications only have one image, the list will only
have that one entry, so you don’t have to worry about how images are
sorted.

Procedure, entry-point and cal-gte lists are sorted by starting addressin
ascending order. Note that for cal dtes, the sort is done on the address of
the Site, not the address of the target.

atck_bbit_t* atck_proc_bbit_new(atck_proc_t* self)
atck_bbit_t* atck_ing _bbit_new(atck_ing_t* self)
atck_bbit_t* atck_ent _bbit_new(atck _ent_t* self)

There are actualy three waysto iterate across basic blocks. You can iterate
through dl the blocksin a procedure, or dl the blocksin animage. You can aso
iterate through arange of the blocksin a procedure, starting at a specific entry
point and continuing to the end. (This alows you to trace execution from an entry
point; without it, you' d have to step out to the procedure and walk its block list, as
discussed in the next section.) In dl three cases, the blocks are sorted by starting
address.

atck_instit_t* atck_bb_instit_new(atck _bb_t* self,

atck _flags_t flags)

Because ingruction lists can be quite large, ATtaCK only creates them when
necessary. Thisfunction will creste and return an iterator for the list of
ingructions in the specified basic block. If the flags parameter is
ATCK_FLAGS_| TLI FE, the ingtruction handles returned by the new iterator will
only last aslong astheiterator itself does, when theiterator isreleased, the
ingtruction objects will aso be released and their handles will no longer be vdid.
If flags iSATCK_FLAGS_NONE, then the indtruction objects will have the same
lifespan as dl code dements, lagting until their containing image is released.

Analysis Tools Construction Kit

02-35

Releasing Iterators
void atck_objit_free(atck_objit_t* self)

The "destructor” for an iterator object isthe _f ree() method. Y ou are dways
responsible for releasing any iterators you create. When you release an image, al
the code objectsit contains will be released, and their handles will become

invaid. The iterators are not released, however. Good practice isto release
iterators as soon as you' re done with them, and in any case to release them before
cdlingat ck_i ng_write() oOratck_img_rel ease().

Finding Code Structures

Iteration is important, and just about every ATtaCK programming task involves
working with iterators. But to write any advanced tool, you'll need to do more
than judt iterate through the application from beginning to end. Y ou might need to
find the target of acdl, or look up a pecific named routine, or follow an
execution path between two basic blocks.

Often, the information you need will be available as an attribute of some other
object—a handle to the target entry point of acal ste, for instance, is stored as
part of the cal Ste object.

Some tasks that require searching are nevertheless so common that ATtaCK
provides "lookup™ methods to do the job for you. Finding a specific named
routine is of course one such task, and is handled by the functions

atck_ent _bynanme() andat ck_i ng_ent _bynanme().

All other search tasks must be performed by hand, using a technique called
"iterate-and-query": lterate across al the candidate objects, checking each one's
atributes againgt some criteria until you find amatch.

Asyou' ve guesd, "iterate and query” isjust a more poetic term for "brute
force."

Link Attributes

Link attributes join one object to another. Like dl attributes, they are retrieved
using attribute access methods, which follow a smple naming convention:

at ck_obj _attri but e() . The method to get the target entry point for acall Ste,
for example isat ck_cal | _targent ().

Parent Handles

These atributes store the handle of an object’ s parent.
atck_inmg_t* atck_proc_ing(atck_proc_t* self)
atck_proc_t* atck_ent_proc(atck_ent_t* self)
atck_proc_t* atck_call _proc(atck_call _t* self)
atck_proc_t* atck_bb_proc(atck_bb_t* self)
atck_bb_t* atck_inst_bb(atck_inst_t* self)

Analysis Tools Construction Kit

02-36

Every code object has as one of its attributes a handle to its parent. Well, okay,
not every code object contains a parent handle—there' s only one program object,
S0 you' re expected to be able to remember the parent of image objects yoursdlf.
Bdow that, though, each procedure pointsto its containing image; each entry
point, call Ste and basic block points to its containing procedure; and each
ingtruction points to its containing basic block. These functions can never return
NULL, since each of these objects will aways have one and only one parent.

Target Handles
These attributes store the handle of an object’ starget.

atck _ent _t* atck _call _targent(atck _call _t* self)

This attribute stores a handle to the entry point in the target procedure caled by
this call ste. Some cal sites don’t target entry points, either because they call
dynamic addresses (e.g, C++ virtud functions) or because they cal addresses
outsde the target application. If ATtaCK can't determine the target of acdl Ste
daticdly, this attribute will be NULL.

atck_bb_t* atck_inst_branchtarg(atck_inst_t* self)

If an ingtruction conditiondly or unconditiondly branches to another indruction
within the same imege, this attribute will hold a handle to the basic block targeted
by the jump. Asdways, ATtaCK can’t see the future, so this attributeisNULL for
dynamic jump indructions (such asthe MIPS JR). Note that calls are a specia
kind of branch asfar as ATtaCK is concerned, so thisattribute is vaid for
ingructions that cal other procedures aswell asfor branches within one
procedure.

This might seem like a useful method to walk through code: Iterate across abasic
block, then cdl at ck_i nst _brancht ar g() to get the next block when the
indruction iterator returns NULL. But there's a gotchal Some chips—such as,
coincidentally enough, the EE—have delayed branches, where the ingtruction
immediately after a branch is executed while the chip performs the jump. On such
architectures, the ingruction following a conditiond branch is il part of the firgt
basic block. Thus, the last ingtruction of a basic block is not guaranteed to be
gther acdl or abranch.

This attribute is not guaranteed to be valid even for branch ingructions. A
procedure marked ATCK_ATTR_NOREAD has no basic blocks. If the branch target
liesin such a procedure, this attribute will be NULL.

Alias Handles

These attributes store the handle of an object’ s dias—that is, an object of a
different type with which it has a one-to-one relationship. An ingruction object
that represents a procedure call, for instance, has a one-to-one rdaionship with
the cdl dte object that also represents that call.

atck_ent _t* atck_bb_entry(atck_bb_t* self)

Analysis Tools Construction Kit

02-37

If abasic block contains an entry point to a procedure, this attribute will hold a
handle to that entry point; otherwise it will be NULL. Remember that code will
never jump into the middle of abasic block, so if ablock contains an entry point,
that point will be the firgt ingtruction in the block. For the same reason, a block
cannot contain more than one entry point.

Asnatural and handy asit might seem, thereis no corresponding at ck_ent _bb()
method: Entry points are children of procedures, not basic blocks, even though
each entry point is contained by one and only one basic block.

atck_call _t* atck_inst_callsite(atck_inst_t* self)

An ingruction that conditiondly or unconditionaly cals another procedureis a
cdl ste, and will keegp ahandleto that call Site object in this attribute. For dl
other ingructions, this attribute will be NULL. Aswith basic blocks and entry
points, this relationship is one-way: A cal ste does not point to the ingruction
that embodiesit.

Even dynamic calls, where the target address cannot be determined by ATtaCK’ s
daic andyss, gill have cal stes, so this attribute will aways contain avdid
handle aslong astheindruction isacal.

Lookup Methods

These functions obey the naming convention at ck_obj _what _how() . The
method of the image object that looks up an entry point by its address, for
ingtance, iscdled at ck_i mg_ent _byaddr () . Remember that program isthe
default object, so methods of the program object are named at ck_what _how() ,
not at ck_prog_what _how().

Symbolic Lookups

ATtaCK getsits information two ways. examining the raw machine code directly,
and reading the debugging information ("symbol table") from the executable file,
You can run ATtaCK tools againgt "release builds' that don’t contain debugging
information, but you lose access to methods like these, which look up namesin
the symbal table.

atck_ent _t* atck_ing_ent_bynane(atck_ing_t* self, const char*
nane)

atck_ent _t* atck_ent_bynanme(atck_prog_t* self, const char*
name)

These methods examine the symbol table of the program or image respectively to
find the entry point for the specified name. There might well be more than one
entry point with the same symbolic name. In that case, only one entry point will
be returned, in the following search order:

The globdly visble entry points are searched firdt, in the order that you'd
seethem if you iterated across every image, then across every procedure,
then across every entry point. This means that the chosen entry point will

Analysis Tools Construction Kit 02-38

be the one with the lowest address contained in the procedure with the
lowest garting address.

If there are no globally visible entry points with the specified name, then
every entry point is searched, using the exact same process.

If there is no entry point with the pecified name in the program or image, this
method returns NULL.

Address Lookups
atck_ent _t* atck_ing_ent_byaddr(atck_ing_t* self, atck_addr_t
addr)
atck_inst_t* atck_ing_inst_byaddr(atck_ing_t* self,
atck_addr _t addr)
If addr corresponds to the start of an entry point or ingtruction respectively in the
specified image, this method returns that object’s handle; otherwise it returns
NULL.

Procedures marked ATCK_ATTR_NOREAD cannot have any ingtruction objects. If
addr fdlswithin such aprocedure, at ck_i mg_i nst _byaddr () will return NULL.
Even unreadabl e procedures have entry points, however, so

atck_i mg_ent _byaddr () will sill work.

Symbol Translation
atck_addr _t atck_symaddr (atck_prog_t* self, const char* nane)

atck_addr _t atck_ing_symaddr(atck_ing_t* self, const char*
nane)

Rather than finding a code object handle, these methods return the address of the
gpecified symbol. The symbol might be adata variable or a procedure. If the
symbol can't be found, these methods return zero.

Iterate and Query

ATtaCK isbuilt around iteration. In fact, ATtaCK isredly built around inward
iteration: It's easy to go from an object to the objects it contains, but much less
easy to move from one object to one of its peers. For example, let’s suppose all
you have is an ingruction handle. How do you get the next ingtruction?

One way would be to get the ingtruction’ s address with at ck_i nst _addr () , add
itsgzefrom at ck_i nst _r awsi ze() to get the address of the next indruction,
then useat ck_i mg_i nst _byaddr () to get the handle. The problem isthat you're
not redly following the flow of execution, you're just reading the code blindly.

A better solution would be to use iterators. First, cal at ck_i nst _bb() to get the
ingruction’s basic block. Then use an ingruction iterator to step through the block
until you find a handle that metches the one you dready have. (Remember: Two
handles that point to the same object will dways have the same vaue.)

Now whenyou cal at ck_i nsti t _next (), you have the next ingruction in the
flow of execution, and you can continue iterating. To continue waking once

Analysis Tools Construction Kit 02-39

you' ve reached the end of thisiterator, you useat ck_bb_proc() to get the
procedure, create a basic-block iterator from the procedure and use the same
iterate-and-compare technique to find your current basic-block handlein the
procedure’ s lig.

Asyou can see, the process isT't hard to figure out, it'sjust alittle tedious to
program. One mord to this Sory is to remember your context as much as
possible. Since going from an iterator to an object it containsis much easier than
going from an object to the parent iterator that generated it, your tool’ s functions
should pass iterators and high-level objects around in preference to low-leve
objects.

Querying Code Attributes

All code objects have attributes. As we' ve seen, attributes are accessed usng
attribute access methods, which follow a smple naming convention:
atck_obj _attribute().

All atributes are read-only. The only way an ATtaCK tool can modify the target
goplication is by writing instrumentation code into it, as covered in the next
lesson.

Whenever one of these access methods returns a memory buffer (either aconst
char* oraconst voi d*), that buffer isvalid until the containing image object is
closed. Buffers returned from the program object last until the program object is
dosed. In no case should you release these buffers yoursalf.

Let me apologize here in advance for the next two pages. There are alot of
attributes, and each attribute has an access method. The best way for meto tell
you about these attributesisto tell you about their access methods, dl eighty-four
of them.

Right acrossthis sea of text, though, isour firs ATtaCK tool. Just hang in there
and we Il get through this together.

Program Attributes

Remember that the program object doesn’'t have an abbreviation, so instead of
atck_prog_attribute(),these methodsdl follow the pattern
atck_attribute().

const char* atck_appnane(atck _prog_t* self)
The application’ sfilename...
const char* atck_iappnane(atck_prog_t* self)

The name of the instrumented application file. When you cdled at ck_open() , if
you specified an output filename using its outfile argument, then this string will
contain that argument, with any directory specifiers expanded into their regl
values. If you passed aNULL for outfile, then NULL iswhat you' Il get back here.

atck_endi an_t atck_byteorder(atck_prog_t* self)

Analysis Tools Construction Kit 02-40

Y ou've dready seen this attribute, the program’s byte order. Its possible values
are ATCK_BE for big-endian (e.g., the Macintosh) or ATCK_LE for little-endian
(PC or PlayStation 2).

unsi gned atck_ning(atck_prog_t* self)

unsi gned atck_nproc(atck _prog t* self)

unsi gned atck_nent(atck_prog_t* self)
The number of imagesin the program (dways 1 for the PlayStation 2), and the
number of procedures or entry pointsin the program across dl images.

unsi gned atck_nproc_rdabl e(atck_prog_t* self)

unsi gned atck_nent _rdabl e(atck_prog t* self)

unsi gned atck_ncal |l _rdabl e(atck_prog_t* self)

unsi gned atck_nbb_rdabl e(atck_prog_t* self)

unsi gned atck_ninst_rdabl e(atck_prog_t* self)

These attributes contain the number of procedures, entry points, cal Stes, basic
blocks and ingructions in the entire program that are readable, e.g., that are not
marked with the ATCK_ATTR_NOREAD dattribute. Thisis discussed under Procedure
Attributes, below.

unsi gned atck_nproc_instr(atck_prog t* self)
unsi gned atck_nent _instr(atck_prog t* self)
unsi gned atck_ncall __instr(atck_prog t* self)
unsi gned atck_nbb_instr(atck_prog_t* self)
unsi gned atck_ninst_instr(atck_prog t* self)
The number of procedures, entry points, cal stes, basic blocks and ingtructionsin

the entire program that are instrumentable, e.g., that are marked with the
ATCK_ATTR_| NSTR attribute. Thisis discussed under Procedure Attributes, below.

unsi gned atck_nproc_skip(atck_prog_t* self)
unsi gned atck_nent _skip(atck_prog t* self)
unsi gned atck_ncal | _skip(atck_prog_t* self)
unsi gned atck_nbb_skip(atck_prog_t* self)

unsi gned atck_ninst_skip(atck_prog_t* self)

The number of procedures, entry points, cal stes, basic blocks and ingtructionsin
the entire program that you have marked with the ATCK_ATTR_SKI P attribute. This
is discussed under Procedure Attributes, below.

size_t atck_szdi sbuf(atck_prog t* self)

The szein bytes of the longest string that will ever be printed by
at ck_i nst _di s() (theindruction disassembly method) for this program.

Image Attributes

const char* atck_appnane(atck_inmg_t* self)

Analysis Tools Construction Kit 02-41

The name of theimage: An image might not have afile name, in which case this
attributeisNUL L.

unsi gned atck_i ng_nproc(atck_ing_t* self)
unsi gned atck_ing_nent(atck_img_t* self)
The number of procedures or entry pointsin theimage.
unsi gned atck_i ng_nproc_rdable(atck_inmg_t* self)
unsi gned atck_ing_nent _rdable(atck_inmg t* self)
unsi gned atck_ing_ncall _rdable(atck_ing_t* self)
unsi gned atck_inmg_nbb_rdable(atck_inmg_t* self)
unsi gned atck_i ng_ninst_rdable(atck_ing t* self)
The number of readable procedures, entry points, cal stes, basic blocks and
indructionsin the image.
unsi gned atck_ing_nproc_instr(atck_ing_t* self)
unsigned atck _inmg _nent _instr(atck _ ing_t* self)
unsigned atck_inmg_ncall _instr(atck_inmg_t* self)
unsi gned atck_inmg_nbb_instr(atck_ing_t* self)
unsi gned atck_ing_ninst_instr(atck_ing_t* self)
The number of instrumentable procedures, entry points, cal Stes, basic blocks
and indructionsin theimage.
unsi gned atck_i ng_nproc_skip(atck_img_t* self)
unsi gned atck_inmg_nent _skip(atck_ing_t* self)
unsi gned atck_inmg_ncall _skip(atck inmg_t* self)
unsi gned atck_inmg_nbb_skip(atck_inmg_t* self)
unsi gned atck_inmg_ninst_skip(atck_ing_t* self)

The number of skipped procedures, entry points, call sites, basic blocks and
indructionsin the image.

Procedure Attributes

atck_attr_t atck_proc_attr(atck_proc_t* self)

This attribute indicates the procedure’ s ability to be read and instrumented. There

are four possble vaues:

ATCK_ATTR_I NSTR indicates that the procedure can be instrumented. Almost

every procedure will have this attribute.

ATCK_ATTR_SKI P indicates that you have flagged the procedure to be skipped.

Thisdtributeis st by your own code, using the functions described in the
notes. It's essentialy just areminder to yoursdf—ATtaCK treats
ATCK_ATTR_SKI P exactly the same as ATCK_ATTR_I NSTR.

ATCK_ATTR_RDONLY indicatesthat ATtaCK is unable to instrument the

procedure, athough it can gill navigate through the code. This would happen

Analysis Tools Construction Kit

02-42

with any procedures that weren’'t compiled by CodeWarrior—every procedure
in the PlayStation 2 SDK, for ingtance. (Sorry!)

ATCK_ATTR_NOREAD indicatesthat ATtaCK is unable to read the procedure' s
code, which means ATtaCK also cannot instrument the procedure. Thiswill
only be the case if the procedure contains invalid machine code, in which case
something very srange is happening.

const char* atck_proc_nane(atck_proc_t* self)

Marking Code to Skip

voi d atck_skiping(atck_prog t* self, const char* inagenane)
voi d atck_skipfile(atck_prog_t* self, const char* fil enane)
voi d atck_ski pproc(atck_prog t* self, const char* procnane)

These three routines allow you to mark procedures with ATCK_ATTR_SKI P. Asyou
iterate, you can check for this attribute and skip the procedures you marked. ATtaCK
in no way enforces the skip attribute—it’s just aflag provided for your convenience.

Few tools need these functions. If you think they might be useful, refer to the
documentation.

The name of the procedure, if it has one; NULL otherwise. Remember that C++
function names will usualy be mangled, and it' s the todl’ s respongibility to
unmangle them.

atck_addr _t atck_proc_addr(atck_proc_t* self)
The lowest address of the procedure. Thisis the address of the first basic block in

the procedure, not necessarily the address of the first entry point (although for C
or C++, those will dmost dways be one and the same).

const char* atck _proc_file(atck_proc_t* self)

unsi gned atck_proc_line(atck _proc_t* self)

The source file and line number of the firg line of the procedure. If this
informetion is not available, the filename will be NULL and/or the line number
zero.

unsi gned atck_proc_nent(atck_proc_t* self)
unsi gned atck_proc_ncall (atck_proc_t* self)
unsi gned atck_proc_nbb(atck_proc_t* self)

unsi gned atck_proc_ninst(atck_proc_t* self)

The number of entry points, cal Stes, basic blocks and indructions in the
procedure. For unreadable procedures, the number of call sites, basic blocks and
indructions will be zero.

Entry-Point Attributes

const char* atck_ent_nanme(atck_ent _t* self)

Analysis Tools Construction Kit 02-43

The name of the entry point, if it has one; NULL otherwise. Entry point names
corresponding to C++ functions will require unmangling.

atck_addr_t atck_ent_addr(atck_ent_t* self)
The address of the entry point.

const char* atck_ent _file(atck_ent_t* self)

unsi gned atck_ent line(atck _ent_t* self)

The source file and line number of the entry point. If thisinformation is not
available, the filename will be NULL and/or the line number zero.

Call-Site Attributes

atck_bool _t atck_call _istargknown(atck _call_t* self)

ATCK_TRUE if thetarget of this cdl steisknown—that is, if thisisadatic cdl.
ATCK_FALSE if the target is dynamically called viaaregiger or variable,

const char* atck_call _targnanme(atck_call _t* self)

The name of the target procedure, if the target is known and if it has aname; NULL
otherwise.

atck_addr _t atck_call _targaddr(atck_call _t* self)
The address of the target procedure, if known, zero if not.
atck _attr_t atck call targattr(atck _call _t* self)

The target procedure’ s readability attribute, or ATCK_ATTR_NOREAD if the target
addressisn’'t known or lies outside the application.

atck_bool _t atck_call _returns(atck_call_t* self)

ATCK_TRUE if the cdl appearsto return to the caler when the cdled procedure
finishes ATCK_FAL SE otherwise. Call stes usudly return to the caler, but some
cdl stes do not due to compiler optimizations or hand-coded assembly
techniques.

atck_addr _t atck_call _addr(atck_call _t* self)
The address of the cdll site, rather than the address of the target.
atck_bool _t atck_call _iscond(atck_call _t* self)

ATCK_TRUE If the cdll is conditiond, ATCK_FALSE if it is unconditiond.

Basic-Block Attributes
atck_addr _t atck_bb_addr(atck_bb_t* self)

The garting address of the basic block.
unsi gned atck_bb_ninst(atck_bb_t* self)

The number of ingructions contained within the basic block.
atck_attr_t atck_bb_attr(atck_bb_t* self)

The readability attribute of the basic block’ s parent procedure.

Analysis Tools Construction Kit

02-44

const void* atck_bb_raw(atck_bb_t* self)
size_t atck_bb_rawsize(atck_bb_t* self)
These methods expose the raw machine code contained with the basic block.

at ck_bb_raw() returnsabuffer containing the raw bytes, in the byte ordering of
the target processor; at ck_bb_r awsi ze() returnsthe szein bytes of this buffer.

Instruction Attributes

Thisisthe last section! Unfortunatdly, it's dso the longest section—the
ingruction object, naturaly enough, has the most interesting attributes and
requires the most explanation.

atck_addr_t atck_inst_addr(atck_inst_t* self)
The starting address of the ingtruction.
const char* atck_inst _file(atck_inst_t* self)
unsigned atck_inst_line(atck_inst_t* self)
The source file and line number of the ingtruction. If thisinformetion is not
available, the filename will be NULL and/or the line number zero.
const void* atck_inst_raw(atck_inst_t* self)
size_t atck_inst_rawsize(atck_inst_t* self)
These methods expose the raw machine code for the ingtruction. at ck_inst_r aw()

returns a buffer containing the raw bytes, in the byte ordering of the target
processor; at ck_inst_r awsi ze() returnsthe szein bytes of this buffer.

atck_op_t atck_inst_op(atck_inst_t* self)

Theindruction’s "pseudo-opcode.” A pseudo-opcode identifies the function
performed by an ingtruction, but may not correspond to an actua hardware
opcode for the target processor.

A table ligting the pseudo- opcode of every EE indruction starts on page ATK-231
of the online documentation.

size_t atck_inst_dis(atck_inst_t* self, char* buffer)

Writes atextud disassembly of the ingtruction to buffer, a string buffer you must
adlocate yoursdf. In order to avoid overflow, buffer must be at least

at ck_szdi sbuf () byteslong. This routine returns the number of bytes written to
the buffer, excluding the null terminator.

This disassembly is complete, but not symbolic or particularly friendly. Heresa
brief sample:

addu rda, r0, 325

[ui r2, 4096 I 9%i (0x10000000)
or r3, r2, 36864 ! 9% o(0x9000)

SwW r4, 0(r3)

paddub r4, r0, r0

paddub rs5, ro, r0

Analysis Tools Construction Kit

02-45

j al 0x103738
nop

Y ou could take the disassembly results and run them back through an assembler
to get the program again, but if you want something ussfully human-readable,
you'll probably need to do some back-end processing. We'll see one way to do
that in the example program at the end of this lesson.

Instruction Classification

These atributes provide a generic, cross-platform classfication of the ingtruction.

They each return ATCK_TRUE if the ingtruction performs the specified function, or

ATCK_FALSE otherwise. These classifications are not digoint—asingle indruction
may belong to more than one class. For example, the MIPS BC1 ingtructions are
conditiona branches that touch the floating-point unit.

A table showing the classfication of every EE indruction sarts on page ATK -231
of the online documentation.

atck_bool _t atck_inst_isload(atck_inst_t* self)
Does the ingruction load a vaue from memory?

atck_bool t atck_inst _isustore(atck_inst _t* self)
Does the indruction unconditiondly store a value to memory?

atck_bool _t atck_inst_iscstore(atck_inst_t* self)
Does the ingtruction conditiondly store a value to memory?

atck_bool _t atck_inst_isubranch(atck_inst_t* self)

Does the indruction unconditionaly branch (that is, change the contral flow of
the application)?

atck_bool _t atck_inst_iscbranch(atck_inst_t* self)
Does the indruction conditionally branch?

atck_bool _t atck_inst_isbranch(atck_inst _t* self)

Does the ingruction branch conditionaly or unconditiondly?
atck_bool _t atck_inst_isfp(atck_inst_t* self)

Does the ingruction touch the floating- point unit?

Register Usage
void atck_inst_inregs(atck _inst _t* self, atck _regs_t* regs)
void atck_inst_outregs(atck_inst_t* self, atck_regs_t* regs)
These functions identify which registers the ingtruction reads and modifies,
respectively. They're very important, but covering them would teke apage dl by
itself. We ve dready dogged through enough API information, so let’s move on

to looking a some code to try out our new knowledge. We Il come back to
register usage in Lesson 05.

Analysis Tools Construction Kit 02-46

Okay, You Can Wake Up Now...

...we re done with the APl documentation for this lesson. Go on to the next
section for the sample tool | kegp promising.

A Static Analysis Tool

What is Static Analysis?

Dynamic andydsis examining a running program, using adebugger or a profiler.
Static andyssis examining a program’s code without running it, by smulating

the behavior of the CPU. For example, you're able to step from a call ingtruction
into the called procedure because you (or rather, ATtaCK) know how to identify
an ingruction and how the CPU executesit. So in many ways, static anays's can
tdl you everything about your program. Indeed, if your CPU smulator modeled
every effect of every ingruction, there' d be no difference at al between static and
dynamic andysis gpart from speed.

Sorry, ATtaCK is smart, but not that smart. Its CPU simulator is only concerned
with the most important aspects of how an ingtruction is executed:

Whether it branches, and to where

Whether it calls a procedure, and which oneit cdls
Whether it loads from or stores to memory

Which regigtersit reads and writes

Whether its execution is conditiona or unconditional

So while ATtaCK can't replace your T10000 system, you can gill perform some
very vauable andyss tasks without ever running the target gpplication.

For one thing, you can selectively disassemble your program and display the
result. Don’t underestimate how powerful a debugging tool Eyebdl v1.0is. If you
understand assembly code, you can catch alot of problemsin your application
just by scanning it for sectionsthat "don't look right.” Thisis especidly truein
C++, where aquick look at the actua assembly code for afunction can often
reved that hidden temporary variable whose congtructor and destructor are killing
your performance.

Static analyssredly shines for analysis tasks that are either too dow or have too
many sde effects to perform on the target system. Disassembly is a perfect
example of that: You can't read your application a the speed the CPU executesit,
and your application can't effectively run a the speed that you read. Disassembly
must be done Satically. A task like inline optimization, where you look at the
program as awhole to evauate which functionsto inline, dso consume too much
time to perform againgt a running application.

Ancther task for which static analysis works well is code vadidation. For example,
there are certain OS routines that a shipping PlayStation 2 application must never

Analysis Tools Construction Kit 02-47

cdl. You can use gtatic andysis to sweep your code and ensure that you never call
those routines. We |l work with an extremely vauable code vaidation tool in
Lesson 06 that does exactly that.

For now, though, we're going to look at the smplest "red” ATtaCK toal to write:
adisassembler.

Display.c: A Simple Disassembler

Creating the Project

Your ATtaCK ingalation aready includes aworking project for display.c, under
Examples\Display. Since we're not going to modify display.c, you can save
yourself some time and just use the example project.

However, if you want to make changes to display.c later on, it'sbest to create a
new project. In Lesson 01, we went through the steps of cresting anew ATtaCK
tool that includes both ingtrumentation and analysis code. If you're just writing an
instrumentation tool, you can take a shortcut:

Use "Win32 C Stationery™ to create a new Win32 C console application.
Add theat ck- ps2\i ncl ude folder to the project’ s paths.
Add at ck. | i b to the project’ sfiles.

Write your program. In this case, you would copy di spl ay. ¢ into your
project folder, add the copy to the project and remove the blank mai n. c
created by the Sationery.

Testing the Tool

Once you' ve either opened or created the project for di spl ay. c, hit F7 to makeiit.
The example project is aready made; if you want to seeit build just to reassure
yoursdlf, hit ctrl-minus to remove object code, then make the program. If you get
errors during the make, see Lesson 01 for troubleshooting.

Thisis aconsole application, so open a command console and go to the directory
containing the program. For the example project that came with ATtaCK, the
program is Examples\Display\bin\ps2\display.exe. For a project created using the
CodeWarrior gtationery, the programisin the Bi n subdirectory and is named
nonane. exe unlessyou gave it a different name at the "x86 Target” settings

pand.
Run the program once with no command-line just to make sure it works. If you

get a"cannot find atck.dll" didog box, you need to modify your path; see Lesson
01 for troubleshooting. Otherwise, you should see aline like this:

Usage: display <app>
The only command-line option is the name of the program itsaf. Now, thistool
will disassemble the entire program, so we need to be careful here. If you just

take anorma program and run the tool, the output will scroll past for about five
to ten minutes—literdly! Even asmal sample application—such as my persond

Analysis Tools Construction Kit 02-48

favorite, Blow, found in the Exanpl es\ sce200\ vu1\ bl ow directory—will go on
forever. When you get back from getting yoursdf a cup of coffee, here' s what

you'll seer

Command Prompt

Bx001164d8
Bx801164dc
Bx001164e8
Bx001164e4
BxB01164e8

Bx@81164ec

Bx001164f0
Bx001164f4
Bx001164f8
BxB01164fc
Bx80116588
Bx80116584

Bx00116588

Bx0011658c
BxB0116518

Bx00116514

Bx27hdf £dB
Bxf £ hf BA20
Ax27a40018
Bxe?acBilia
BxBcB45692

BxB3aB8282d

Bx8fa'?8BBc
BxBf a40BBB
BxB887383c
BxBf aSBBB4
BxBf atbBOBS
BxBcB4562c

BxB88738ba

Bxdf bf BO28
BxB3e 0008

Bx27hdBBa38

addu 29, r29. -48
sd r31,. 32¢r29>
addu r4, »29. 16
swcl f12, 16<r29>
Jal Bx115a48

daddun rh, »29, r@

1w 7. 12¢r292
u rd, BCr292
ds1132 »7, »?. B

1w r5,. 4¢r29)
1w rh, BC{r29>
Jal @x1158bh8

dsrl r?,. »?. 2

1d »31, 32<{r29>
ret

addu 29, r29. 48

branch to un

C:\Program Files\Metrowerks\ATtaCK for PE2\Examples-Dig

Fig. 02-01: Sample Output of display.exe

The better option is to redirect the output to atext file. This runs much faster, and
the results are actudly readable. Type the following, dl asoneline:
di splay "C:.\Program

Fi | es\ Met r ower ks\ CodeWar ri or\ Exanpl es\ sce200\ vul\ bl ow\ bl ow. el f
> out put . t xt

(Don't leave out the quotes—they’ re important!) Now dl that output goes to the
text file, which you can open in Notepad.

If output.txt is empty or contains an error message, it's probably because your
copy of ATtaCK isn't installed properly, or perhaps because you don't have the
PlayStation 2 SDK ingtdled. Go back to Lesson 01 for troubleshooting.

How It Works

Okay, you're il here, so I'll assume the program worked. Now let’ s look at the
tool’ s structure. Open up di spl ay. ¢ inyour IDE. Asyou can see, thisisasmple
commeand-line toal, with just one sourcefile, di spl ay. c.mai n() doesdl the
driving. Theinitidization code at the start of mai n() , and the shutdown code at
the end, should look very familiar. This boilerplate code isn't going to change
much from tool to tool, so get used to it.

mai n() calsDi spl ay() todotheactua processing. Di spl ay() inturncdls
PrintProc(),PrintEnts(),PrintCalls() andPrintBB() tostepdown into
the target gpplication. We ll look at those functions in the next section.

Analysis Tools Construction Kit

02-49

Navigation and "Analysis"

The Display() Function

Thefirg thing Di spl ay() doesisdeclaredl the variablesit’s going to need.
Sinceit declares image and procedure iterators, and image and procedure handles,
we can dready get agood sense of what Di spl ay() isgoing to do.

Next, Di spl ay() getsthe byte order of the target, even though we aready know
it'slitle-endian. It also dlocates a string buffer by using at ck_mal | oc() , which
isjust awrapper for mal 1 oc() ; ATtaCK providesit so your code can rely on a
gpecific memory dlocation routine across dl platforms. This buffer will be used

to display disassembled ingtructions, so we have to make sureit’s

at ck_szdi sbuf () byteslong.

Demondtrating the attribute access methods perfectly, Di spl ay() now proceeds
to dump out information about the target program, listing the number of images,
procedures, entry points, cal sites, basic blocks and ingtructions the program
contains.

Next, it dlocates an image iterator and starts walking through theimage list to
generate an image-leve summary of the same information. For each imagein
turn, Di spl ay() allocatesaprocedureiterator to step through and display the
procedure-leve getigtics.

The procedure iterator loop keegps going until the next method returns NULL. The
image loop then releases the procedure iterator. Remember that it’ s your job to
free up iterators, since they have no parentsto clean up after them. Thereé sno
way to reinitidize or retarget an iterator; you just haveto rlease it and create a
new one.

The image iterator oop then releases the image handle it got back. Notice that it
doesn’t release any of the procedure handles, they are owned by and released by
the parent image. It could just let the program object release the image objects at
the end of the run, but images can be very large, so rleasing each image onceit’s
no longer required can save alot of memory. Of course, PlayStation 2 programs
only have one image each, S0 the question hereis moot, but thisis good practice
for the future.

When theimageiterator's _next () method returns NULL, the tool has finished
gathering the summary datigtics. Now it iterates across the images al over again,
to disassemble them. To do this, it must release the old image iterator and create a
new one. Why not just jump back to the beginning of the iterator using
aick_imgit_firsi()? Because running through the iterator again would just give

back the same handles that were aready released.

The second image iterator loop is much like the firdt. Insteed of printing summary
information for each procedure in the image, thisloop cals PrintProc(), passng it
the disassembly buffer dlocated earlier. Asthetool finishes with each image, it
releases the image for the last time. When the loop ends, the tool releases this
second image iterator and returnsto mai n() for find cleanup.

Analysis Tools Construction Kit 02-50

The Remaining Functions

PrintProc(),PrintEnts() andPrintCalls() aenctpaticulaly enlightening:
They creste an iterator, run through every object in the list to display its attributes,
then rlease the iterator. These functions take the same principles used in

Di spl ay() and apply them to procedures, entry points and cal stes. By this
point, though, you should be very confident in your iteration skills, so we'll move
on to something more interesting: Pr i nt BB() , where the actud disassembly
happens.

After declaring variables, Pri nt BB() immediately does something that may look
grange. It gets the number of ingtructions in the basic block, and the tota number
of raw bytes those ingtructions take up, and divides the latter by

szeof (atck_uint32_t) to make sure that it equas the former. Inthe disassembly
loop later on, casting them to an unsigned 32-bit int prints out each indruction's
raw bytes. That's safe when working with the PlayStation 2's MIPS ingtruction
set, where each indruction is exactly 32 bits, but if that’s not what we re working
with, we want to know about it now!

Obvioudy this code only works when deding with MIPS and smilar RISC
architectures. Thisis a perfect example of when to violate cross-platform
compatibility. ATtaCK tools are so smple to write that you can afford to create
throwaway code that only works for one platform (or even for one target
goplication!). Y ou' ve got the opportunity to write reusable tools, but don't
hestate to just dap together a one-shot solution for a problem at hand.

Moving onward, the next code should be very familiar by now. It crestes an
iterator to traverse the ingtruction list. The ATCK_FLAGS_| TLI FE flag indicates that
the ingtruction objects created should only live as long as the iterator itsdlf should.
That'sdmost dways what you want to use—without that flag, ingtruction objects
can wind up consuming alot of memory.

Theloop then prints out five pieces of information for each indruction: its source
file name and line number, its address, its raw bytes, and its disassembly string.
The ATCK_SwWaPTOU32() macro conditiondly byte-swapsthe ingruction’s raw
bytesif the host platform has a different byte order than the target. Thus, while
this tool will only work for the PlayStation 2, it can be run on multiple host
platforms.

After the disassembly information that’s common to dl ingtructions, the loop
prints out the ingruction’s classifications, if any. If the indruction is a branch, the
addressis printed. If theingruction isacal, the target symbolic name (if known)
or addressis printed. Notice how the tool gets the instruction’ s corresponding
cal-site object then uses that object to get the call’ s target name and address.

When the loop finishes, the ingtruction iterator is freed and the function returns.

Future Improvements

And that’sthe end of our first "red" ATtaCK toal. Its biggest problem isthe
sampligtic output routines. Dumping to st dout isnot realy appropriate for this
tool, ance any but the shortest gpplication is going to generate tens of thousands

Analysis Tools Construction Kit 02-51

of lines of output text. A more user-friendly approach would be to save the output
to atext file, printing an ongoing progress report (such asasring of periods) to
the console. Better till, save the output into aformat more useful than just plain
text.

Eventhen, the resulting disassembly file will be hard to work with. It'd be easy to
add command-line options that |t the user specify sarting and ending points for
the disassembly—from address to address, from source line to source line, or by
function name. Once the scope of the disassembly is limited, console output
becomes more manageable, so the user should get the option to switch between
console and file output.

So Far So Good!

Well, you'll be happy to know that this was the longest and most content-rich
lesson of the entire course. If you look at the ATtaCK docs, you'll see that we just
covered haf the manud! That doesn’t mean we' re hdfway done with the course,
but it does mean we ve gotten haf of the boring API details out of the way.

Future lessons will spend less time on type definitions and function arguments

and more time on the theory and practice of ATtaCK andyss. In fact, the last two
lessons are nothing but theory and practice.

For now, though, we ve still got some more AP to cover, so it'son to Lesson 03:
Instrumenting an Application.

Analysis Tools Construction Kit 02-52

Lesson 02 Assignment
Write the following function:

atck_inst_t* GetNextlnstruction(atck_inst_t* cur);

This function should return a handle to the ingruction that will get executed
after the current one. If that cannot be determined, return NULL.

Hint:
The key hereisto understand that the next instruction by address won't
necessarily be the next indruction executed. There are afew Stuations to ded
with:
If the current ingtruction isn't the last one in a basic block, then the next
ingruction is smply the next ingtruction returned from the block’ siterator.

If the current ingtruction is the last one in the block and is an unconditiond
branch, the next ingtruction will be the target of the branch. (If it sa
conditiond branch, you should just return NULL, since by definition you
don’'t know which ingtruction will be executed next—you know which of
two possible ones will be executed, but that’ s not what you were asked to
find out!)

If the current ingtruction isthe last onein the block and is not a branch,
then it may bein the load-ddlay dot of the previous ingruction. In that
case, the next ingruction will be the target of the previous branch
indruction.

If the current ingtruction fals a the ed of abasic block but isn't abranch
and isn't in aload-ddlay dot, then the next indruction is just the first
ingruction of the next basc block.

AnSwer:

The file ex02-01.c, which you can get from the "supplementd materid”
folder, performsdl the required checks. Note that it uses “image-life’
ingruction handles, which are wasteful. However, it hasto reeaseits
ingtruction iterators before returning in order to avoid memory lesks, and o
iterator-life ingruction handles would be invdid by the time the cdler
received the return value. For extra credit, figure out how to use iterator-life
handles with this code!

Analysis Tools Construction Kit

02-53

Lesson 02 Quiz

1. How many ingructions are in each basic block?
A One
B Two, because the EE loads two ingtructions at once
C Sixteen, because the EE’ singtruction cache lines are 64 byteswide
D None of the above

2. When ATtaCK iterates through all the proceduresin an image, which
of the following will gppear inthelist?

A Procedures that do not have symbolic debugging information
B Proceduresthat are never called
C Both

D Nether

3. Which of thefollowing is mogt likely to be alegitimate ATtaCK
function?

A open_inst(atck_inst_t

B atck _iprog _close(atck_iprog_t*)
C atck _get proc_size(atck _proc_t*)
D atck_bb_findnext(atck _proc_t*)

4. You have two ingruction-object handles, X and Y. Comparing them,
you learn that X islessthan Y. What do you now know about these
two indructions?

A Nothing

B X wascrested before Y

C X hasalower addressthan Y

D XandY represent two different ingtructions

5. Trueor fdse You cannot write ATtaCK ingtrumentation toolsin C++.
A True
B Fdse

6. You can use aprocedure handle to create an iterator for three of these
object types. Which one can not be iterated across in a procedure?

Analysis Tools Construction Kit 02-4

10.

0O W >

Ingtructions
Basic blocks
Entry points
Cdl stes

True or fase Thelast ingruction in abasic block will dways be some
kind of branch, cdl or return.

A
B

True
Fdse

Which of the following objects needs to be released after use?

A

B
C
D

Program
Imege
Procedure
Ingtruction

Of the following, which can gppear multiple times within abasic

Entry points
Cdl dtes
None of the above

True or fdse: Before ending your ATtaCK session, you must free any
grings returned from methods likeat ck_appnane() .

A True

B

Fdse

Analysis Tools Construction Kit

02-55

Lesson 03: Instrumenting an Application

Thekey to run-time andyss with ATtaCK isingrumentation: insarting analys's
cdlsinto your gpplication’s binary image. In our third lesson, we |l cover
ingrumentation in depth. We'll dso spend some time looking a smple andysis
code. Findly, we'll examine ProcCount, a basic procedure counter.

Instrumentation Concepts

Lesson Objectives

In thislesson, we' |l cover two more steps of the ATtaCK process. adding
indrumentation calls and writing out the gpplication. Writing out the application
iseasy, and will take asmall part of one page. Learning how to design, declare,
build and invoke andlysis code will take the rest of this lesson and the bulk of
Lessons 05, 06 and 07. So don't fed like you have to become an expert on
andysscoderight away... we'll vist thisissue again later.

On the other hand, there will be aquiz at the end of thislesson, so pay attention!

Instrumentation and Analysis

Y ou're probably used to working with a sampling profiler. Such atool runs
adongside the target gpplication, hating it many thousands of times a second to
reed the contents of the program counter (or ingtruction pointer in Intel-land).
Thislets the compiler build agatistica picture of the gpplication’s performance:

If the program counter was within the Render Wor | d() function 72,600 times out
of the 100,000 times the profiler stopped the program, then it's a good bet that
Render Wor | d() probably takes up 72.6% of the gpplication’s clock cycles.

It'sagood bet, but not a sure bet. Sampling profilers are not perfectly accurate—
very fagt function cals might fal in between samples, and line-by-line
performance results within a procedure aren't very reliable a all.

To improve accuracy, the profiler can take more samples per second, but that
dows down the target gpplication. When working with agame, sampling profilers
can dow the code down so much that the game becomes unplayable. Profiling
then has to be a separate task from debugging or playtesting, and the profiler's
results don’t represent typical gameplay.

Instrumentation takes a different gpproach. Instead of halting the target
gpplication thousands of times a second to read its state, instrumenting profilers
add code to the target application that log events when the gpplication’s Sate
changes. For ingance, an insrumenting profiler might add code to the start of
every function to log that that function got called.

Notice how instrumentation solves the problems of sampling. Firs,
instrumentation is 100% accurate—nothing fals through the cracks. Second, the
code to log events usudly runs much faster than hating the program to sample its

Analysis Tools Construction Kit

03-56

date externaly. CPUs are much fagter at function calls within a thread than at
context switches between threads.

Bedt of dl, an ingrumenting profiler doesn't have to ingrument the entire
application. If you suspect that Render Wor | d() iswherethe big time-sinks are,
you can tell an ingtrumenting profiler to concentrate on that one function. A
sampling profiler must run congantly if it'sto be of any value a al.

Binary Code Instrumentation

There are two ways to ingtrument an gpplication, in source code and in binary
code. You've dmost certainly created source-level insrumentation yoursdlf a
time or two: When you write code in your display loop that getsthe time at the
gart and end of a frame, and compares those times to generate a “ frames per
second” datistic, you' re using source code instrumentation.

Source code instrumentation is easy but time-consuming. Y ou have to write the
code, add it to the correct places in the application, recompile and run the test,
then go back, remove the code and recompile again to “shut off” the profiling.

To save you that effort, ATtaCK uses binary code instrumentation. In this
technique, an instrumentation tool (e.g., an ATtaCK program) inserts
ingrumertation cdlsinto your compiled executable. Instrumentation calls,
conceptudly, are function cals to routines that log events or monitor the
gpplication’s state. Those routines are called analysis code.

For example, you might want to know how many times a particular function gets
caled. Your ingrumentation tool would add an instrumentation cdl to the sart of
that function. The insrumentation cal would cal an andysis routine thet
incremented a counter. At the end of the run, the counter would contain the
number of times the function had been cdled.

Asyou think about this, I'm sure you' |l start to see how powerful ATtaCK’s
binary code insrumentation can be. Instrumentation calls can be placed before or
after any entity, from individud ingructions dl the way up to the program asa
whole. Y ou can specify arguments for these instrumentation cals—either datic
arguments, such asan 1D vaue for the procedure being instrumented, or dynamic
arguments, such as the contents of a particular register. And the analysis code can
do anything it wants with this information, including halting the application
atogether.

Unfortunately, dl thistak about the principles behind ingtrumentation and
andyss makesit sound harder than it redly is. To quell any fears, let’slook
briefly a an actua analyss routine:

voi d Count Proc(atck_uint32_t proclD)

{
ProcCount s[procl D] ++;

}

ProcCount s[] isan array of counters, one for each procedure. Procedures are
identified by number usng pr ocl D. To usethis array, we add acdl to

Analysis Tools Construction Kit

03-57

Count Proc() at the gart of each procedure, passing in an ID number unique to
that procedure. When the program runs, these counters will get incremented. After
the program finishes, we'll be able to look at each counter for each procedure.

Running the program and reading the array of counters are the subject of the next
lesson, though we' Il touch on them briefly when we examine a sample program
later on. For now, let’slook a how instrumentation cals work.

Instrumentation Calls

Andydsroutines are C voi d functions that you write and compileinto a
temporary executable. ATtaCK will link thisfile later on to your target
goplication, so that insrumentation cals inserted into the target can cdl to the
andysdis code you write,

Andysisroutines don't return values, but they do accept arguments. Each
ingrumentation cdl is thus afunction cdl that passes alist of arguments but does
not expect areturn vaue. Since the indrumentation cdl isinserted into the target
goplication by your insrumentation tool, the upshot of dl thisis that your
ingrumentation tool passes the arguments to your analysis code.

Passing Arguments
Let’stake aquick look at how the instrumentation tool “calls’ the andysis code:

i proc = 0;
pproc = atck_procit_first(ppi);
whi l e (pproc)
{
atck_proc_cal | bef ore(pproc, pproto, iproc++);
pproc = atck_procit_next(ppi);
}
Y ou should immediately recognize everything in this code fragment except for
the fourth line. If you don't, go back to Lesson 02 and review that now, because
believe me, thisisn't going to get any easier from here.

We're not going to go into much detall on at ck_pr oc_cal | bef ore() right now.
Thisisthe ATtaCK function used to insert an instrumentation cal to aparticular
andysis routine into the start of atarget procedure. The function isamethod of

the procedure object, the “saf” handle of which is passed as the first argument.

The andlysisroutine is represented by a*“prototype” object, which stores
ATtaCK’s definition of the routine (induding its expected arguments). A handle
to that object is passed as the second argument; in this example, ppr ot o isa
handle to the prototype for the Count Proc() function that we ve aready seen.

Theremaning agumentsof at ck_pr oc_cal | bef ore() aetheargument lig to
be passed to the andysis routine. In this case there' s just one argument, i pr oc. As

Analysis Tools Construction Kit

you can see, thisis a counter that gets incremented for each procedure, so it will
range from O to the total number of procedures covered by the iterator minus 1.

Every timeat ck_proc_cal | bef ore() iscaled, ATtaCK insertsacdl to
ProcCount () right at the start of the target procedure, passing it the vaue of
i proc. If thetarget'smai n() function happens to be the 17" function returned by
the iterator, the result would be something like this:

int main(int argc, char** argv)

{
ProcCount (16) ;

/* REST OF ORI G NAL MAI N() GOES HERE */

Okay, now before | get into trouble here, let me stressthat ATtaCK uses binary
code instrumentation. No source code file gets modified, and the program doesn't
get compiled again! I’'m just describing it here as if the source code were
insrumented, in order to make it clear what's going on. Conceptudly, ATtaCK
insatstheline Pr ocCount (16) ; at thetop of mai n() . That lineisthe
ingrumentation cal, and Pr ocCount () isthe andyssroutine.

| suppose | could have shown an assembly verson, something like this

mai n:

xor $a0, $a0, $a0 # zero-out register $a0

addi $a0, $a0, 16 # put the value 16 into register
$a0

jal ProcCount # call ProcCount

rest of original main() goes here

... except that it might or might not look like that. The instrumentation cdl is
conceptually afunction cdl, but in practice, ATtaCK isfree to perform the task
however it seesfit. In this case, Snce Pr ocCount () isso Smple, ATtaCK would
amog certainly inlineit, inserting the entire body of Pr ocCount () into the
beginning of mai n() .

The point of al thisisto demongrate that the third and subsequent arguments
passed into the instrumentation method at ck_pr oc_cal | bef ore() become the
first and subsequent arguments to the analyss routine. The best way to envison

this process is that your indrumentation tool is passing vaues directly to your
andysis code, using the target gpplication as amiddieman.

Static Arguments vs. Dynamic Arguments

Thei proc counter in this example is a static argument: Although the
indrumentation code runs through many vauesfor i pr oc, each individud
insrumentation call that getsinserted into the program treets the vdue as a
congtant. The ingrumentation cal a the top of mai n() will always pass 16 to
ProcCount () .

Analysis Tools Construction Kit 03-59

Y ou can aso specify dynamic arguments. With a dynamic argument, your
instrumentation tool does't know the vaue. Instead, you specify which aspect of
the target gpplication should be passed at runtime. ATtaCK then creates an
ingrumentation call that reads that vaue and passesit on to the andlysis routine.

For example, if you write an analysis routine to keep track of how deep the stack
has grown, you d want to pass the value of register 29, the stack pointer.
Obvioudy your instrumentation tool doesn't know that value. Insteed, you pass a
gpecid code meaning “the vaue of regigter 29" to the ingrumentation method.

ATtaCK then inserts instrumentation code that fetches the value of register 29,
doresit in aregister and then cdlsthe andysis routine. The andyss routine itself,
however, just sees an unsigned 32-bit integer coming in; it doesn’'t have to know
anything at dl about how regigters or the stack work.

Instrumenting an Application

Instrumentation Methods

Common Characteristics

Instrumentation cals get added to existing objects in the target gpplication, such
asingructions or procedures. Congstent with the rest of the ATtaCK AHM, this
means that the functions to insert instrumentation calls are methods of code
objects. As methods, these functions each take as ther first argument a handle to
the code object in question.

The second argument of an instrumentation method is dways a handle to the
target andysis routine. Specific andysis routines are represented by the prototype
object, at ck_pr ot o_t . Thisobject contains the routine s symbolic name and its
argument list. For every analysis routine you cregte in C, you have to declareit in
ATtaCK. The declaration function gives you back a handle to a prototype object,
which you then pass to the instrumentation methods. This process will be covered
more later.

The remaining arguments of an instrumentation method are the vaues that the
instrumentation call should pass to the andyss routine.

I nstrumentation methods follow the norma ATtaCK naming convention:

at ck_obj _action().Inthiscase theaction isether cal | bef or e—add the
instrumentation cal before the specified object executes—or cal | af t er —add the
cal after the object executes.

None of these methods returns avaue. If the specified object cannot be
ingrumented, or if the specified analysis function is not gppropriate for the object,
ATtaCK prints adiagnostic message but does not generate an error code,
Method Definitions

void atck_call before(atck_prog t* self, atck _proto_t* targ,

)

Analysis Tools Construction Kit 03-60

void atck _callafter(atck _prog_t* self, atck _proto_t* targ,
-)
These methods add an instrumentation call at the sart or end of the specified

program. Remember that the program object has no abbreviation, so the method is
at ck_cal | before() ratherthan at ck_prog_cal | before().

void atck_ing_call before(atck _ ing_t* self, atck proto_t* targ,
-)
void atck_ing_callafter(atck_ing_t* self, atck_proto_t* targ,
»)
These methods add an instrumentation call at the start or end of the specified
image.
voi d atck_proc_cal |l before(atck_proc_t* self, atck _proto_t* targ
-)
void atck_proc_callafter(atck_proc_t* self, atck _proto_t* targ,
-)
These methods add an instrumentation call at the start or end of the specified

procedure. Procedures marked “unreadable’ or “unwritable’ cannot be
ingrumented, and ATtaCK will generate a diagnostic message if you try.

void atck_ent _call before(atck_ent _t* self, atck _proto_t* targ,
-)

This method adds an instrumentation call before the specified entry point—that is,
before any code in the entered procedure executes. Thereis no such thing as
ingrumentation “after” an entry point. Entry pointsin procedures marked
“unreadable’ or “unwritable’ cannot be instrumented, and ATtaCK will generate
adiagnostic message if you try.

void atck_call _callbefore(atck_call _t* self, atck _proto_t*

targ,...)

void atck_call _callafter(atck _call _t* self, atck_proto_t*
targ,...)
These methods add an instrumentation cal before or after the specified cdl ste.
Cdl gtesin procedures marked “unreadable’ or “unwritable’ cannot be
ingrumented, and ATtaCK will generate a diagnostic messageif you try. Cdll

gtesthat target uninstrumentable procedures may themselves be instrumented,
however.

voi d atck_bb_cal | before(atck _bb_ t* self, atck_proto_t*
targ,...)

void atck_bb_callafter(atck_bb_t* self, atck_proto_t*
targ,...)

void atck_inst_call before(atck_inst_t* self, atck _proto_t*
targ,...)

void atck_inst_callafter(atck _inst_t* self, atck_proto_t*
targ,...)

These methods add an instrumentation call at the sart or end of the specified
basic block or instruction. Basic blocks and instructions in procedures marked

Analysis Tools Construction Kit 03-61

“unreadable’ or “unwritable’ cannot be instrumented, and ATtaCK will generate
adiagnogtic message if you try.

Wot, No Filename?

Somewhat surprisingly, neither at ck_i ng_write() noratck_finish_wite()
accepts a filename to write the new executable to. They aso don't modify the
original executable. So where does the filename come from? From the origina

at ck_open() cdl.

The at ck_open() function’s outfile argument specifies a filename template for use
in writing out the executable. Since an application might have more than one image,
the template alows you to specify a naming scheme by which new image filenames
can be generated as necessary.

The format for this template is covered in the documentation on page [FIXUP:
“ATCK Framework API”, page 13]. However, here' s a boilerplate definition that will
amost aways work for you:

“<di r ><base>_t ool nane<suf >"

This template, which is used by al the example programs, places the new executable
in the same directory asthe origind one, adding “_toolname” to the end of the base
name but keeping the file extension the same. Replace toolname with your tool’s
name, such as pr occount .

If you intend to download and execute the instrumented program immediately, and
are content to throw the program away once the profiling session is done, you may
specify NULL for the output filename. ATtaCK will then use temporary files to hold
the instrumented program.

Writing the Instrumented Application
atck_bool _t atck_ing_wite(atck_ing_t* self)

If you add any ingrumentation to an image, including to children of an image,
you mugt tell ATtaCK to write out that image, using at ck_i mg_wri t e() , rather
than Imply releesing theimage usng at ck_i ng_r el ease() .

If you instrument some images in a program but not others, you only need to call
at ck_i mg_wri te() for theinstrumented ones, the rest can be released normally.
You can cdl it for an uningrumented image, in which case the new imagefileis
identica to the origina one.

This method generates a name for the new image file usng the filename template
gpecified intheat ck_open() cdl, then writes the image and releases Al

resources associated with the image. Do not attempt to call at ck_i ng_writ e()
more than once for agiven image, Snce each cdl will try to write to the samefile.

This method returns ATCK_TRUE if the image was written successfully, or
ATCK_FALSE otherwise (for example, due to lack of disk space).

atck_iprog t* atck finish wite(atck _prog_t* self)

Analysis Tools Construction Kit 03-62

If youcdl at ck_i mg_wri te() for any imagein the program, cal this method
after you' ve finished writing the last imege. It findizes any indrumentation cdls
added to the program object, and then generates the new executable file using the
ingrumented images. It returns a handle to an ingrumented program ready for
downloading and execution, atopic covered in the next lesson.

Instrumentation Sequencing

Previoudy, | threw around the terms “before” and “after” pretty loosdy. For
ampletoals, for instance, only those that instrument procedure, the intuitive
definitions of “before” and “after” are good enough. For anything more
complicated, you'll want to know exactly where the instrumentation cals get
placed.

The guiding principle for the sequencing of “before’ calsistop-down, then first
in, first out. If you add two instrumentation cals before the same object, the first
one will be executed before the second one. But if you add two instrumentation
cdlsin the same location via two separate objects, the cal added to the “higher”
object executes before the call added to the “lower” object, regardless of the order
in which they were added.

For example, instrumentation added to the start of abasic block aways executes
before insgtrumentation added to the start of the first procedure in the block. Two
cdls added before the same ingtruction, however, execute in the order they were
added.

For “after” cdls, the principle is bottom-up, then first in, first out. If you add two
ingrumentation calls after the same object, the first one will be executed before

the second one, just asif they were added before the object. But if you add two
ingrumentation calls after the same location via two separate objects, the call

added to the “higher” object executes after the call added to the “lower” object,
regardless of the order in which they were added.

Thus, insrumentation added to the end of a procedure always executes after
instrumentation added to the end of the last basic block in that procedure. Two
cals added to the end of the same basic block, however, execute in the order they
were added, not the reverse order.

Programs

Instrumentation added before the program object is caled before the first
ingruction in the gpplication, and indeed before any instrumentation added with
any other cdl. Instrumentation added after the program object is caled after the
lagt indruction in the application and after instrumentation added with any other
cal.

Program instrumentation is the perfect place for any initidization or shutdown
functions your analysis code needs. For example, if your analysis code uses a
memory buffer, you should probably alocate and initidizeit in afunction caled
viaat ck_cal | before(),thenrdeaseit froman at ck_cal | after () function.

Analysis Tools Construction Kit

Images

Instrumentation added before an image object is cdled after the image is loaded
but before the firgt ingtruction in that image executes, and before any
indrumentation associated with any child of that image. Instrumentation after the
image executes immediately before the image is unloaded, and thus after any
ingrumentation associated with any child object.

If aprogram has only oneimage, or if it has one main image that remainsin
memory throughout execution, that image will ill get “unloaded” when the
program exits. In that case, instrumentation after the image will execute just
before any indrumentation added after the program object.

Procedures

| nstrumentation added before a procedureis called just after the procedure is
entered, but before any ingtructionsin the procedure are executed. The same
ingrumentation call is executed regardless of which entry point the application
uses to enter the procedure.

Likewise, instrumentation added after a procedure is called just before the
procedure returnsto its caler, and the same instrumentation is executed no matter
which of the procedure' s return statementsis being used.

Entry Points

Entry-point ingtrumentation, which can only be “before’ the entry point, executes
after any before-procedure instrumentation, but before any other instrumentation
in the procedure.

Thisingrumentation is associated with a specific entry point and only executes
when that point enters the procedure. Each entry point represents a specific
ingruction, but the entry- point instrumentation won't be executed unless that
ingruction is reached by a call from another procedure.

Call Sites

Instrumentation added before a call Site executes before the procedure is caled,
and thus before any instrumentation in the target procedure.

I nstrumentation added after the cal Ste executes upon the target’ s return. Note
that some procedures might not return—for example, they may execute a

| ongj np() toreturn to aprevious context. Instrumentation added after acdl site
to one of those procedures will never be executed. Y ou can check the Site's
atck_cal | _returns() dtributeto see whether the target is known to return.

Cdl dtes St in between two basic blocks: the procedure is called after the end of
the first block, and then returns to the beginning of the next block.
Instrumentation added before the cal site executes after instrumentation added to
the end of the basic block containing the ste. Instrumentation added after the call
Site executes before instrumentation added to the beginning of the next basic
block.

Analysis Tools Construction Kit

Basic Blocks

Thisone, a least, issmple: Instrumentation added before a basic block executes
before the first ingtruction in the block. Instrumentation added after a basic block
executes after the last ingtruction in the block.

Instructions

Hang on. Ingtructions are involved enough that they redly deserve their own
Separate section...

Instrumentation Sequencing—Instructions
...ah, that’ s better.

Instructions

ATtaCK makes an indruction’s instrumentation look as much as possible like a
part of the ingtruction itsdlf. Instrumentation added before an ingtruction is the
very lagt thing to be executed before the ingtruction itsdlf. Instrumentation added
after an ingruction will get executed immediately after the indtruction, before
anything e in the program.

This can get weird with ingtructions that change the flow of control, by branching
or by calling a procedure. Instrumentation added before ajump is easy—the
ingrumentation executes, then the ingruction, then the jump. But what doesiit
mean to add ingrumentation after ajump ingruction?

To understand that, we will need to remember dynamic arguments. An
ingrumentation call can pass the contents of registers to the andysis routine. For
ingrumentation added after an ingtruction, any changes that instruction makesto
registers are visible to the analysis routine.

For example, consder the following indruction:

xor a0, a0, a0

Let's assume that we have an analysis routine that expects to be passed the
contents of r1. Instrumentation added before this ingtruction will passin the
origina vaue of rl. Insrumentation added &fter the ingtruction will pass the new
value, which in this case will be zero.

So ingtrumentation added after ajump has access to the new contents of dl the
registers, including the program counter. The insrumentation actudly heppensin
between the change to the program counter and the transfer of execution.
Likewise, for acal ingruction such as jd, which stores the return addressin r31,
the ingrumentation call can pass the new vaues of both the program counter and
r3l.

On many chips, including the EE, when aregider isloaded from memory, the
new vaueisn't visble for severd cycles afterward. If an instrumentation call
after an ingtruction passes the loaded register to an anadlysis routine, ATtaCK adds

Analysis Tools Construction Kit

in adday 0 that the new vaue is available. This can cause a sgnificant dow-
down of your gpplication, so only read registers when truly necessary.

Smilarly, most branches on the EE are delayed—the indruction after the branch
executes while the processor prepares to transfer execution. Y ou might think that
ingrumertation code added after a branch would displace your application’s code
out of that “delay dot,” disrupting your code. It doesn't. The instrumentation
executes, then the delay-dot’sindruction (incduding any ingrumentetion it might
have) executes, then the branch takes effect.

How does all thiswork? | have no idea. ATtaCK handlesit al behind the scenes.
The bottom line isthat your tools can put insrumentation anywhere in the
program you want, without worrying about what the actua CPU is doing.

Instrumentation might dow your program down, but it won't break anything. If
you forget how instrumentation sequencing works, your andys's code might not
work the way you want. And if you write buggy andysis routines, they could

break. But nothing you do in an instrumentation tool can crash your gpplication.

Pop Quiz

Here'saquick test to review how dl thisworks. Let’sdiagram asmple
procedure:

'P%%%ESD Fig. 03-01: Diagram of a Simple Procedure
[[nsE060000 Ent0600 | Our instrumentation tool in this caseis
[Inst060001 | identifying objects using 32-hbit vaues,
[Tm=t0c000z | somewhat like | P addresses. Here we see

procedure 06, which contains basic block
0600, which in turn contains ingtructions
060000 through 060002, and so forth.

Let’sassume that every object in the diagram
isingrumented both before and after, with a
separate analysis routine for each level and
position. Thus, the routines are

Bef oreProc(),AfterProc(), BeforeEnt (),
Bef oreBB(),AfterBB(),BeforeCall (),
AftercCall (),Beforelnst() and

rEEO&0L
[Imscoe0lon Entos0l

[Tn=coeninl

[Instosoi0z

[Instos0104

[InscoDse0los callosnn

|
|
|
[Tn=c0eninz |
|
|
|

[Instos0i0e

-EEOG02
[Inst060Z00 | Afterlnst (). Eachroutinetakesthe ID vaue
[Tnsc060Z01 | of the instrumented object.

[Insc0s0202 | For the sake of discussion, cdl ste 0600 calls

procedure 1E, which is not itsdf instrumented

below Bef or eProc() and Aft er Proc().

Now, if the cdler entersthis procedure a entry point 0600, what analysis routines
will be cdled, and in what order? The answer in the Quiz Answers section of the
document, but try to work this out on your own firg.

Analysis Tools Construction Kit 03-66

Creating Analysis Code

ATtaCK analyss codeisasmple C program that contains routines, which will be
invoked by your ingrumentation cdls. There are three steps to creating this
program: First you set up a CodeWarrior for PlayStation 2 project to compile and
link the program. Then you design the analyss code itsdlf, writing Standard C
routines. Finaly, you tdl ATtaCK the names and argument lists of your andys's
routines, o that it can set up the instrumentation cals properly.

Building Analysis Code

Your andysis routines live in asmal, temporary executable file, created using a
separate CodeWarrior for PlayStation 2 project. Back in Lesson 01, you learned
how to set up project stationery to create new analysis-code projects. That same
project Sationery should work for just about every analysistool you write, so
setting up the project and building the code is easy.

Now that you actualy understand what instrumentation and analysis code are
trying to do, you might want to go back and review Lesson 01. Pay particular
attention to the project settings for andysis code, because they shed some light on
how things work. For ingtance, the linker must be told to usethe at ckt ar g_st art
library routine as the entry point for the analysis “program,” since there is no

mai n() function in andyss code.

If you want to review Lesson 01 now, fed free—I’ll wait here. From this point
forward, I'll just assume you understand and are using the project Sationery.

Designing Analysis Code

The anadlyss code for a particular tool isasmdl C program that you write. This
program does nothing by itsef—it hasno mai n() , and doesn’t even cdl any of its
own routines. Instead, your instrumentation tool uses ATtaCK to attach the
andysis code onto the end of the target gpplication, inserting calsto that code
throughout the program.

When ingrumentation code calls an anadysis routine, what does that routine do?
The smplest andysisroutines just increment counters. In fact, that' s pretty much
what all analys's code does. Y ou want your andysis routines to be as lightweight
as possble. Smply incrementing a counter, leaving any red processng of the
datafor later, isusudly the best gpproach.

More often, the analys's routine increments one eement from an array of
counters. That way, the instrumentation tool can use anumeric ID to specify
which counter should be incremented. The aternatives are to use a separate
function for each counter, which is cumbersome, or to identify a counter by some
non-numeric means (such as agring), which isinefficient. Andyss routines
should be easy to write and fast to run, and numericaly indexed arraysfit the bill
perfectly.

The Pr ocCount () function we saw incremented one eement of ProcCount s[],
an array with one eement per procedure. Each procedure was identified by a

Analysis Tools Construction Kit

03-67

numeric vaue that was passed into Pr oc Count () . These vaues came from the
tool, and only had meaning to it. Neither the instrumentation cals nor the
ProcCount () andyssroutine understood the 1D value to mean anything other
than which counter in the array to increment.

This brings up an important point: The data gathered by the analys's code dmost
aways is meaningless without the ingtrumentation tool. All of the context
information—the table that trandates counter ID numbersinto procedure names,
for example—Ilivesthere, not in the andlyss code. After your instrumentation tool
collects the results of the analysis code, it’s your job to attach the context
information to those results before saving or displaying them.

Simple Analysis Code
Here sthe smplest analyss code you're ever likely to use:

#i ncl ude <atcktarg. h>

#pragma force_active on
atck_uint32_t ProcCounts[1000];

voi d CountProc(atck_uint32_t proclD)

{
ProcCount s[procl D] ++;

}

The firg thing to notice about the program isthat it is cross-platform: It doesn't
use any typesthat aren't defined by ATtaCK. Y ou can get away with using
standard C typesin an insrumentation tool. The whole point of analys's code, on
the other hand, isto gather datato communicate back to the host system, and it’s
vita that the basic types be the same on both sdes of that connection.

In particular, indrumentation calls—which are essentidly cdls from your
instrumentation tool to the analysi's code, across the gap between the host and
target—can only pass ATtaCK’ stypes. Analysis routines cannot use standard C
typesin their argument lists. We Il cover the range of available data types later
on, but at ck_ui nt 32_t isthe oneyou'll use most often anyway.

The ATtaCK types and interfaces are defined in the system header at ckt ar g. h,
included at the top of this program. Y our instrumentation tools, which run on the
host system, include at ck. h; analys's code, which runs on the target, usesjust a
subset of the ATtaCK interfaces, defined in at ckt ar g. h. Some PlayStation 2-
specific definitionsareincluded in at ckt ar gps2. h, which you might need to
include in addition to (not ingtead of!) at ckt ar g. h. Thisprogram doesn't use any
of those, and we won'’t encounter a program that does until Lesson 05.

The pragma directive on the next line tells the linker to include dl the routines
from this file, even though none of them ever get cdled. In the fina executable,
there will definitely be instrumentation calls that use these routines, but the linker
doesn’'t know that right now.

Analysis Tools Construction Kit

The top two lines are boilerplate—every analyss program you create will use
them. The remaining lines are the actud analysis code.

The program smply creates a static array of 1000 32-hbit unsgned integer
counters. Instrumentation callsto Count Proc() specify which counter to
increment, and Count Pr oc() dutifully increments the specified counter. Note
that, like al anadlyss routines, Count Proc() doesn't return avaue.

See, | told you it was Smple.

What’'s Wrong With This Picture?

Now, if it werereally that smple, you wouldn't need this course. Thiscodeisin
fact too minimd, and in later lessons we Il see how to improveit.

For onething, alocating a Satic array is abad gpproach—1000 dementswill
ether be too many, which isinefficient, or too few, which is downright
disastrous. So “redl” analyss code needs to work with dynamically sized arrays.
Y ou can cregte the array yoursdlf, or you can let ATtaCK handle it for you.

Another problem with this function isthat it only gathers one piece of
information—which procedure needs to be counted. So the only profile we can
get from this code is the number of times each procedure was cdlled. Any
advanced optimization will certainly require more detalled data than that. At a
minimum, we d want to know how many indructions within each procedure
actualy got executed.

What' s not missing, on the other hand, is code to communicate the results back to
the host system. The andlysis routines don't talk to the host at dl. Rather, the host
reads the memory of the target gpplication (including its attached analysis code)
directly. In this example, after we' ve finished profiling the application, the
instrumentation tool will 1ook up the address of the ProcCountq] array and reed
the counters out of it. That processis the subject of Lesson 04.

At any rate, while there s alot more to learn about designing andysis code, we
can get by with our smple CountProc() function until Lesson 05, when we cover
andyss code in detall.

Declaring Analysis Code

Andysis routines have to be declared twice: first in C, for the bendfit of the
compiler, and then in a C-like description language, for the benefit of ATtaCK.

The C declaration is straightforward, as we saw in the Count Proc() example
above. Now when | say “declaration” here, I'm talking about “voi d

Count Proc(at ck_ui nt 32_t procl D) ” —thefunction’ssgnature. If the body of
the function itsdf follows that, then it's more precisely a“definition” rather than a
“declaration.” Since analyss routines seldom call each other, you generdly won't
bother declaring the routines. Nevertheless, I'll continue to refer to thisasthe C
declaration, to strike a parale with the ATtaCK declaration.

Analysis Tools Construction Kit 03-69

Y our ingtrumentation tool will cal the andyss routines—indirectly, through
instrumentation calls added to the target gpplication. So the routines need to be
declared to the instrumentation toodl. In this case, it's ATtaCK, rather than the C
compiler and linker, that is generating the cdll, and s0 you have to use ATtaCK
function Sgnatures rather than C ones.

An ATtaCK declaration is represented by, you guessed it, an object—the
at ck_proto_t, or “prototype’ object. The prototype object contains al the
information ATtaCK needs to know about a particular analysis routine.

Declaring ATtaCK Prototypes

Prototype objects are constructed using a factory method of the program object,
like so:

atck_proto_t* atck_anal proto(atck _prog t* self, const char*
decl are)

Asamethod of the program object, this takes a handle to the program in question
asitsfirg argument. The second argument is a string containing the function
declaration, written in a C-like definition language described below.

If the declaration is vdid, this method returns a handle to the new prototype
object. This handleisthen passed in as the targ argument for an insrumentation
cdl, as seen ealier. If the dedaration isinvadid, this method returns NULL, and
ATtaCK issues adiagnostic message to st der r . The most obvious reason why a
declaration would be invdid isa syntax error.

Remember that when you opened the program you aso specified a that time the
name of the anadlyss program to use. If you didn’t specify an andysis program, or
if the declared function doesn't exist in that program, this method will return
NULL.

Prototype handles are owned by the program object, and are released whenit is.

Y ou do not need to release them yourself. In fact, you can’t release them yourself.

So therel

Definition Language
ATtaCK function declarations use a C-like language, like so:
void nanme(argl, arg2,...)

Anaysis routines never return anything, so the void is boilerplate. name isthe
function’s name, exactly asit gppearsin the analyss program’s symbol table—so
if you write your analyssroutinesin C++, you'll have to mangle the name for
ATtaCK. (And the mord of that story is“Don't write your andysis routinesin
C++.)

Each of the function’s arguments are specified by type only—no names. The
arguments must use ATtaCK’ s basic types, not their slandard C equivalents.
Types are specified by their core name—the middle part, in between the “at ck _”
and the®_t .” For example, the extremely common at ck_ui nt 32_t appears as
just ui nt 32 in function declarations.

Analysis Tools Construction Kit

03-70

All andyss-routine arguments must be 32-bit or 64-bit vaues. They fdl into
three categories. static arguments, which are values passed directly from the
indrumentation tool to the andysis routing; dynamic arguments, which are vaues
passed from the target application to the andysis routing; and arrays, which are
pointers to memory buffers allocated within the target gpplication’ s data space.

We'll stick with static arguments for now, since they' re the ones you' Il use most
often anyway. Dynamic and array arguments will be covered in Lesson 05.

The static arguments avallable for analyss routines are listed in Table 03-01.

ATtaCK Type Prototype Token
atck _int3z t int32
atck _intéd t© int &4
atck uint3z t uint3z
atck uinté4 t uint64
atck _addr_t addr
atck float3iZ ¢ float3Z
atck_float64 t float64

Table 03-01: Valid Typesfor Analysis Routine Static Arguments

A Minimal ATtaCK Tool

The smplest possible profiler would just count the number of times any
procedure in the application was called. Each procedure would be counted the
same whether it was a three-line swap function or a500-line Al state machine.
We d add an instrumentation call at the top of each procedure that invoked avery
smple andydsroutine:

voi d Count Proc(voi d)

{

}

In fact, if you remember the example from Lesson 01, which is exactly what
BareBones did. Not very useful. In the sample program for this lesson, we'll do a
little better than that. The tool we're going to look at here counts the number of
times each procedure gets called. We Hill add an insrumentation call at the top of
each procedure, but we need that call to identify which procedure was entered.
For efficiency, we' ll identify procedures by a numeric ID, which gets passed to
the Count Proc() routine we ve been looking a al lesson.

NunProcsCal | ed++;

Analysis Tools Construction Kit 03-71

That routine uses the numeric ID to increment one counter out of an array. At the
end of the run, we can read that array, map each numeric ID back to the origina
procedure name, and find out how many times any given procedure was called.

How useful a profiler isthis? So-s0. The more often an individua procedure is
cdled, the more deserving of optimization it’slikdly to be. That's not universdly
true—procedures with loops being the obvious problem. It's good enough for a
firg cut, though.

Creating the Project

Unlike Display from the previous lesson, this sample program wasn't included
with the ATtaCK ingtalation, so you' |l need to creste anew project for it

yoursdf. Thisis done using the same process we saw in Lesson 01: Usethe
“ATtaCK Metaproject” stationery we set up then to create a new metaproject,
indrumentation-tool project and analysis-code project. Name this project (and the
.exefileit produces) ProcCount.

You'll need three filesfor ProcCount: Pr ocCount . ¢, Pr ocCount . h and

Count Proc. ¢. These can be downloaded from this course' s supplemental-
materid folder. Delete mai n. ¢ from your instrumentation-tool project and replace
itwith Pr ocCount . c. Then deleteanal mai n. ¢ from the andyds-code project and
replaceit with Count Pr oc. c. Once the code is ready, select the metaproject

(Pr ocCount . ncp) and make it—hit F7 or select Proj ect > Make. Refer back to
Lesson 01 for troubleshooting.

Once you're sure everything builds correctly, open up Pr ocCount . ¢ and let’stake
alook!

ProcCount: Navigation and Instrumentation

Thisisasmple program—everything isdonein nai n() , and you've seen dl of
this code at least once aready.

After the system and ATtaCK headers, the file includes Pr ocCount . h. Open that
up and you'll seethat it hasjust one line, defining the MAXPROCS constant. More
on that in aminute. Let's go back to Pr ocCount . c.

At thetop of nai n() , after dl the variables are declared, we find the sandard
boilerplate—open a sesson, open a configuration file and open an application.
Thetarget gpplication filenameis read off the command line. The one thing that's
changed is that, since we' re now adding insrumentation cals, we need to tell
ATtaCK whereto find the analyss code—in this casg, it'sin thefile

“<tool dir>..\\ Anal ysi s Code\\anal code. el f”.

Thefilenameanal code. el f isobvioudy the output executable filewe set upin
the analysis-code project. ATtaCK replaces the <t ool di r > macro with the
directory that the insrumentation tool isin. The*®. . ” steps up to the metaproject
directory, and the “\ \ Anal ysi s Code\\” steps back down into the analysis-code
directory whereanal code. el f IS.

Analysis Tools Construction Kit 03-72

Thefirg thing we do with the newly-opened program handle isfind out how

many instrumentable procedures it has. Each instrumented procedure will be
indrumented with acal to our Count Proc() routine, which you'll remember uses
adatic array of 1,000 elements. Actudly, asyou'll see when we look a
CountProc.c, we ve updated that alittle bit—now it uses agtatic array of
MAXPROCS eements. By using a header file to share this val ue between the two
programs, we keep them in sync with each other.

If our tool added instrumentation calls to more procedures than the andlysis code
can handle, Count Proc() would crash. So we need to make sure that the
ingrumentation tool knows and respects the analyss code' s limits. If the target
gpplication has more than MAXPROCS instrumentable procedures, we print an error
message and quit.

Next we declare our single analysis routine, Pcount(). It's avoid function that
takes asingle 32-bit unsgned integer. The declaration gives us a prototype handle
that we'll use later on.

Now we iterate over every image in the program, and over every procedure within
each image. | can't imagine what' s |eft to say about iteration after our last lesson,
%0 let’smove on...

At the heart of the iteration loop, we check to see whether the given procedure is
instrumentable. (Procedures not compiled by CodeWarrior—most notably, the
Sony libraries—are not.) If it is, then we use the procedure s “call before’
instrumentation method, at ck_proc_cal | before(), toinsat acal to Pcount ()
at the gtart of the procedure.

The ingrumentation method takes three arguments, a handle to the procedure, a
handle to the prototype of the routine to cdl, and the argument to passin to that
routine. Here we pass in iproc, a counter, which we then increment. The net result
isthat for the first procedure we pass 0, for the next 1, then 2, 3 and so forth.
Count Proc() will usethisvaueto identify the procedure.

Aswe finish with each image, wecdl at ck_i mg_wri t e() , which saves the new,
instrumented image, rather than at ck_i mg_r el ease() , which would discard our
indrumentation.

Once dl the images are done, we call the program object’s

atck_finish_ wite() methodto closethe new executablefile. This method
returns a handle to the new file, which we will use to download and run that
program.

Next we connect to the target system, download the instrumented application and
dart it running. While the program is running on the T20000, the instrumentation
tool waits for the user to hit enter on the PC. Then the tool hdtsthe target so that
we can read the results. All of this code is essentidly boilerplate, so we ll save it
for Lesson 04.

After we' ve stopped the target, we find the address of its ProcCounty] array and
upload it into our tool—another topic covered in Lesson 04. We can then read and
display thisarray, but let’ s look at the analysis code that created it first.

Analysis Tools Construction Kit

ProcCount: Analysis and Output

Analysis Code

The andysis code lives in CountProc.c. The only system header it needsis
atcktarg.h. It aso includes the shared ProcCount.h header, to get the MAXPROCS
congtant. That congtant is then used to alocate the Pr ocCount s[] globd array.

Asdiscussed, each element of Pr ocCount s[] isan unsgned 32-bit integer
counter. When a particular procedure in the target gpplication is entered, an
instrumentation call passes the procedure s 1D to Count Pr oc() , which increments
the appropriate counter from the array.

And now back to the instrumentation tool.

Output

The atck_readdata() function reads the entire contents of Pr ocCount s[] from the
target into a buffer on the hogt. Arguments to the function tell ATtaCK that the
memory consists of an array of undggned 32-bit integers, o if the host and target
had different byte orders, ATtaCK would be able to byte-swap each array dement
automaticaly.

Of course, since we're talking to a PlayStation 2 from a PC, we don't need to
swap the bytes. But it's a handy thing to remember for the future.

Once the buffer has been loaded, we iterate through the program again in order to
attach a procedure nameto each dot in the array. At first glance this ssems weird
and ineffident—why didn’t we create an array of strings and store the procedure
names during the firg iteration pass?

To ask the question isto answer it: That would have been more work. The
iteration is guaranteed to be the same each time through, so why not just do it
twice? The big savings in programming time overwhelms the teensy tiny waste of
computer time.

This highlights one of the most important ATtaCK principles: Keep it ssimple,
stupid! 1t'snaot likely anyone is paying you to create elegant tools; they’re paying
you to andyze the application. Take the most direct route to that goa you can.

At any rate, having looked up the procedure name for each counter in the array,
we smply print the two out. The result, shown in Fig. 03-02, is human-readable,
but only redlly useful for small programs. A better output format would have been
commea-Separated values, which could then be loaded into a spreadsheet program
and andyzed or at least sorted.

Analysis Tools Construction Kit 03-74

Command Prompt

Microsoft Windows 2088 [Uerszion 5.88.21951
(C> Copyright 1785-288HA Microsoft Corp.

C:n>TODO OUTPUT OF PROCCOUNT .EXE*

Figure 03-02: ProcCount Output

Onward!

WEe re not quite halfway done, but we might aswell be. Downloading and
executing the target gpplication is our next subject, and compared to navigation or
iteretion, it'strivia. Truth betold, it’s o easy that I'm embarrassed to be getting
paid for explaining it to you.

Not so embarrassed that | turned down the money, mind you. And since | am
getting pad, let’s go ahead and move on to Lesson 04: Running and Analyzing an
Application.

Analysis Tools Construction Kit

03-75

Lesson 03 Assignment

Here sadiagram of asmple procedure:

P%%%EDED Our indrumentation tool inthiscaseis
[Imscoe0oo0 Entos00 | identifying objectsus'ngBZ—bit vaues,
[InstDe0001 | somewhat like | P addresses. Here we see
[In=coeo00z | procedure 06, which contains basic block

pee— 0600, which in turn contains ingtructions
e | 060000 through 060002, and so forth.
[Inscos0i0l | Let's assume that every object in the
[Tosc0enio: | diagram isinstrumented both before and
e | after, with aseparate andysis routine for
I I each level and pogtion. Thus, the
routines are Bef or ePr oc() ,
[Inst0e0l05 Ccallosd0n | After Proc(), Bef or eEnt (),
[Inst060106 | Bef or eBB(), Aft er BB() , Bef oreCal | (),
EEOG0Z AftercCall (), Beforelnst() and
[Tmscosnzon | After | nst (). Each routinetakesthe ID
[nst0enzol | value of the instrumented object.
[Instoc0z0z | For the sake of discussion, cdl site 0600
calls procedure 1E, which isnot itsalf

instrumented below Bef or ePr oc() and
AfterProc().

Now, if the cdler entersthis procedure at entry point 0600, what andlys's
routineswill be cdled, in what order and with what arguments? The answer is
below, but try to work it out for yourself first.

Hint:

There are afew “gotchas’ you need to watch out for:

Entry point instrumentation only gets cdled if the procedure is actudly
entered there.

A cdl ingruction finishes before the call itsdf takes place.
Theindruction inacal’s dday dot aso happens before the cdll.

A basic block ends when itslast ingtruction ends, before any call out of
the block takes place.

Analysis Tools Construction Kit 03-76

AnsSwer:

Bef or eProc(06)

Bef or eEnt (0600)
Bef or eBB(0600)

Bef or el nst (060000)
Afterlnst (060000)
Bef or el nst (060001)
Afterlnst (060001)
Bef or el nst (060002)
Afterlnst (060002)
Af t er BB(0600)

Bef or eBB(0601)

Bef or el nst (060100)
Afterlnst (060100)
Bef or el nst (060101)
Afterlnst (060101)
Bef orel nst (060102)
Afterlnst (060102)
Bef or el nst (060103)
Afterlnst (060103)
Bef or el nst (060104)
Afterlnst (060104)
Bef or el nst (060105)
Afterlnst (060105)
Bef or el nst (060106)
Afterlnst (060106)
Af t er BB(0601)

Bef oreCal | (0600)
Bef or eProc(1E)
After Proc(1E)
AfterCall (0600)
Bef or eBB(0602)

Bef or el nst (060200)
Afterl nst (060200)
Bef orel nst (060201)
Afterlnst (060201)
Bef or el nst (060202)
Afterlnst (060202)
Af t er BB(0602)
AfterProc(06)

Analysis Tools Construction Kit

Lesson 03 Quiz

1. Which of the following is an advantage that sampling has over
ingrumentation?

A. Speed.

B. Convenience

C. Accuracy
D. Sdectivity

2. True or fase: Ingrumentation can be added both before and after entry
points.

A. True
B. Fase

3. True or false: Cdls added to the same object execute in the order they were
added.

A. True
B. Fase

4. True or fdse: Instrumentation added after acdl Ste is guaranteed to be
executed.

A. True
B. Fdse

5. Which of the fallowing lines of codeis not required in ATtaCK andysis
code?

A. #include <atcktarg. h>
B. #i ncl ude <atcktargps2. h>

C. #pragma force_active on
D. None of the above

6. True or false Anaysis routines are unable to communicate with the host
directly.

A. True
B. Fadse
7. Which of thefallowing isavdid return type for an andyss routine?

A.int.

B. atck uint32_t.
C. voi d.

D. voi d*

8. Trueor fdse You haveto be careful when indrumenting branches on the
PlayStation 2, to avoid displacing the ingtruction in the “branch ddlay” dot.

A. True
B. Fase

Analysis Tools Construction Kit

03-78

Lesson 04: Running and Analyzing an
Application

The ATtaCK framework handles dl the details of downloading and running your
ingrumented application on the T20000. In our fourth lesson, you'll learn how
thisworks, and how to pause, resume and kill arunning application. We ll dso
look at how to communicate data between your PC and the target, and how to
disolay your profiling resultsin auseful form. Findly, we'll explore SmpProf, a
smple prcfiler.

Execution Concepts

Lesson Objectives

Okay, wake up! Thislesson isgoing to go by so fast that if you nap, you' Il miss
it. W€ re going to cover the penultimate two steps of the ATtaCK process:
downloading and running applications, and reading data from the target system.
For both of these, ATtaCK does amogt al the work, so dl you needto learnisa
handful of AP cdls.

Download

The end result of instrumenting the target application isanew program, which
will need to be run on the target system to perform the andlyss. You can just
launch it as you would any other program, but if you did that, you wouldn't be
able to read your data. The andysis code has no way of saving data or sending it
to the hogt system, nor can it communicate with the main gpplication.

The only way to get the andlysis results out of the program isto read them directly
from an ATtaCK tool. And to do that, you have to have downloaded and executed
the gpplication from that tool in thefirgt place.

Y ou don't have to download and run the program immediately after instrumenting
it, however. Y ou could create atool that ran an aready-insrumented gpplication.
Thiswould let you ingrument the application once, saveit, and then run it
multiple times—even run it on multiple sysems.

If you were andlyzing Al routines, for instance, you might want to have severd
different play testers run the program, trying out different tactics. The aggregate
results from al their sessonswould tell you more about your Al code than the
results from any sngle sesson.

Aswe ve dready seen, though, the tool that handles the execution needs to know
exactly what the andyss codeis like in order to know what memory buffersto
read. So in practice, you usudly download and run the application from the same
tool that performed the instrumentation. Avoiding the nomind inefficiency of re-
ingrumenting the application every time the tool runsisn’t worth wasting alot of
programming effort.

Analysis Tools Construction Kit

04-79

ATtaCK handles dl the details of communicating with the target system. Y our
tool smply opens a connection to the target and specifies the gpplication to run.
ATtaCK downloads the application and immediatdy pausesit.

Execution

Once the gpplication is on the target, you can ingtruct ATtaCK to start execution.
Y ou don't have much fine control over the target, but you do have absolute
power—you can tdl it to sart and stop, and your commands will be obeyed.

Y ou should run the gpplication for alittle while in order to build up a body of
data. You could start and stop the program based on atimer, but the better
goproach for agameisto run the program until the user hdtsit. You'll generdly
want to andyze “typica” gameplay, and the user isthe best judge of when he's
accomplished that.

When the target stops, whether the application exited, the operating system killed
it or ATtaCK halted it, the tool gets sent an event. It then responds to that event
by reading the analysis results from the target system.

Reading Data

ATtaCK does't know in advance where in the target syssem’s memory the
goplication will wind up; it gets that information back from the target when the
goplication is downloaded. An API function lets you look up the target address of
aparticular symbol.

Once you have an address, you can read data from the target. We saw thisin the
sample program last lesson, and there' s redlly not much more to know. In addition
to reading from the target, ATtaCK can aso write to the target.

Displaying Data

Anaysis code needs some kind of context information to work properly. In the
ProcCount sample program, the procedure- counting routine needed to know
which procedure to count. To keep the analysis code as streamlined as possible,
this context information is usudly just a smple integer, which gets passed from
the instrumentation tool to the analys's code. The todl is responsible for mapping
these ID numbers back to actual code structures once it reads the data.

The easest way to do that isSmply to iterate through the code again, in the exact
same sequence the code was instrumented. Most ATtaCK tools thus have two
nearly-identica iteration loops. One runs through the gpplication’ s code objects to
add ingrumentation cals, the other runs through to map andysis results back to
the code objects.

Once the analysis results are associated with the origind code, the tool can either
dump this information to the display or afile, or it can perform higher andyss A
profiler that gathered ingtruction-counts for each procedure, for instance, might
then go on to calculate the percentage of total execution time happened in each

Analysis Tools Construction Kit

04-80

procedure. It might even create totas and subtotals, to show how mary cycles
were consumed by each procedure plus its children.

Executing an Application

To execute an application, you must first open a connection to the target system.
The “device connection” object, aick_dev_t, represents the connection. This
object is created using a factory method of the session object, like so:
atck_dev_t* atck _connect(atck_sesn_t* self, atck cfg t*
confi g,
voi d
(*evthandl er)(atck _tvt_t*, voi d*, voi d*),
voi d* devl D)

The firgt argument is a handle to the session object, as befits a session method.

The second argument is a handle to a configuration object, used to wrap the
various system settings used by ATtaCK, such as the IP address of the T10000.
Configuration objects are discussed in detall next page.

The third argument, evthandler, is a pointer to an event-handler calback function.
WEe re going to cover eventsin just a bit, so just take this as a given for now.
You'redso freeto leave thisas NULL, and indeed many programs do just that.

Thefourth argument is apointer to an arbitrary variable. Thisvariableis a user-
specified (by which | mean you- specified) device ID. If you have multiple device
connections but only one calback function, thisdevice ID can be used to identify
the connection for a specific event. This only metters for the event handler, so
again, we' |l saveit for later. If you're not using an event handler, you may as well
leave this argument NULL, too.

If ATtaCK can't open a connection to the target system—if, for example, the
target system isturned off—this method returns NULL and prints a diagnostic
message. Otherwisg, it returns a handle to the new device connection.

Downloading the Program

The connection object is used to download a program to the target, using the
following methods:
actk _run_t* atck_idownl oad(atck _dev_t* self, atck_ iprog_ t*
prog,
atck_cfg _t* config, void* proglD)

actk_run_t* atck _udownl oad(atck_dev_t* self, atck_iprog_ t*

prog,
atck_cfg_t* config, void* proglD)

These functions are methods of the device-connection object, and thus take a
connection handle as their first argument.

The second argument is a handle to an instrumented- program object; more on that
inamoment. Theat ck_i downl oad() method expects the program to include
instrumentation symbols and other specia ATtaCK - crested information; the

Analysis Tools Construction Kit

04-81

at ck_udownl oad() method can be used with any program, whether it was
ingrumented by ATtaCK or not.

The third argument is a handle to a configuration object, containing options for
use with the downloaded program. On the PlayStation 2, those options are the
host directory to load from, and the command line to pass to the downloaded
goplication. Thisis covered in the next section.

The fourth argument is a pointer to a user-specified variable. Like the deviD
argument of at ck_connect (), thispointer is passed to the event handler, where it
can be used to identify which downloaded program generated a particular event.

If this method succeeds, it downloads the program to the target system and returns
a‘“running program” object, at ck_run_t .

If the method fails, it returns NULL and prints a diagnostic message.

Opening Instrumented Programs

The “instrumented program” object, at ck_i pr og_t , represents a downloadable
program. Y ou may remember that theat ck_fi ni sh_writ e() method refurnsa
handle to the instrumented program it writes out. Y ou can aso open an existing
program—instrumented or not—for downloading like so:

atck_iprog_t* atck_iopen(atck_sesn_t* self, const char*

filenanme,
atck_cfg t* config)

Thisfunctionisamethod of the on object, and takes a handle to that object
asitsfirg argument. The second argument is the filename to open. Thethird

argument is a configuration object, but sincelike at ck_open() thismethod
doesn’t accept any options, you should just pass NULL.

If the method succeeds, it returns an instrumented- program handle for use with
the download functions. Otherwise, it returns NULL and prints adiagnostic

message.

Running the Program

As mentioned, the run object represents a downloaded program on the target
system. The program begins dready hated; to Sart it running, you'd cdl the

at ck_cont i nue() method of the run object. That function, and the run object in
generd, is covered alittle later.

Y our tool’ s execution continues while the program runs on the target system.
Usudly, you'll want your tool to st in an idle loop. The best way to do thisisto
cal ablocking character-input library routine such as getch(); when the user hits
ENTER, the function returns, a which point your tool would hdt the target
sysem.

Analysis Tools Construction Kit

04-82

Ending the Run

While the program is running, you can start and stop it. When you' ve stopped it
for thefind time, you can shut it down permanently and release the run object by
caling that object’ s*destructor,” at ck_ki I | (), asfollows:

atck_bool _t atck _kill(atck_run_t* self)

If an error occurs, the method returns ATCK_FAL SE and prints a diagnostic
message; otherwise it returns ATCK_TRUE.

Findly, when you' ve finished with a connection object, you cal its “destructor,”
atck_disconnect():
At ck_bool _t atck_di sconnect(atck_dev_t* self)

Thismethod will cdl at ck_ki | | () automaticaly for any programs il running.
Like at ck_ki |1 (), it returns ATCK_FALSE and prints a diagnostic message if an
Error occurs.

Configuration Objects

When working with gpplications and target systems, ATtaCK needsto know a
number of configuration options—things like the host directory, the target
system’s | P address and so forth. These options are dl platform-specific, so to
preserve its cross-platform compatibility, ATtaCK encapsulates al the options
into asingle object, at ck_cfg_t.

Configuration options can be set two ways. Most commonly, you pass afilename
to the configuration object’s “constructor,” which parsesthat file for options. You
can also use methods to add new options to an existing configuration object,
alowing you to use the command-line or adifferent file formet rather than the
default ATtaCK format.

The configuration object also has methods to let you read its contents. Thus, you
can use these objects to Store tool settings and other non-ATtaCK options,

Configuration Objects

Initialization
To create a configuration object, you use afactory method of the session object:

atck_cfg t* atck _config new(atck _sesn_t* self, const char*
fil enane)

The firg argument is the usud handle to the sesson object. The second argument
isthe name of afile from which to initidize the configuration object. To creste an
empty configuration object, passNULL for the filename.

The filename argument can use absolute or rdative paths, using the sandard
Windowsfile syntax. It can adso use specid keywords to identify known
directories:

Analysis Tools Construction Kit

04-83

The keyword <syscf g> is replaced with the full path and filename of the
system configuration file—usudly 1 i b\ ps2\ syscf g. t xt inyour ATtaCK
ingallation, as we saw back in Lesson O1. Thisisthefile you should
amost dwaysload and passto at ck_connect ().

The keyword <t ool di r > is replaced with the path to the directory
containing the toal’ s instrumentation code.

The format of the configuration file and the options each ATtaCK function
expects are described at the end of this section.

At the end of your program, you can free any configuration objects you created by
cdling ther “destructor”:

void atck_config free(atck_cfg t* self)
However, thisisn't necessary—releasing the session object with
at ck_endsessi on() will automaticaly free any configuration objects created in
that session.

Reading Options

Configuration options are identified by name and come in two types, integers and
grings. To read an option from a configuration object, you use the following
methods:

long atck_config getint(atck _cfg t* self, const char* opt)
const char* atck_config _getstr(atck _cfg t* self, const char*
opt)

If the specified option doesn't exig, or if it exigs but is of the wrong type, these
methods return O or NULL, respectively. The gtring returned by

at ck_config_getstr() isvaiduntl the configuration object is destroyed, or
until the specified option is changed to adifferent vaue.

To find out whether a particular named option exists, and/or to learn itstype, use
the following method:

atck _cfgtyp_t atck _config hasopt(atck cfg t* self, const char*
opt)

This method returns an enumerated type with three possible vaues:

ATCK_CFGTYP_I NT, if the option exists and is an integer; ATCK_CFGTYP_STRI NG, if

it exigs and isa diring; or ATCK_CFGTYP_NONE, if the option doesn't exidt.

Writing Options

If you're usng commeand-line options or your own configuration files, you can
store these options in a configuration object by hand, using the following
methods:

void atck_config_addint(atck _cfg t* self, const char* opt,
| ong val)

void atck_config_addstr(atck_cfg t* self, const char* opt,
const char* val)

Analysis Tools Construction Kit 04-84

The opt argument specifies the option’s name, and val specifiesitsvaue. If an
option with that name dready exidts, it is overwritten with the new value and

type.

Configuration Files
ATtaCK configuration files are plain text, much like Windows .INI files. Each
linein the file defines an option and its vaue, like so:

ip = 192.168.0.10

addr = 0Oxfa001234

output = file.txt

nmessage = “ Analysis conplete. ”

pronpt = “Hit “ENTER’ to continue.”
Each line congigts of the option name, an equa sign and the option vaue; spaces
and tabs within the line are ignored. If an option value is arecognizable decimal,

hexadecimad or octal vaue, it is Sored as an integer, otherwise it isstored asa
gtring. Dotted-decimals, such as IP addresses, are interpreted as strings.

Y ou can force an option to be interpreted as a string by surrounding it in quotes,
but thisisn't necessary for most strings. Putting avaue in quotes will dlow you
to include leading and trailing whitespace, which would otherwise get stripped.
The quotes themselves do not become part of the value, of course, dthough any
guotes ingde the string are preserved.

Connection Options

The options expected by at ck_connect () aretheonescontainedin syscf g. t xt .

Y ou usudly only need to modify thisfile when you ingdl ATtaCK on anew
machine, 0 read the inddlation ingtructions for more details. Here'sa quick
review:

i p (string): The IP address of the T10000 target system.

port (integer): The port number of the T10000

priority (integer): The connection priority of the T10000

ti meout (integer): The connection timeout vaue, in milliseconds

hosti oDrive (gring): A sngleletter identifying the default drive for host files

Download Options

The download functionsat ck_i downl oad() and at ck_udownl oad() only
expect two options, both of which are, well, optionad:

host i o (string): The path to the application’s host 1/O folder. The default value
for this option depends on how the downloaded program was opened. For existing
programs opened with at ck_i open() , this defaults to the opened application; for
programs “opened” astheresult of at ck_fi ni sh_write(), thisvaue defaultsto
the location of the origind, uninstrumented gpplication.

Analysis Tools Construction Kit

04-85

cndl i ne (&tring): The command line arguments to pass to the gpplication. This
worksjust like an actud command line: Each argument is delimited with spaces,
and you don't need to surround the line in quotes. The default for thisoption is

smply ablank line.

ATtaCK Events

Event Handlers

To save you the trouble of Stting in aloop polling the status of the target system,
ATtaCK provides an event system. The target system reports various events back
to ATtaCK, which passes them on to an event-handler cdlback function you
gpecify inyour cdl to at ck_connect () .

All event handler functions follow this pattern:

voi d MyEvent Handl er (atck_tevt _t* event, void* devlD, void*
progl D)

{

/* Handl e the event */

}

The function takes three arguments, a handle to the event generated, and the IDs
of the device connection and program that generated that event.

There can be a most one event handler for any given connection—*a mog”
because you don't have to have an event handler if you don’t want one.
Conversdly, if you had multiple connections, they could al share the same event
handler. The device and program IDs let you tell which device or program
generated which event.

These IDs are the vaues you passed in to the connect and download methods we
saw previoudy. What they are is up to you. They could be pointers to integers,
pointers to character strings, even pointersto C++ objects—ATtaCK doesn't care.
Whatever value you passin just gets passed back to you.

They could even be NULL. If you only intend to have one connection open and
have one downloaded program running at the same time—most likely the case—
then you can decide not to bother with this ID nonsense and can just passin
NULLS. Also, if the generated event isn't associated with a program, then the
proglD vaue would be NULL regardless of what you passed in to the download
method.

In thislesson’s sample program SimpProf, we' Il see a clever use for the deviD
pointer. SmpProf stores the running gpplication’s context information—handles
to the session, the uninstrumented program and the address of the data buffer—in
adructure, and then passes a pointer to that structure through deviD. When the
event handler receives that pointer, it gets access to that information, which it uses
to read, format and print the profile data.

Analysis Tools Construction Kit 04-86

Designing Event Handlers

An event handler can more or less do anything you want. There are only afew
restrictions.

Fird, the event object doesn’'t belong to you, so don't try to releaseit.

Second, the event handler function may—amogt certainly will—be cdled from a
different thread than your instrumentation tool. Take dl the usua precautionsin
working with global data.

Last but not least, an event handler cannot call functions that generate events
themsalves In practice, this means you can't cdl functions that stop the running
program—at ck_di sconnect (), at ck_stop() O at ck_wai t () —nor canyou
cal functions that download a new program—at ck_i downl oad() and

at ck_udownl oad() .

Events

An event object, atck_tevt t, which is passed into your event handler, represents
the event. Thefird thing you should do is get the event type, asfollows.

atck _tevt _typ_ t atck tevt type(atck tevt t* self)
Thisis, of course, amethod of the event object. It will return one of three values.

ATCK_TEVT_LOADPCT: Events of thistype indicate the progress of a
downloading program, so that you can display a progress bar on the hogt.
The percentage completion is avalablefrom at ck_t evt _I oadpct (), @
method of the event object which returns a vaue from zero to 100.
ATtaCK will try to send LOADPCT events as often asit can, but it only
guar antees that you'll receive one: When the download finishes, you'll
aways get one of these events with avaue of 100.

ATCK_TEVT_PRI NT: Your ATtaCK tool can print adiagnostic message
whenever it fedsoneiscdled for. The ATtaCK code on the target may
aso decide to issue a diagnostic message. When that happens, it raisesan
event of thistype. The message itsdlf is available from

atck_tevt _printstr(),amethod of the event object which returnsa
congtant character string containing the message to print. Y our handler
should respond to this event by immediatdy displaying this string to the
user, geneardly viast dout or st der r. The strings returned by
atck_tevt_printdr() are only valid until the handler returns. If you want to
save these messages, copy them to an dlocated buffer in your tool.

ATCK_TEVT_STOPPED: ATtaCK sends you this event whenever the target
gpplication stops or terminates. This might be because the application
crashed, because the application’s analysis code halted itself, or because
your tool hated the program.

It's possible that future versons of ATtaCK will generate more events. Y our
event handler should Smply ignore any event type it does not recognize.

The event object has two more attributes beyond those mentioned above:

Analysis Tools Construction Kit 04-87

atck _dev_t* atck tevt_dev(atck tevt_t* self)

atck_run_t* atck_tevt_run(atck_tevt_t* self)

These methods respectively return the device- connection and running-program
object that generated the event.

Controlling the Application

The Running-Program Object

Methods

ATtaCK givesyou only the most basic control over the target system: Y ou can
pause and resume the running program, and you can kill the program atogether.
In particular, you can't perform the kind of line-by-line execution thet you can
with a debugger.

Within those limits, here’ swhat you can do. All of these functions are methods of
the running-program object, at ck_run_t .

atck_bool t atck_continue(atck run_t* self)

This method continues execution of the program if it's currently stopped, and has
no effect if the program is running. It returns ATCK_FAL SE if the program cannot
resume—for instance, because it's been terminated by at ck_ki I 1 () —or
ATCK_TRUE otherwise.

atck_bool _t atck_stop(atck_run_t* self)

This method hdts the running program. If the program isin the middle of a
critical section, as discussed on the next page, then this method will wait until the
critical section ends before stopping the program. Notice that this means that, if
the program never ends the critical section, this method will never return, and
your ATtaCK tool will hang.

When the program finaly does stop, your event handler will receive an
ATCK_TEVT_STOPPED event. Thus, an event handler may not itsdf call
atck_stop().

Once the program has stopped, and after the generated event has been processed,
this method will return ATCK_TRUE. If the program has aready been killed or can't
be stopped for some other reason, this method returns ATCK_FAL SE.

atck_bool _t atck _wait(atck_run_t* self)

This method waits for the running program to hdt itself, ether by terminating
normally, by crashing, or by cdling the aicktarg_stop() anadysis function (see
notes). It is essentidly areplacement for an idle loop—if your instrumentation
tool has nothing to do until the gpplication finishes running, you can cal this
method to wait for it to finish. By doing so, though, you give up the ability to hat
the gpplication from the hodt.

Analysis Tools Construction Kit

04-88

Stopping the Application on the Target

The running-program object alows you to halt the application from the host side of
the connection. There are two ways to halt the application on the target.

Thefirg isfor the gpplication to end itsdlf, the same way it normally would—by
exiting mai n() , by cdling exi t (), by crashing—you name it. In this case, the
program cannot resume, and callsto at ck_cont i nue() will fall.

The second is for an analysis routine in the target gpplication to call
at ckt ar g_st op() . Thisfunction smply halts the application and raises an
ATCK_TEVT_STOPPED event on the hogt, and looks like this:

voi d atcktarg_stop(void)

A program stopped in this manner may be resumed from the host usng
at ck_cont i nue() . For obvious reasons, thereisno at ckt arg_cont i nue()
function.

One particularly useful technique isto create a “do-nothing” function in your
PlayStation 2 application that gets called in response to a certain keypad button. In
your analysis code, create a smple routine that does nothing but call

at cktarg_st op() . Theninsert an instrumentation call to that routine at the start of
the do-nothing function. Pressing the keypad button now instructs ATtaCK to pause
your application.

When the program findly does stop, your event handler will receive an
ATCK_TEVT_STOPPED event. Thus, an event handler may not itsdf call
atck_wait().

Once the program has stopped, and after the generated event has been processed,
this method will return ATCK_TRUE. If the program has aready been killed, this
method returns ATCK_FAL SE.

atck_bool t atck kill (atck_run_t* self)

This method unconditionaly hats the running program, without honoring any
critical sections the program may have claimed. The program immediately stops,
generating an ATCK_TEVT_STOPPED event. Thus, an event handler may not itsdlf
cdlatck_kill().

This method aso destroys the running- program object and frees up al resources
associated with it. That means that you will not be able to read data from or
resume the program after it has been killed.

You will usudly cdl this method on an aready- stopped program, after you've
read the andysis data from it. If the program has aready been killed, this method
returns ATCK_FAL SE otherwise it returns ATCK_TRUE.

Attributes

...or rather attribute. The running-program object has one éttribute,
atck_status():

atck_status_t atck_status(atck _run_t* self)

Analysis Tools Construction Kit 04-89

This access method returns the program'’ s current status. Y ou can cal thisindgde
an event handler, or to poll from within an idle loop. The return vaue will be one
of these congtants:

ATCK_STATUS_RUNNI NG. The program is running.

ATCK_STATUS_TSTOPPED: The program has been stopped by andysis code
on thetarget, uang theat ckt ar g_st op() function, and may be resumed
withat ck_conti nue() .

ATCK_STATUS_HSTOPPED: The program has been stopped by the host,
usngtheat ck_st op() method, and may be resumed with
atck_conti nue().

ATCK_STATUS_EXI TED: The program has ended normdly and may not be
resumed.

ATCK_STATUS_FAULTED: The program has ended abnormaly, through a
hardware fault or some other disaster. Not only can the program not be
resumed, but its memory cannot be read, and any cleanup andys's code
inserted viaat ck_cal | af t er () probably wasn't executed.

ATCK_STATUS_ERROR: A communications error occurred.

Critical Sections

ATtaCK provides specia lock variables called mutexes (a contraction of “mutud
excluson”). These let your andysis routines establish critical sections, stretches
of code that cannot be interrupted by another thread or by the host.

It's possible that your target gpplication is multithreaded. If the gpplication is
multithreaded, and both threads are instrumented, then the analysis code is also
multithreaded. If two threads tried to increment the same counter at the same

time, your profile datawould be corrupted. A mutex can be used to keep that from
happening.

Even in asngle-threaded application, your analysis code might want to prevent
any interference from the hogt. For example, if you decide that you need a
minimum of a hundred frames of profile data, you could lock a mutex and not
release it until the hundredth frame of data had been gathered. Likewise, the target

gpplication might have atask that shouldn’t be interrupted by the hogt, such as
writing to NVRAM or disk.

On the other hand, it’s perfectly possible you won't ever need to use mutexes.
However, it's better to have the knowledge and not need it than need the
knowledge and not have it, so let’slook at them anyway...

Mutexes

To create amutex, your analysis code must first declare a variable of the type
at cktarg_|l ock_t . Thisscope of this variable should encompass the location
where you want the critica section to begin and the place where it ends. For

Analysis Tools Construction Kit 04-90

example, if your critical section is entirdy within asngle andyds routing, its
mutex can be alocal variable. For acritica section that spans two or more
functions, however, you need to declare a globa mutex.

The mutex needs to be initidized before it can be used. This is done with the
following function:

void atcktarg_initlock(atcktarg | ock_t* mutexptr)

All you need to do is pass the address of the mutex to this function, which is
guaranteed to succeed. However, make sure that you cal this function from
sngle-threaded code! The best placeto initidize mutexesisin an andyss
function called from before the program: An insrumentation call inserted usng

at ck_cal | bef ore() isguaranteed to run in asingle thread before anything ese
in the application.

Locking and Unlocking

Once amutex isinitidized, you can useit to protect critical sections. Upon
entering a stretch of code that you wish to protect, you request alock on the
mutex. Once you receive alock on a particular mutex, no other thread can lock it,
nor can the host system hat your gpplication. When the critica section finishes,
you then release the mutex.

voi d atcktarg_ | ock(atcktarg_lock_t* nutexptr)

This function locks the specified mutex, and does not return until the lock is
granted. That means that if another thread has the mutex locked, this thread will
wait until the lock isreleased. If the lock is never released, perhaps due to a bug
in your code, then this function will never return, and the caling thread will hang.

All interrupts are disabled for athread that has a mutex locked. If any thread in
the application has a mutex locked, the host cannot halt the target with

at ck_st op() —the target cannot even hdt itsdf with at ckt ar g_st op() .
However, at ck_ki | 1 () will dwayswork.

voi d atcktarg_unl ock(atcktarg_l ock_t* nutexptr)
If the calling thread has the specified mutex locked, then the lock is released, and
any other thread waiting on that lock resumes execution. If the calling threed

doesn't dready have the mutex locked, nothing happens—you cannot release
another thread' s mutex.

Designing Critical Sections

Let'slook at how to use mutexes to handle the three scenarios outlined at the start
of thispage. In the first Stuation, analyss code caled from multiple threads needs
to increment the same array of counters. To prevent two threads from writing at
the same time, the array of countersis“wrapped”’ in amutex, like so:

atcktarg_l ock_t TheMut ex;
voi d CountProc(atck_uint32_t proclD)

{

Analysis Tools Construction Kit

04-91

at cktarg_I| ock(&TheMut ex) ;
ProcCount s[procl D] ++;
at ckt arg_unl ock(&TheMut ex) ;

}

When CountProc() wants to modify ProcCountd], it requests alock on the mutex,
releasing the lock when it’s done. If another thread’ s analysis code dready holds
the lock, then the first thread will wait for it to be released. In this Stuation, you
should make sure that your code releases the mutex as quickly as possible, so that
the threads don’t bog each other down.

In the second scenario, the analysis code wants to ensure that it collects 100
frames of data before being interrupted by the host. The code would lock a mutex
when it gathered the first frame and release it when it gathered the 100" frame,
like s0:

atcktarg_ | ock_t TheMitex;
atck_uint32_t NunfFranes = O;
void Anal yzeFranme(...)
{
i f (NunFranes == 0)
at ckt arg_| ock(&TheMut ex) ;

/* Frame anal ysis code goes here! */

Nunfr ames ++
i f (NunmFranes == 100)
at ckt arg_unl ock(&TheMut ex) ;
}

In the find scenario, the target application performs certain tasks that must not be
interrupted by the host. This presents more of achalenge, since the target
application isn't aware of the analys's code and can't use ATtaCK’s mutexes
directly. To get around this, we have to create “analyss’ routines that do nothing
but lock and unlock mutexes on the gpplication’s behdf. Then, we insert calsto
those routines at the appropriate spots in the application. Here's how the routines
would look:

atcktarg_ | ock_t TheMit ex;
voi d LockATCKMut ex(voi d)

{
at ckt arg_| ock(&TheMut ex) ;

}
voi d Unl ockATCKMut ex(voi d)

{

Analysis Tools Construction Kit

04-92

at ckt arg_unl ock(&TheMut ex) ;

}

If the target gpplication’s critica code dl livesin known functions, then you
would smply add an instrumentation cal to Lock ATCKMut ex () at the top of that
function, and acdl to Unl ock ATCKMut ex() & the bottom.

Alternately, if you' re programming the application as well as the tool, you could

write new “proxy” routines in the gpplication. These routines, perhgps cdled

Begi nATCKCri ti cal Section() andEndATCKCri ti cal Section(),wouldjust be
empty placeholders. (Y ou might have to put a short bit of do-nothing codein

them to keep the compiler from optimizing them out of existence!) Y our
instrumentation tool would then add acdl to LockATCKMt ex() at the start of

Begi nATCKCri ti cal Section(), andacal to unl ockATCKMit ex() to the end of
EndATCKCri ti cal Section().

Communicating with the Application

Just as ATtaCK handles dl the details of downloading and running programs on
the target system, it so handles the details of reading and writing deta. There
might be other ways to get information off the target system, but these functions
arefar and away the easiest to use.

Finding Target Symbols

ATtaCK letsyou read directly from the target syssem’s memory. To do that,
though, you have to know the address of the buffer you want to read. To do that,
you must look up the addressin the gpplication’s symbol table:

atck_addr _t atck_anal _symaddr (atck_iprog_t* self, const char*

sym

Thismethod of the running-program object returns the address of a symbol in the
gpplication’s analysis code. For example, in the ProcCount tool from Lesson 03,
we saw this function used to look up the address of the Pr ocCount [] aray. The
symbol must be in the andlysis code—if the symbol isin the target application
itsdf, or if it doesn't exist a al, this function returns NULL.

At this point, you might be thinking, “No problem. | can look up addresses from
the target application dready, usng atck_img_symaddr().” Well, that’sright and
wrong. Remember, ATtaCK is adding instrumentation code. To your tool, that
codeisinvighle, but to the actud application, it's anything but. When ATtaCK
writes out the instrumented application, it has to insert that code into your
gpplication, and it might move code around (changing its addresses) in order to
make room. However, the PlayStation 2 version doesn't do that—sincedl MIPS
indructions are the same size, ATtaCK doesn’'t have to move code to insert
indrumentation. So on the PlayStation 2 only, you can rely on addresses from the
uningrumented gpplication matching those in the ingrumented application.

Analysis Tools Construction Kit 04-93

Oh, and one other thing: Only read—and especialy writel—memory that you
know to contain data, not code. Trying to read or write executable code may
produce undefined results.

Reading and Writing Data
Armed with the address of a buffer on the target, you' re now ready to read datal

atck_bool _t atck_readdata(atck_run_t* self, atck_addr _t
t ar gaddr,

voi d* hostaddr, const char* type,

unsi gned count)

Thisisamethod of the running-program object, and takes a handle to that object
asitsfirg argument. The second argument is the source buffer to read from on the
target, and the third argument is the destination buffer to copy into on the hogt.

The fourth and fifth arguments define the buffer’ s contents. ATtaCK expects you
to be reading arrays. Rather than request a set number of bytes, you tell ATtaCK
what type of dataisin the array and how many eements (not bytes) to copy.

The type string specifies the data type, using the same definition language used to
declare prototype functions—* ui nt 32” for anarray of at ck_ui nt 32_t,

“fl oat 64” foranaray of at ck_f | oat 64_t , and so forth. The array can dso be
composed of user-defined types (that is, st r uct s—we |l cover thesein Lesson
05).

If you want to copy raw bytes of data, of course, you can: Just specify “char” as
the type and the number of bytes as the number of eements.

If the host and target have different byte orders, ATtaCK swapsthe array
elements appropriately asthey’ re copied over. Between the PC and the
PlayStation 2 you don’'t have to worry about this, but it’s nice to know that you
won't ever have to worry about it.

If ATtaCK can't read the target memory, perhaps because the address is bad or
the connection has died, this function returns ATCK_FALSE and prints adiagnostic
message. Otherwise it returns ATCK_TRUE.

atck_bool _t atck_writedata(atck _run_t* self, atck_addr_t
t ar gaddr,

voi d* hostaddr, const char* type,

unsi gned count)

This method writes to the target. Other than the direction the datal s going, it is
identical to atck _readdata(). In fact, the argument ligt is exactly identica, which
may throw some people off—if the ATtaCK API followed the C standard-library
convention of “dest, src,” the order of targaddr and hostaddr would be reversed
for at ck_readdat a() .

Arrays and Structures

Unless your andysstask is extremely smple, you'll be generating more than one
variable sworth of data. Even the smple profiler from Lesson 03 used a

Analysis Tools Construction Kit

04-%4

thousand-eement array, and for some target gpplications that wouldn't be big
enough. Allocating and managing deta buffersisavita part of cregting an
andysistool. ATtaCK provides two mechanisms to help manage your data: tool-
alocated arrays, and user-defined data Structures.

Arrays

Since ATtaCK’ s designers knew you'’ d be spending alot of time dedling with
arrays on both the host and target, they created an eegant system to alow you to
“pass’ arraysinto your analyss code.

Basicdly what happensisthis Your instrumentation tool dlocates an array inits
memory however it seesfit—daticdly or dynamicdly. It'smogt efficient to
dlocaeit dynamicdly, of course, but you can afford to be profligate with host
memoary.

Thisarray isthen passed to the analyss code as an argument in an
ingrumentation cal. When that instrumentation cal is added to the gpplication,
ATtaCK dlocates abuffer in the analys's code' s data space the right size to hold
the array, and copies the contents of the tool’s array into it. The andlysis routine
then recalves a pointer to that buffer. Usudly this hgppensin an initidization
routine, which then savesthat pointer for the rest of the routines to use, but you
can aso pass read-only or throwaway arrays, such as strings.

Declaring Arrays

To be able to pass an array to an analysis routine, you must declareit in the
ATtaCK prototype. Let's say that you have an array of unsigned 32-hit integers
that you want to passto an initidization routine. The prototype declaration for
that routine would look like this

pproto = atck_anal proto(pprog, “void Init(uint32[])”);

That'sdl it takes—just add the array marker to one of the existing types. In fact,
you have awider range of types available to you for usein arrays. ATtaCK can
only pass 32-hit or 64-hit vaues to andyssroutines, but arrays, which are passed
as pointers, get around this limitation. Table 04-01 shows the data types you can
use with these arrays.

Analysis Tools Construction Kit

04-95

ATtaCK Type Prototype Token
char [] char[]
atck_intle _t[] intliel]
atck_int32_t[] int32[]
atck int64 t[] int64[]
atck uintlé t[] uintle6(]
atck uint3Z tf[] uint3z2[]
atek uintéd t[] uint64[]
atck addr t[] addr[]
atck float3z t(] float32[]
atck floatsd t[] floaced[]
char® char®*

Table 04-01: Array Types

Two keywords can be placed in front of the array declaration to modify it. You
can declare an array argument as being read-only with const ; normdly the
andysdis routine can write to the buffer it receives. Y ou can dso declare the buffer
asnoper si st , meaning that it can only be relied on for the duration of that one
cdl to the andysis routine; the default is that the buffer is vdid for the lifetime of
the gpplication.

Using Arrays

There' satrick to passng an array into an indrumentation call. Normaly, each
argument passed to the analysis code corresponds to one argument to the
ingrumentation method. With an array, though, you firgt pass in the number of
eementsin the array, followed by apointer to the array itsdf.
atck_uint32_t* ProcCounts = atck_call oc(psesn,

atck_nproc_i nstr(pprog),
si zeof (atck_uint32_t));

atck_cal | before(pprog, pproto, atck_nproc_instr(pprog),
ProcCounts);

This code fragment dlocates an array of unsigned 32-bit integers, one for every
ingrumentable procedure in the target gpplication. It then insertsacdl to the
Init() andyds routine into the gart of the program. The one argument in the Init()
routing' s declaration has become two arguments in the instrumentetion cdl: the
number of eementsin the array, and a pointer to the array.

Analysis Tools Construction Kit 04-96

The andysis routine, on the other hand, receives the array as a smple pointer of
the appropriate type. ATtaCK does not automatically pass the number of eements
to the routine. If you need that information, you can passit yoursdlf by declaring

an additiona integer argument. However, asyou' |l seein our sample program,

you won't usudly need the Sze of the array—Dby the nature of theiteration and
instrumentation process, your analysis code won't be able to violate the array
bounds.

When the andysis routine receives the array, it contains a copy of the array
passed to the instrumentation call. Thus, you can use arrays to pass data into the
andysis routines, in addition to storing data within the routines. Note, though, that
passing the same array multiple times results in multiple arrays on the target—be
careful not to use up too much memory! You can usetheconst keyword inthe
declaration to tell ATtaCK to collapse duplicate arraysinto one.

Strings (indicated by char *) are aspeciad type of dynamic buffer. Normaly they
function just like a char array. However, rather than having to specify the length
of the array, ATtaCK assumesit to be null-terminated and calculates the length
itsdlf. Thus, strings are both passed and received as a single argument of type

char*.

Reading Arrays from the Host

Reading the contents of these arrays later is something of a challenge. When you
dlocate adatic array in your analysis code, it gets a symbol you can look up;
these tool-allocated arrays don't. Instead, the analysis code has to store the
address in some location where the tool can find it. It does this by declaring a
globd pointer variable to store the buffer’ s address. When it receives the buffer, it
dtores the address in this pointer.

Knowing the name of this pointer, the insrumentation tool can use

at ck_anal _symaddr () tolook up the pointer’s address. It then uses

at ck_r eaddat a() to read thisone-dement “array” of typeat ck_addr _t . Now it
has the address of the actud buffer, which it can read normaly.

Structures

It's often easiest to manage data in structures. For instance, thislesson’s example
program, SimpProf, gathers for each procedure the number of timesitiscdled
and the number of ingtructions executed within it. This data could be stored in two
pardle arrays, but the better approach isto storeit in one array of structures, each
of which containsthe call count and ingtruction count for a single procedure.

ATtaCK letsyou declare structures that you can then passin arrays to your
andyssroutines. While you can only pass structures in arrays, there' s nothing to
stop you from passing an “aray” of one demern.

Much as with functions, structures must be declared in C to your compiler, and in
a C-like syntax to ATtaCK. Thisis done with the following method of the session
object:

Analysis Tools Construction Kit 04-97

atck_bool _t atck_analtype(atck_sesn_t* self,
const char* decl aration)

The declaration syntax is a streamlined verson of C: the structure name, followed
by the types (but not the names!) of its membersin braces. For example, a
structure called CdlLog, containing an address and an unsigned 32-bit integer,
would be declared as Cal | Log{ addr, uint32}.

The gructure name must be avaid C identifier, with the additiona restriction that
it must o begin with acapitd |etter. Each member may be aeither one of the
basic ATtaCK types or another structure declared previoudy.

If the declaration is vdid, the function returns ATCK_TRUE; otherwise it returns
ATCK_FALSE. Unlike functions, there’ s no handle you need to save for later use—
in effect, the name of the dructureis the handle.

Note that it's extremely important for the C declaration of your structure to be the
same on both the host and the target. To ensure this, you should put al your tool’s
ATtaCK dructuresin asingle header file, which is then included by both the
ingrumentation code and the andysis code. Y ou should aso define the ATtaCK
declaration gtring for each structure as a congtant in the samefile, to make sure
the ATtaCK declaration maiches the C implementation.

Memory Allocation with ATtaCK

ATtaCK includes a set of memory alocation methods to provide the same
functiondity as the standard C memory functions:

voi d* atck_malloc(atck _sesn_t* self, size_ t bytes)

voi d* atck_calloc(atck_sesn_t* self, size_t elenentsize,
size_t el ementcount)

voi d* atck_realloc(atck_sesn_t* self, void* nem size_t
byt es)

void atck _free(atck_sesn_t* self, void* nem

Each of these works the same as the C function of the same name (minus the

“at ck_" prefix, of course). The only differenceis that the allocation routines never
return NULL. If they fail, the tool terminates and ATtaCK prints a diagnostic message.
This saves you the trouble of checking the return value against NULL.

These methods are for convenience only—you’ re free to use the standard C routines
instead. However, any memory you allocate with one of ATtaCK’ s alocation
methods must be freed with at ck_free() , and any memory you alocate with the C
routines must be freed with the standard-C f r ee() .

Note that since these methods require a session object, they are not available to
anadysis code, only to the instrumentation tool.

Analysis Tools Construction Kit 04-98

A Simple Profiler

Our sample program for thislesson is an improved verson of the previous
lesson’'s program. Unlike ProcCount, this new program, SmpProf, will get used—
it adds just enough features to become a genuindy useful profiler.

Thedmpledesgnis il very closeto that of ProcCount. Every time a procedure
executes, a counter for it isincremented. However, now we add a new metric:
Within each procedure, a counter a the start of every basic block increments an
ingruction counter.

Thus, we not only gather the number of times each procedureis called, but dso
the number of ingtructions that are executed within that procedure. This solves
ProcCount’ s chief failing: Procedures that are cdled infrequently but have large
loops, such asthe typical game-loop function, no longer “fall through the cracks.”

Building and Running the Program

SimpProf is one of the sample programs that came with ATtaCK. From the main
folder where ATtaCK was ingtdled, go to Examples\SimpProf. The
instrumentation tool’ s project, sSmpprof_inst_ps2.mcp, is located in the Inst
folder, while the analysis codeisin the Smpprof_and_ps2.mcp project within the
And folder.

Open both those projectsin CodeWarrior, and make each of them. It doesn’t
meatter what order you make themin.) Mogt likely they’ re dready up to date, so
the make shouldn’t take any time.

To run the tool outside the debugger, which is easiest, just open acommand
prompt. The syntax isjust si mppr of appnane. The results are lengthy and get
dumped to st dout , SO you probably want to redirect that with si npr of appnane
> outfile.

Assuming everything works, the application will launch and run on the target
system immediately. Hit ENTER on the host to hdt the target and read the data.

[%] Command Prompt

Microsoft Windows 20888 [Uersion 5.80.21951]
{C> Copyright 1985-288B Microsoft Corp.

C:\>TODO OUTPUT OF SIMPPROF.EXE! _

Figure 04-01: SimpProf Output
Now that we know the program works, let’s look at how it works.

Analysis Tools Construction Kit 04-99

SimpProf: Navigation

simpprof_inst.c

Open up smpprof_ing.c, which contains dl the instrumentation tool’s code. Y ou
can see immediately that thisis amuch more sophisticated program that what

we ve been dealing with to date. A header file! Structures! Forward declarations!
Ohmy!

Ignore the smpprof.h header file for the moment, and let’s proceed. The first

thing the code doesis declare its Sate variables, putting them al in a structure
called rundata t. Thisis used by the event handler, which we |l come to by and

by.

Next we see forward declarations for the functions that do al the work. Y ou can
guesswhat | nst runent (), Runl t (), Handl eEvt () and Pri nt Dat a() do.
cnpSort () isacomparison routine required by gsort () , used to make the output
more user-friendly, and Cl ear Dat a() isused to reset the target’ s profile data.
We Il seedl those functions later.

main()

Moving on into main(), we find the same boilerplate code that we know and love
from Lessons 02 and 03. We re going to see this code nine more times before the
course is through.

This program reads the target application name off the command line, asusud.
There' s an extra argument this time, the name of a procedure. Aswe' Il see later,
the andysis code will hdt the gpplication for the profile data to be read whenever
the named procedureis caled.

Next, we dlocate a buffer for the pdats array. Thisarray contains one element for
every instrumentable procedure in the target gpplication; by dynamicaly
dlocating it, we know that the buffer islarge enough without being wasteful.

Each dement of thisarray isa procdat_t structures. This structure is defined in
smpprof.h, so jump to that for amoment. There we see that procdat_t stores the
profiling datafor asingle procedure, in two members. a 64-bit counter for the
number of callsto the procedure, and a 64-bit counter for the total number of
ingtructions executed within that procedure.

There sdso agtring congtant for this Sructure' s ATtaCK signature. That's
something we haven't seen before. ATtaCK dlows you to declare structures for
use in ingrumentation cals. Structures like this are a much better way to store
profiling data than the dternative, pardld arrays. To use a structure, though, you
haveto declareit to ATtaCK as wdll asthe compiler—just asto use an andysis
routine you had to declareit to ATtaCK and the compiler. Y ou can probably
guess how that works, but we Il cover it in detail next lesson.

For now, take the procdat_t structure as a given and let’s move on. Armed with
our profile-data buffer, we cal Instrument().

Analysis Tools Construction Kit 04-100

Instrument()

Apart from being a separate function rather than a section of main(), thisis
basicaly the same navigation and instrumentation process we' ve aready seen,
with a couple of new features.

Firgt, we declare the procdat_t structure for use by ATtaCK, naming it “ProcDat.”
Next we declare a prototype for the Initidize() analyss routine. This routine takes
an array of ProcDat structures. Arrays of structures work exactly like arrays of
basic types. We'll cover structures in depth next lesson, but you' re probably
dready getting an intuitive fed for how they work.

We then use our prototypeto insert acal to Initidize() at the start of the program.
Since it takes an array of ProcDat structures, we pass the ingrumentation cal the
gze of the array and the address of itsfirst eement.

Next, if the user specified a function name on the command line, we look up that
name in our program. Note that in the ATtaCK model, C function names are more
akin to entry points than procedures, so that’s what we look up and instrument
here. If the entry point exists, it receives an insrumentation call to the Report()
andyssroutine.

Findly, we enter atraditiond iterate-and-instrument loop, running through dl the
images, then al the procedures within an image, then al the basic blocks within a
procedure. Each procedure receives an instrumentation call to CountProc(),
passing it the procedure’ s numeric I1D. Each basic block receives acdl to
CountBlock(), passing it the procedure' s ID and the number of ingtructionsin that
block.

After each procedure finishes, we release its basic-block iterator. After each
image finishes, we reease its procedure iterator and call atck_img_write(). When
the image loop is done, we release the image iterator and call atck finish write().
That method gives us back a handle to our newly instrumented gpplication, which
we return to the cdler.

The caller’ s next stop will be to passthat handle to Runlt(), which will download
and run the ingtrumented gpplication. Before we go there, though, let’slook at
what the analysis code does.

SimpProf: Instrumentation and Analysis

simpprof_anal.c

Open smpprof_and.c, part of the smpprof_and_ps2 project. Even though thisis
amuch better profiling tool than last lesson’s ProcCount, the analysis code is
redlly not much more involved.

Firg, the file includes the smpprof.h header, so that both the host and target are
using the same definition of the procdat_t structure.

Analysis Tools Construction Kit 04-101

Initialize()

The Initigize() function receives a pointer to an array of these structures and
doresthat pointer in agloba variable. Remember, even though the tool passed
both the size and address of the array to the insrumentation tool, we only receive
the address.

CountProc()

The CountProc() routine receives a numeric procedure ID and uses that to index
the pProcDatd] array, it then increments the ncalls member of the indexed
element. Thisisthe exact same process used in ProcCount; the only differences
are that the array is now dynamic and the counters are members of a structure
rather than stand-aone integers.

CountBlock()

CountBlock() receives the same numeric procedure ID as CountProc(), plus the
number of ingtructions in the block—it increments the icount member of the
indexed structure by the number of ingtructions. The profile datawill thus show
us both the number of times each procedure was called and the total number of
indructions executed within that procedure.

Notice that we ve insrumented basic blocks, not individud ingructions. By the
definition of abasic block, we know that if the block is entered, every indtruction
in that block will get executed. Thus, we can Smply increment the ingtruction
counter at the top of the basic block.

Without the concept of basic blocks, we d have to instrument every individua
indruction. Y ou can imagine the effect that’ d have on performance.

Now, it'd be nice to know which basic blocks get executed, rather than just the
totd ingtruction count. Knowing which procedure consumes the most time
definitely helps, but we' d dso like to know why that procedure executes so many
indructions—for instance, isthere aloop that runs more often than we expected?
S0 there' s definitely room for some smple improvements here, which we'll look
a in the assgnment.

Report()

At firg glance, this routine doesn't seem to live up to its name: It just stops
execution. Remember, though, that the analys's code cannot talk to the hogt; the
host mugt tak to (i.e, read from) it. The only way analysis code can get the host's
attention is by stopping. Thisraises an event on the host, who (presumably)
responds to that event by reading the profile data

And with that, let’s go back to the instrumentation code and see how it executes
and andyzes the gpplication.

Analysis Tools Construction Kit

04-102

SimpProf: Execution and Output

simpprof_inst.c Again

Runlt()

Fird, this function looks up the address of the andysis code’ s pProcDats variable.
That address, dong with the other state information that will be required to read
the profile data from the target, is stored in the rdata structure.

Next, Runlt() goes through the standard boilerplate of connecting to the target. It
specifies HandleEvt() to be the callback event handler, and passesin a pointer to
the rdata structure. ATtaCK will pass this pointer to HandleEvt() dong with any
eventsthat get generated.

The function then downloads the application and immediatdy sartsit running.
The fgety() library function waits for user input, which is a good way to set up an
idleloop. If the user hits ENTER, the target is stopped, which resultsin the event
handler being cdled; if the user hits Z before ENTER, the event handler will clear
the profile data buffer, otherwise it will print the buffer’ s contents.

If the user hits X before ENTER, the loop immediately ends and the target is
disconnected. This automaticaly kills the running program, which generates one
last cdll to the event handler.

Findly, Runlt() returns to main(), which goes through the standard end- of-session
cleanup boilerplate.

HandleEvt()

The event handler receives a handle to the event, a pointer to the rdata ate
sructure and adummy pointer, which gets discarded.

If the event is of type ATCK_TEVT_STOPPED, the handler gets the running-program
handle from the event. Based on aflag set by the user-input loop in Runlt(), the
handler either calls ClearDat&() to wipe the target’s profile buffer or PrintData() to
read and display the buffer.

The other events are just diagnostic or progress messages, which can be displayed
or not as you seefit. In this particular tool, we chose to display the progress
messages but not the diagnostic ones.

PrintData()

Thefirg thing PrintData() does is find out how many instrumentable procedures
the origind gpplication has—which is, of course, the number of dementsin the
profile data array.

Then, by reading a“buffer” of asingle address, it gets the contents of the target’s
pProcDats pointer. It uses that address in turn to read the contents of the target’s
profile data array.

Analysis Tools Construction Kit 04-103

Next, PrintData() alocates atemporary array of sort_t structures. This structure
holds a handle to a procedure and a pointer to that procedure’ s profile data. A
dandard iteration loop fills in the Structures, and then the array is sorted in
descending order of ingtruction counts using the standard C library routine

gsort () and the user-defined comparison routine crpSort () .

PrintData() then runs through this sorted array, printing out the name, number of
cdls, totd instruction count and percentage of the program’ s entire instruction
count for each procedure.

Findly, PrintData() releases the temporary array and restarts the target.

ClearData()

Using the same process as PrintData(), ClearData() gets the address of the target’s
profile data buffer and writes an array full of zeroesto it, then retarts the target.

Almost There!

With that out of the way, we' ve covered 90% of the documentation in 60% of the
course. We till need to go over the details of dynamic arguments, and there are
some register-usage attributes of the instrumentation object to discuss.

After that, though, the ret of the course will just focus on nine more sample
programs. Each of these programs solves red-world problems, and they're dl as
useful asyou'll find SimpProf to be.

So without further ado, let’s continue to Lesson 05: Designing Anadlysis Tools.

Analysis Tools Construction Kit 4104

Lesson 04 Assignment

SimpProf counts the number of instructions executed within each procedure,
by incrementing the procedure s counter by the number of ingtructions
contained within each basic block that gets executed. In other words, we know
how many instructions get executed in a procedure, but not which ingructions.

That’s usudly good enough, but there are timeswhen it’s inadequate. Thisis
one of thosetimes: Your Al pathfinding routine, al kvap() , isexecuting
more than twice as many ingructions as it should. Hack SimpProf, as quickly
and eadly as possible, to give you the information you need.

Hint:

You'll find the methods at ck_ent _byname() and at ck_ent _proc() very
useful.

Answer:

Aswith any coding exercise, there s more than one right answer, but your
solution should look pretty smilar to mine. Basically, you need to instrument
each basic block within wal kMap() with agpecid verson of Count Bl ock()
that increments a counter for the block in addition to the counter for the
procedure.

Remember, what we re aiming for hereisahack: You're not trying to
improve SimpProf, you' re trying to improve WakMap()! So take as many
shortcuts as you can. In particular, you know roughly how many basic blocks
WakMap() has, so cregte a Satic array in the analysis code to hold the basic-
block counters rather than dynamically dlocating one. Reading and displaying
the contents of thisarray istrivia, so we ll skip that.

Here'sthe code | added to | nst r unent (), right before the comment that
begins “Thisis the main part of the instrumentation.”
pent = atck_ent _bynanme(pprog, "Wal kMap");
if (pent)
{
int ibb = 0;

pproc = atck_ent _proc(pent);

pproto = atck_anal prot o(pprog, "void
HackCount Bl ock(ui nt 32, ui nt32)");

pbbit = atck_proc_bbit_new pproc);
while (pbb = atck_bbit_next(pbbit))
{

atck_bb_cal | bef ore(pbb, pproto, ibb
(atck_uint32_t)atck_bb_ninst(pbb));

Analysis Tools Construction Kit

04-105

++i bb;
}
atck_bbit_free(pbbit);
}
And her€ sthe new analysis code:
atck_uint32_t Bl ockCounters[25];

voi d HackCount Bl ock(atck _uint32_t ibb, atck uint32_t
num nst)

{
Bl ockCount ers[i bb] += num nst;
}

| dso added atiny looptoinitialize(),inorderto clear the array to zero at
the start of the program:

int i;
for (i = 0; i < 25; i++)
Bl ockCounters[i] = O;

Analysis Tools Construction Kit 04-106

Lesson 04 Quiz

1. Where can you find thefile referred to by <syscf g>?
A. Thedirectory containing your ATtaCK license
B. The Windows system directory
C. Thedirectory containing at ck. 1i b
D. The CodéWarrior compiler directory

2. Trueor fdses An ATtaCK tool can monitor the status of the target
system without using an event handler.

A. True
B. Fdse

3. True or fase: The event-handler arguments devi D and pr ogl D must be
pointers to structures.

A. True
B. Fdse

4. True or fase The ATtaCK config-file sysem only lets you read, not write,
files

A. True
B. Fdse

5. True or fdse: The only way to create anew i pr og handleisby cdling
at ck_i open().

A. True
B. Fdse
6. Which of the following isnot an option expected by at ck_connect () ?
A lp
B. Port
C. HostioDrive
D. deviD

7. Which of the following functions may not be caled from within an event
handler?

A. atck_stop()
B. atck kill()
C. atck_continue()
D. None of the above

Analysis Tools Construction Kit 04-107

8. When an application has locked amutex using at ckt ar g_I ock() , how can
the application be halted or interrupted?

A. By sysgem interrupts

B. By the host stopping the target with at ck_st op()
C. By the host stopping the target with at ck_ki 11 ()
D. By another thread locking that same mutex

9. True or fdse: Every member in an ATtaCK structure declaration needs to
be named.

A. True
B. Fdse

10. True or false: Y ou are not required to use the specid ATtaCK memory-
alocation methods such asat ck_mal 1 oc() .

A. True
B. Fdse

Analysis Tools Construction Kit

04-108

Lesson 05: Designing Analysis Tools

By this point, you' re proficient with using and modifying the existing ATtaCK
sampletoals. In our fifth lesson, we |l dig deegper into designing your own
andyss code. WE |l discuss some basic principles of code andysis and look at dll
the information your analys's code can gather. Findly, we ll examine

PS2Counter, an extremely useful tool that uses the EE’ s hardware performance
countersto quickly collect accurate performance information.

The Road Ahead

Between what you' ve learned so far, and keeping the documentation handy, you
should be ableto look at any ATtaCK tool and figure out what it's doing. Redlly,
though, the point of ATtaCK isto alow you to creste custom tools that answer
specific questions you have about your code. To get the most out of ATtaCK, you
need to go beyond learning how ATtaCK tools work and master how to design
new tools of your own.

Now, in alive course, or even a one-on-one interactive verson of thisonline
course, that's exactly what we' d spend the rest of our lessons working on. We' d
stop here and go straight to your own code—you' d tel me what problems you're
trying to solve, and I’ d show you how to use ATtaCK to, well, attack them.

Unfortunately, from where I’'m currently writing—April 2001, on arooftop in
|srael—I can't know what your particular code problems are. So rather than just
stop the course short, I'll kegp going as | have been, covering generd- purpose
tools that answer questions everybody tends to have:

“How often does my program read from the cache rather than memory?’
“Which functions should be inlined?’

“Which branches should be reversed?’

“Wherée s that *%@# memory lesk coming from?’

There are seven of these generd- purpose tools to come, one in this lesson and
three each in the next two lessons. Each of then isafull-fledged, standaone tool,
and you might find the whole suite of them worth ATtaCK'’s price tag.

Before we get stuck forever in the land of genera- purpose toals, though, we'll
cover the remaining handful of ATtaCK features you haven't yet seen: dynamic
arguments, user-defined data structures and instruction register-usage attributes.

Before that, though, we'll talk about some principles of code analysis and how
they can help you design your own ATtaCK tools.

Principles of Code Analysis

What follows are some guiding principles of code andyssthet I’ ve found useful
over theyears. | don't pretend these to be jewdl s of crystalized wisdom, just

Analysis Tools Construction Kit

05-109

handy rules of thumb. I’'m sure many of you taking this course are senior
programmers to whom these will be old hat. Y ou have to read this page anyway,
becauseit'Il be covered in the quiz.

On the other hand, alot of you are probably junior programmers. “The lead
programmer isway behind schedule; let’ s have the new guy right out of CS
school run the profiler”—does that sound familiar? If you're in that Stuetion, |
can’'t drag you out of the deep end, but | can at least throw you arope.

The Role of Analysis

People think of andysis as relating to optimization, which is partidly true.
However, what people think of as “optimization” is more properly cdled
“twesking” or “fine-tuning,” which isredly just aform of debugging. Code
andysis providesinformation for al forms of debugging, not just performance
tuning. Y our IDE debugger, for instance, is a code-andysstool.

No matter what type of debugging task you're usng it for, you have to keep in
mind that analyss gives you a very low-level view into your code. It can tdll you
what’ s going wrong, but it shouldn’t help you fix it. Most problems, whether

they’ re code defects, speed problems or whatever, need to be fixed at the highest
level possible.

The absolute best place to fix software defectsis a the game-design leve. If the
game design cdls for twelve robot guards per levd, but your Al routines can only
handle ten before becoming too dow, you have aright to ask the designer whether
he can live with just ten robots per leve. Programming is an extremely expensive
and risky endeavor, and the less of it the game requires, the better.

Of course, every time I’ ve made that point, at al the companies I’ ve worked for
or conaulted to, it'sfalen on desf ears. | don't have any illusons that thistime
will be any different. So let’ s assume the game design is graven in stone. ...

The next best place to fix defects is a the code-design levd. Thisisthe land of
agorithm changes, render- pipeline shortcuts and other tricks that let you cut out
whole chunks of code from your program. Programmers often think of design
changes only as an optimization technique, but they can address code defects as
well. For ingance, you might be able to fix amemory lesk smply by changing
how or where you dlocate memory.

The function leve, though, iswhere the typica programmer feds most
comfortable. Thisistheland of inline functions, unrolled loops and the like. You
might well lack the authority to make changes above this level. For that maiter,
many problems can only be fixed at thisleve, snce thisis where they were
introduced—having a brilliantly streamlined render pipdine doesn’t mean you
can aford to implement it with buggy code. Nevertheless, any time you're
debugging at thislevd, avoice in the back of your mind should be questioning
whether you can’t accomplish the same task better through a desgn change.

Findly, the ingtruction level is where the hard-core assembly programmers get to
have fun. Thisisthe land of branch-prediction optimization, five-cycle render
loops and other clever tweaks that earn you the admiration of your hacker peers.

Analysis Tools Construction Kit 05-110

The trouble is, while these tricks can make afast program fagter, they won't make
adow program lessdow. It's the same reason why they put afterburners on F-16s
rather than B-52s.

Notice that each level down brings you closer and closer to the information
ATtaCK generates, because each level is closer to the actua machine code that
ATtaCK measures. Thisisthe single biggest danger of usng ATtaCK: The
wesdlth of low-level data you gather encourages you to focus your efforts on the
low-level code, rather than looking at the big picture. The higher levels, though,
are where you get the most return on your programming dollar. Always, always
keep that in mind when you work with ATtaCK.

Analysis Principles

Now that I’ ve gotten the “with great power comes great respongbility” speech out
of the way, here are the rules-of-thumb I’ ve found most ussful when andlyzing
code.

The 80/20 Rule

The most interesting 80% of anything is usudly contained in 20% by volume. For
instance, 80% of your bugs are usudly found in 20% of your code. Whenever
andysis reveds a bug, you should check the portion of your program most smilar
to it—same author, written at the same time, performing the same task,
whatever—for other bugs.

Likewise, 80% of your performance problems usudly come from 20% of your
code. One of the very fird things you should do when performance-tuning an
gpplication is run SimpProf and make note of the top 20% of the procedures by
ingruction count. Those routines should receive the bulk of your attention.

Y ou have to actualy measure the entire program, however. While 20% of your
code needs 80% of the work, don’t assume that you know which 20% that is.

Measure, Don’t Guess

It'samazing how often this dips by people (including me, | have to admit): If
your program has a problem, then obviously your assumptions were wrong
somehow. (I guess you could be incompetent or ma evolent—I’ ve encountered
both! —but that’ s a story for adifferent time...) So when you're performing
andyss—that is, when you're trying to figure out what mistake you made—you
should be especidly quick to chalenge your assumptions and test your
preconceptions. The possibilities that you dismiss out of hand are the very firgt
ones you should use analysisto test.

| can’t count the number of times I’ ve been helping one of my programmers
debug his code and heard him say “That code can't possibly be the problem.”
That's dways my cueto say “Well, let’s check it anyway, just to be sure'—and
more often than not, that’ s exactly where the bug is. Thisis one of the reasons
why smply having an extra person helping you debug or optimize is so useful—
each of you can check the other’ s assumptions.

Analysis Tools Construction Kit 05111

The Heisenberg Uncertainty Principle

The Heisenberg Uncertainty Principleis arule of quantum physicsthat, broadly
dated, meansthat it isimpossible to measure something without interacting with

it. It strue of analyd's, too: The mere act of measuring performance will

invariably reduce it. Likewise, there are some bugs that go away when you run the
app under the debugger, or that go awvay when you smply recompile. ATtaCK
can help you track those down, since it uses a different mechanism than the
debugger, and doesn't require you to recompile your program in order to insert
diagnostic code.

The Heisenberg Uncertainty Principle tells physicigs thet there s an ultimate limit

to how accurate any measurement can be. That goes for ATtaCK too—at acertain
point, the performance information you get from the toal is less than the
performance pendty of the insrumentation code. That’ s the point to stop
tweaking—jperhaps you could make your program fagter, but there is such athing
as “good enough.”

Designing Analysis Tools

Notwithstanding the fact that | just spent four entire lessons talking about nothing
ese actudly programming ATtaCK toolsis very smple. The chdlengeisin
designing analysistools. The perfect ATtaCK tool has three features:

It isfocused, collecting exactly the data you need, so that you get the
answer to your question without being overwheimed by information.

It islightweight, so that the analys's process doesn’'t distort your results or
interfere with playtesting.

It issimple, so that you can focus your efforts on actualy solving
problems rather than writing and maintaining analysistools.

Focused

When you gart designing (or using) an andysistool, stop and ask yourself what
you'll do with the information it collects. In the case of a profiler, the answer is
easy: You'll usethe profile to show you which areas of the program require the
most optimization effort. As your tools get more specific and detailed, however,
you should become more skeptica about their vaue.

For example, one of the toolswe |l see later estimates how often your code
fetches data out of the cache rather than from memory. Let’s say you run that tool
and find out that your program misses the cache 74.4% of the time. Now what?
You've asked avalid question, and you' ve gotten an informed and accurate
answer, but if you don’'t know what to do with that answer you' ve just wasted
your time.

Instead of asking “How often does my program miss the cache?’ a better
approach would be to ask (for instance) “How often does my Al pathfinding

Analysis Tools Construction Kit 05112

routine miss the cache?’ By limiting the scope of the question to asingle
function, you make the answer more comprehensible and thus more useful.

Better ill would be to ask first “What data does my Al pathfinding routine fetch
most often?” if you don’t dready know that answer. This enables you to be more
specific ill: “How often does my Al pathfinding routine miss the cache when
fetching map data?’ Now when you get the answer “74.4%,” you know that you
should probably modify your search agorithm to walk the map by rows rather
than columns.

It's seductive to Smply collect as much information as possble. That requires less
planning in the tool, and seems to make the tool more “reusable,” thus reducing
your work down the road. However, writing the toal is the easy part. The hard
part—and the part you get paid for, by an amazing coincidence—is solving red
problems in your gpplication. That cause is best served by specia-purpose tools
that ddliver narrow, focused information.

Lightweight

Here' sa scenario I’ ve seen play out severd times: Lead programmer discovers
the value of a profiler, memory-leak checker, code validator or some other
analysistool. Lead programmer convinces management to buy copies of the tool
for every programmer, S0 that they can dl run it dl the time. Within aweek, the
tool is collecting dust on the shelves, as the programmers stop using it so that they
can “get some actua work done.”

Doesthat sound at dl familiar? The problem here is that Heisenberg Uncertainty
Principle again: Measurement invariably interferes with the thing being measured.
In the case of anadlysistodls, if the cost they impose in programmer or playtester
timeistoo grest, then the programmers and playtesters will just revolt and not use
them.

When designing andlysis routines, you should move as much of the processing

out to the host as you can, S0 that the game remains playable. We ve dready seen
how atool can keep dl the context info on the hogt, so that the analysis code only
dedswith ID numbers for procedures. More generdly, you should pass aslittle
information as possible to analysis routines. Thistiesin to the previous point

about collecting narrow information: The more focused your tool, the less impact
it will have on the target application.

Target clock cycles aren’t the only resource your tool might waste, however. An
andysistool that must instrument the program each time it runs, and that takes ten
minutes to do the instrumentation, wastes tester time—better to break the
instrumentation code out from the download and execution code, so that the tester
only hasto st through the time- consuming instrumentation process once.
Reatively small and quick changes like that can have big payoffs in usability.

Tak to the people who are actudly using your andysistools and ask them for
feedback.

Analysis Tools Construction Kit

05113

Simple

ATtaCK doesalot of work for you. Take advantage of that—write your toolsin
the smplest, most direct way possible, using the library code as much as you can.
Especidly when working with ATtaCK'’ siterators, the most intuitive approach to
atask may wdl require the most work, while aless “naturd” or “degant” solution
will let the APl handle everything for you.

For example, given an ingruction handle, you can get the handle of the containing
basic block, but there s no convenient way to get the handle of the next
ingruction in that block. If you find yoursdf needing to write code to do that, then
you've probably made a mistake—you’ ve written a function that works with
ingruction handles, when really you should write one that works with abasic
block or an ingruction iterator. (C++ programmers should recogni ze this as one of
the rules of OOP design: If you find yourself needing f ri end access, you've
probably designed your classes poorly.)

Asde from forcing yoursdlf to usethe ATtaCK APl as much as possible, writein
the style that’s most naturd for you. If you're most comfortable writing
uncommented code with one-letter variable names—well, it's not a habit | want to
encourage, but go ahead and indulge yoursdf if that’s what it takesto get the tool
written faster. If maintenance turns out to be an issue, you can clean things up
later, when you don’t have a big problem looming over you.

It's often more efficient to write a doppy but customized tool focused precisdy

on the task at hand than to Sift through the output of a more genera- purpose, well-
written one. When you're jotting down notes during a debugging sesson, nest
handwriting and proper grammar are less important than getting the information
you need; ATtaCK tools are just the software equivaent of that scratch paper.

Dynamic Arguments

Okay, so much for the guru-on-the-mountaintop bit. Now we' |l introduce
dynamic arguments and look at the last remaining API functions. WE I finish the
lesson with alook at an analysistool that takes advantage of a super-€elite secret
hardware fegture of the EE.

Dynamic arguments are values known only at the gpplication’s runtime, not the
tool’ s runtime. These are usad to communicate information from the running
gpplication to the analysis routines, and are in fact the only way to do so—
andys's code does not have access to the running program, and can only act on
information passad to it viainstrumentation cdls.

The most common dynamic arguments are registers. Technicadly, an andyss
routine could smply read regigtersitsdlf rather than being passed them. However,
that would reguire writing the routine in assembly, which many programmers
don’'t know. More importantly, registers might get modified in between the
indrumentation cal and the analysis routine. (Thisis nearly guaranteed to happen
in the case of the link register GPR31!)

Analysis Tools Construction Kit

05-114

Dynamic arguments can aso pass addresses. An address argument can be used to
identify the memory location accessed by aload or store operation. It can aso be
used to identify the ingtruction address targeted by a branch, call or return
operation.

“But wait!” you say. “I dready know the targets of branches and calls, thanks to
methods likeat ck_cal | _t ar gaddr () . Why do | need them at runtime?” Wall,
for two reasons. Firgt, you might not know them in advance—you don’t know the
targets of C++ virtua method cals until runtime, for instance.

Second, the act of instrumenting the program might change al of those addresses.
ATtaCK inserts code into the instrumented program, and that code hasto go
somewhere. Actudly, though, on MIPS platforms like the PlayStation 2, all
indructions are the same size, so ATtaCK doesn’t have to change any addresses.
Still, on other platformsit might, so don't rely on this beyond the PlayStation 2.

Smilarly, thetool can dso smply passin a gatic address from the origina
gpplication, such as the address of a function, which gets trandated into the
corresponding address from the instrumented application. Technicaly thisisT't
redlly a dynamic argument, snceit’s known before gpplication runtime, but it
uses the same syntax as dynamic arguments.

For applications with multiple images, a smple addressis not sufficient, snce
each image may have its own address space. ATtaCK can thus passimage ID
number s to complement addresses. Thiswon't happen automeaticaly—you have
to explicitly ask for both the address and theimage ID, aswe' |l seein a moment.

Findly, there’ s a gpecia dynamic argument available caled the condition-taken
flag. Thisis used with instrumentation added after a conditional store or before a
conditiond branch to tdll the analysis routine whether the operation was taken. Of
course, the PlayStation 2 doesn’'t have conditiond stores, so thisisredly just for
identifying whether a conditional branch was taken or skipped.

C Declarations

Aswith static and array arguments, your analys's routines see dynamic arguments
as they would any other arguments: as badic types. Specificdly, image IDs and
conditiontaken flags come through as at ck_ui nt 32_t , integer registers as

at ck_ui nt 64_t , floding-point registersasat ck_f | oat 32_t and addresses as
at ck_addr _t.

Asan example, let’s create an analysis routine for logging conditiona branches.
The routine takes a gatic integer (used by the insrumentation tool to identify this
particular branch), the target address and image of the branch, a condition-taken
flag, and the contents of the register tested for the condition. The C declaration of
this routine would look like this:
voi d LogBranch(atck uint32_t id, atck_addr_t destaddr,
atck_uint32_t destinmgid, atck uint32_t

t aken,
atck _uint64_t val ue);

Analysis Tools Construction Kit 05-115

ATtaCK Declarations

Likewise, the ATtaCK declaration for a dynamic argument specifiesthe
argument’ stype, modified to indicate that the argument is dynamic rather than
gatic. The ATtaCK declaration does not specify what vaue the argument will be
used to pass, however—that’ s done by the insrumentation call.

Registers are declared asr egv64 and f r egv32 for integer and floating-point
registers respectively. Runtime addresses are declared asval addr ; insrumented-
application addresses are declared asi nst addr . Image IDs and condition-taken
flags are declared asval ui nt 32.

The ATtaCK declaration of our example LogBranch() routine would look like
this

“LogBranch(ui nt 32, val addr, val uint32, valuint32, regv64)”
The red work of dynamic argumentsis done at the insrumentation call.

Instrumentation Calls

The declaration tells ATtaCK to expect a dynamic-argument flag ingtead of an
actud vauein the instrumentation cdl; the value you then passto the
ingrumentation cal specifies which dynamic argument to use. For instance, the
declaration specifies that you'll be passing aregiger; the insrumentation call
itself identifies the particular register to pass.

Registers

Remember the at ck_r eg_t enumerated type from way back in Lesson 027 Now
you get to see what it’sfor. In your instrumentation cal, you pass a vaue of this
type to indicate which register you want to passto the andyss routine. At
runtime, ATtaCK replaces this value with the contents of the specified regider.
Remember that you need to use regv64 for the integer registers, fregv32 for the
floating-point ones.

Y ou can only pass regisers viainsrumentation calls added to ingructions. The
contents of aregister are undefined anywhere sein the program. If you redly
need to analyze the contents of registers at the start of a procedure (for instance, if
you want to log the arguments passed to the function), use

at ck_i nst _cal | bef ore() onthevery firg ingruction of the procedure,

If you pass aregister viaat ck_i nst _cal | bef ore(), your andyssroutine
receives the register’ s value before any changes made by the ingtruction. If you
passit viaat ck_i nst _cal | af t er (), your routine gets the vaue after al the
ingruction’s Sde effects. If the vaue wouldn't normdly be immediately
readable—for instance, in the case of aload from memory—ATtaCK
automaticdly inserts enough delay cyclesto ensurethe vaue is available.
(Actudly, on the PlayStation 2, the processor will itsdf insert the dday cycles,
but the effect is the same.) Be aware of the performance hit thiswill cause!

WEe Il look at registers again next page.

Analysis Tools Construction Kit

05-116

Runtime Addresses

To pass the address of data loaded or stored by an ingruction to an analysis
routine, you pass the flag value ATCK_EFFADDR to the indrumentation call. This
vaueis replaced at runtime with the memory address affected by the ingtruction.
Thisflag only has meaning when passedto at ck_i nst _cal | bef ore() ; it won't
work with at ck_i nst _cal | af t er () , and obvioudy it only appliesto indtruction
ingrumentation.

Similarly, you can pass the target address of a branch ingtruction using the
ATCK_TARGADDR flagwith at ck_i nst _cal | bef ore() . You can also passthe
target of acdl usng the ATCK_TARGADDR flagwith at ck_cal | _cal | bef ore().

Finally, you can pass the address to which a procedure is returning using the
ATCK_TARGADDR flagwith at ck_proc_cal l after().

Runtime Integers

In any Stuation where you could use ATCK_EFFADDR Or ATCK_TARGADDR, YOu can
also use ATCK_EFFI MG and ATCK_TARG MG to identify the specific image
containing the passed address. On the PlayStation 2, where you can only
ingrument Sngle-image applications anyway, thiswon't come into play.

You can passthe ATCK_TAKEN flagintoat ck_i nst _cal | after () onastore
operation to find out whether the store was actualy executed. It is replaced with
the vdue ATCK_TRUE if the store was executed, or ATCK_FALSE otherwise. Thisis
only available with ingructions, and must be called after the instruction. Note that
the EE doesn’t have conditiond stores, so while you can gill use ATCK_TAKEN, it
will dways be ATCK_TRUE.

Between image I Ds and conditiond-gtore flags, runtime integers may seem

useless. Wdll, ther€ s one more Situation where you can use ATCK_TAKEN: before a
branch, using at ck_i nst _cal | bef or e() . If the branch is conditiona and not
taken, this value will be passed as ATCK_FAL SE; unconditiond or taken

conditiona branches pass ATCK_TRUE.

Application Addresses

Application addresses may be declared and used with any instrumentation call.
Simply pass an address from the origind gpplication into the call. Aslong asthe
address is contained within the uninstrumented gpplication, it is replaced with the
corresponding address from the instrumented agpplication. If ATtaCK can't
recognize the address as part of the origina application, then the address is passed
unchanged to the andysis routine.

To conclude our example, here’ swhat one instrumentation cal to our
LogBranch() analysis routine might look like:

atck_inst_cal | before(pinst, plogbranchproto, instid,
ATCK_TARGADDR, ATCK_TARG MG,
ATCK_TAKEN, ATCKM PS_REG GPRS6);

The complete set of dynamic argumentsis summarized in Table 05-01.

Analysis Tools Construction Kit 05117

Argument Type C Type ATtaCK Type Expected Value

Register atck_uint64_t or regv64 or Regi ster flat (e.g.,
atck_fl oat 32_t fregv32 ATCKM PS_REG GPRO

Affected Address at ck_addr _t val addr ATCK_EFFADDR
Affected Image at ck_uni t32_t val ui nt 32 ATCK_EFFI M5
Target Address at ck_addr _t val addr ATCK_TARGADDR
Target Image atck_uint32_t val ui nt 32 ATCK_TARA MG
Condition-Taken Flag At ck_ui nt 32_t Val ui nt 32 ATCK_TAKEN
Application Address At ck_addr _t I nst addr Address ;gg’m gglt initnr urment ed

Table 05-01: Dynamic Arguments

Restrictions

Asyou can seein the text above, not dl cdls can take dl dynamic arguments—
they’re mostly restricted to calls added to ingtructions. In fact, they’ re not even
vaid for dl indructions.

Most of the restrictions are common sense—you can't use ATCK_EFFADDR with an
ingruction that only affects registers. Some are more obscure. For instance, you
can't use ATCK_TAKEN with the EE’ s coprocessor branch ingtructions. There may
even be context-sengtive reasons why a particular instruction may not permit an
indrumentation call that would be valid for an identica ingtruction somewhere

dse

To find out whether an ingtruction can take a given dynamic argument, you can
check the following attribute:

atck _bool t atck _inst _isallowed(atck inst_t* self, int code)

Thisisamethod of the instruction object, so of course a handle to the object is
passed as the firg argument. The second argument is the dynamic-argument flag

you want to test: ATCK_EFFADDR, ATCK_TARGADDR, ATCK_EFFI MG, ATCK_TARG MG
Or ATCK_TAKEN. Thereturn value is either ATCK_TRUE if the argument is dlowed

in this context, or ATCK_FALSE otherwise.

Y ou don't have to check to see whether an instrumentation call is permitted. You
can smply insart the cdl. If the cdl or its arguments are forbidden, ATtaCK will
halt and issue adiagnogtic message. That wouldn't be acceptable behavior in an
actual application, or in arobust, reusable andysistool, but might be just fine for
athrowaway program.

Working with Registers

Way, way back in Lesson 02, | mentioned two additional attributes of the
ingruction object: which regigters the indruction reads and writes. Since an
ingruction will often touch multiple registers, these attributes have to return
multiple vaues. And since there are more than 64 registers on the EE, returning

Analysis Tools Construction Kit 05-118

bit flags in an unsigned integer isn't an option. Instead, ATtaCK uses a specid
object caled aregister set.

Register Set Object

The register-set object, at ck_regs_t, performsthe same function that a set of bit

flagswould. In fact, on a platform with very few registers (like, say, the x86), the
register-set object would probably just be awrapper for an integer containing bit
flags—but thet sort of implementation detail is hidden from you.

But snceit’s essentialy amulating alarge collection of bit flags, the register-set
object provides methods to give you the same abilities you' d have with bit flags
toggling individud bits on and off; turning dl the bits on or off; tesing an
individua bit; counting the number of set bits; and combining sets with AND and
OR.

Managing Register Sets
You're responsible for dlocating and releasing dl the register setsyou use. As
with most objectsin ATtaCK, thisis done using new and free methods:
atck_regs_t* atck_regs_new(atck prog_t* self)
void atck regs_free(atck _regs_t* self)
at ck_regs_new() isamethod of the program object—that’ s the object that
knows about the target processor, and thus knows what the range of possible
regisersis It returns a handle to an empty register set, which will eventudly be
freed usngitsat ck_regs_free() method. If you don't free up aregister-set

object, it will get freed for you autometicaly when you close the session using
at ck_endsession() .

Adding and Removing Registers

void atck_regs_add(atck_regs_t* self, atck _reg_t reg)

void atck_regs_rematck_regs_t* self, atck _reg_t reg)
These methods add or remove the specified register from the register-set object.
The reg argument is one of ATtaCK’sregister ID congtants. If you were using bit
flags, these methods would be exactly equivdenttosel f | = reg andsel f &=
~r eg.

void atck_regs_addal |l (atck_regs_t* self)

void atck _regs_remall (atck _regs_t* self)
These methods add or remove all registers from the s&t. If you were using bit
flags, these methods would be exactly equivdenttosel f = 0 andsel f = - 1.

Testing Registers

atck_bool _t atck regs_isnen(atck _regs_t* self, atck_reg_t reg)

Analysis Tools Construction Kit

05-119

This method tests whether the specified register is part of the sat, returning
ATCK_TRUE if itis ATCK_FALSE if it ign't. If you were usng bit flags, this method
would be exactly equivdentto (sel f & reg).

unsi gned atck_regs_nun(atck_regs_t* self)
This method returns the tota number of registers contained in the s&t. This

method doesn’t have a convenient equivadent with bit flags; | dways wound up
writing one, and | guessthe ATtaCK designers did too!

Combining Register Sets
voi d atck_regs_addset(atck _regs_t* self,

atck_regs_t* srcl, atck regs_t*
Ssrc2)

This method makes the specified register set contain the union of srcl and src2.
Any of the three arguments may be the same register s&t. If you were using bit
flags, this method would be exactly equivaent to the Satement sel f = srci |

src2.
void atck _regs_intset(atck _regs_t* self,

atck_regs_t* srcl, atck regs_t*
Src2)

This method makes the specified register set contain the intersection of srcl and
src2. If you were usng hit flags, this method would be exactly equivdent to the
datementsel f = srcl & src2.
void atck_regs renset(atck regs_t* self,
atck regs_t* srcl, atck _regs_t*
src2)

This method makes the specified register set contain every register from srcl that
isnotin src2. If you were using bit flags, this method would be exactly equivaent
tothe datement sel f = srcl & ~src2.

Register-Usage Attributes
void atck_inst_inregs(atck_inst _t* self, atck _regs_t* dest)
void atck_inst_outregs(atck_inst_t* self, atck_regs_t* dest)
These attributes of the ingtruction object identify which registers the indruction

reads from and writes to, respectively. Y ou must first alocate and passin a
register-set object to contain the result.

The exigting contents of the set are not cleared; the affected registers are smply
added to the sat. If you were using bit flags, these methods would be exactly
equivalenttodest | = atck_inst_inregs(sel f) anddest |=
atck_inst_outregs(self).

And that' s it—we re done with the entire ATtaCK API! For the rest of the course,
we're just going to cover sample programs. So let’s get Started...

Analysis Tools Construction Kit 05-120

The EE Register Set

ATtaCK uses an enumerated type, at ck_r eg_t , to hold identifiersfor dl the EE
registers. Unlike most of the ATtaCK AP, thistype is platform-dependent, and
requires you to include the processor- specific header in addition to the normal

at ck. h header. For the PlayStation 2, thisfileisat ckt ar gps2. h.

If you' re going to work with regigtersin ATtaCK, you redly need to get yoursdf
up to speed on MIPS assembly language. Here's a cheat sheet to get you started,
however.

ATCKM PS_REG_GPRO t0 ATCKM PS_REG GPR31
These are the standard 32 64-hit integer registers. By convention, some have
specific meanings:

GPRO, caled $0 in source code, dways contains the vaue zero.

GPR4 through GPR7 are called a0 to a3 in source and are used to pass
argumentsinto functions, in order.

GPR2 (and GPR3, if necessary), cdled vo and v1, hold the return value.

GPR16 through GPR23 are used to hold register variadbles; dl subroutines
are supposed to preserve the values of these registers.

GPR29 isthe stack pointer, dthough the stack isn’t used as much as on x86
chips—arguments are passed in registers, and even the return address of a
function is stored in aregister (GPR31, to be exact).

GPR30 holds apointer to the function’sloca variables (its stack frame).

ATCKM PS_REG_SA

Thisregigter isused by severd of the shift ingtructions to specify the number of
bits to shift.

ATCKM PS_REG_HI and ATCKM PS_REG LO
These two regigters store the results of integer multiplies and divides.

ATCKM PS_REG_FPRO {0 ATCKM PS_REG FPR31; ATCKM PS_REG ACC

FRPO to FPR3L1 are the EE’ s 32 32-hit floating-point registers, which are dl
generd-purpose. ACC is the floating- point accumulator.

ATCKM PS_REG_FCR0O and ATCKM PS_REG FCR31
These are the floating-point control registers.

Measuring Performance Counter Events

The EE includes a system control coprocessor, known as COPO. This coprocessor
controls the CPU’ s operation—for instance, COPO is used to enable or disable
interrupts, manage memory paging, set debugger breskpoints, handle exceptions

Analysis Tools Construction Kit 05121

and so forth. COPO dso includes a pair of “performance counters,” specia
registers that are automatically incremented when certain events occur.

By indructing these counters to measure events that interest us, we can, in effect,
take advantage of a hardware profiler for our code. This offers two major
advantages. Firg, the performance counters are 100% accurate—in fact, aswell
See later on, they’ re so accurate that their results can be confusing! Second,
enabling the counters does not affect the system’s overal performance. The
performance counters aren’t versdtile enough to handle dl your profiling needs,
but they' re free, easy to work with and can greetly improve the results you get
with ATtaCK tools.

This lesson’s example program, PS2Counter, instruments an application to enable
and read these performance counters. Y ou can choose which two events to
measure, out of alist of ten possible events. The tool also uses datic andyssto
refine and limit its measurements, S0 that they’ re more useful. As astand-done
toal, this program is mildly useful... but as asource of ideasto use in cregting
your own profilers, it'sinvauable.

Composed of four source files and a header file, PS2Counter is far and away the
biggest program we' ve looked at so far. The easiest way to understand what it's
doing isto art with the analyss code. And the easiest way to understand the
andysis code isto look at the specifics of how the EE’'s COPO performance
counters work.

EE Performance Counter Registers

COPO' s two performance counters, named “0” and “1” in afit of charming
origindity, each measure two different sets of events. Y ou specify which events
to log by writing to the * performance- counter specifier” regigter, usng an
assembly command we'll ook at later. The two counters are wholly independent
of each other—one can be measuring ingructions, for ingtance, while the other
messures mispredicted branches.

Once a counter has been set to log a particular event, the counter increments
whenever that event occurs. If set to log ingructions, say, the counter is
incremented with every ingtruction issued. Note that at full clip, the EE can issue
about 600,000,000 instructions a second, which fills up a 32-bit counter pretty
quickly! (In lessthan eight seconds, to be exact.)

Clearly these counters can't be used to collect data over along period of time.
Instead, you should turn the counters on just over the section of your program that
most interests you and gather a short span of data. The PS2Counter tool we
examine here, for ingance, collects data from just asingle frame. Presumably,
your target gpplication performs roughly the same tasks in the same order each
frame, so you can use the profile of a single frame to draw conclusions about the
rest of the program.

Once you' ve gathered the data you want, you can use other specid-purpose
assembly commands to read and clear the performance counters.

Analysis Tools Construction Kit

Performance Counter Events

Cycle: Either counter may be set to count cycles. No matter what, some
294,000,000 cycles pass by every second. This may not seem like the most
interesting event to measure, but it can be handy for detecting problems. For
instance, “cycdles per frame’ is a much more precise and informative measurement
than “frames per second.”

Single issue/doubleissue: The EE core triesto issue two ingtructions at once
whenever it can, but sometimes (due to register dependency or ingtruction
incompatibilities) it fails. Double issues are thus the default, “ correct” behavior;
sngle issues represent inefficiencies you should try to correct. Single issues may
only be measured in counter O, double issues only in counter 1.

Branch taken/branch mispredicted: Counter O can count the number of
branches taken. Counter 1 can log the number of branches mispredicted. Thisis
not merely a subset of branches taken, of course—allikely branch that was not
taken Hill counts as amisprediction.

| $/D$ miss. Like dl high-end processors, the EE uses a cache of extremely fast
RAM to isolate the processor from the much dower syssem RAM. Cache misses,
where your code needs data that’ s stored in system memory rather than the cache,
dow down performance dramatically, and most redly high-octane optimizations
are tweaks designed to avoid cache misses at dl costs. Unfortunately, we don't
redly have the time or space to talk about such tweaksin this course. In Lesson
07, we ll cover acache andysstool that will help you diagnose cache problems,
and I’ll try to give some very generd tips there.

The performance counters aren’t very good at diagnosing cache misses, because
they only tell you how many times the cache was missed—the program we' Il look
at in Lesson 07 tells you exactly where your cache misses are. Nevertheless, the
performance counters can help you detect problems. Counter O can be set to
measure ingruction-cache (1$) misses, while counter 1 can measure data-cache
(D$) misses.

Instruction executed: Either counter may be set to measure the number of
indructions issued. This vaue should dways wind up being the number of sngle
issues plus twice the number of double issues. By adding instrumentation to every
basic block of your program, you can count this yourself, of course. The
differenceis that the COPO performance counters do so without dowing down the
goplication.

Note, however, that COPO counts every indruction issued. The insrumentation

cdls ATtaCK insertsinto the application get counted just like your origind
program—unlike ATtaCK, COPO does't know the difference. Likewisg, if the
CPU processes an exception or interrupt during your program, the COPO counters
just keep on ticking. Thus, most of the time you' re better off usng ATtaCK
ingrumentation to measure ingtructions rather than using the performance
counters—the speed hit isworth it to get results that are more representative of
your actua application performance.

Analysis Tools Construction Kit 05-123

L oad/stor e: Counter O can measure every time you load data from memory,
while counter 1 can measure every time you store data into memory. Accessing
memory counts as aload or store regardless of whether it came out of the cache or
from actud sysem RAM. Aswith ingructions, thisis something you could very
eadly measure usng ATtaCK, at the cost of degrading the gpplication’s
performance.

None: Either or both counters can be set to measure nothing at dl, which isthe
defaullt.

Okay, now that you understand how the performance counters work, the anaysis
code will be easy: All it doesis activate, manage and read the performance
counters. We'll take alook at that next.

PS2Counter: Analysis Code

The only way to work with the performance counters, or COPO in generd, is
through specid assembly indructions. That means we' re going to have to look at
some assembly code. It sredlly simple assembly code, though—particularly
compared to some of the tricks one can pull with the MIPS ingtruction set! In fact,
this code is o amply that you can basicaly just imagine the assembly
indructions as being API function calls. You'll see what | mean about thet in a
minute.

Open the PS2Counter example program’ s analysis-code project—the full path to
thisshould be C: \ Pr ogr am Fi | es\ Met r ower ks\ ATt aCK f or

PS2\ Exanpl es\ PS2Count er\ Anal \ ps2count er _anal . ncp for adefault
ingalation. Now open ps2count er _anal . c.

Thetop of thefileisthe usud boilerplate. There s a single data buffer, to which
the code maintains a pointer. This buffer contains one procdat_t structure per
procedure, storing the number of ingructions executed and accumulating the
performance-counter events.

Host Enabl e isaglobd flag that alows the host to turn gathering on and off:

When you hit ENTER on the host to start collecting data, the host hdts the target
and writes TRUE into this memory location. (Technicaly, this variable ought to be
marked vol at i | e, Snceitsvaueis expected to change from outside the program,
but we get away with it here))

The congtant value NFRAMES_SETTLE, the countdown variable Count Down and the
flag Col | ect are used to delay the start of collecting data. To enable data
gathering, the hogst has to hdlt the target, write to its memory and then resumeit,
operations that consume time and system resources. Moreover, when the target
restarts, the instruction and data caches will have been disrupted, disabled
interrupts might need to get handled and so forth. The anadlys's code thus counts
down ten frames, then setsCol | ect to ATCK_TRUE to Start collecting deta, giving
the sysem time to “ settle” back into its norma State.

Analysis Tools Construction Kit 05124

Initialization Routines

WEell, okay, there s only one function here, but saying “initidization routing”’

didn't sound right. Thel ni ti al i ze() function first stores the recelved pointer to
the buffer ATtaCK alocated. It then passes a magic number to thent ps()
function, which is used to activate and configure the event counters. Truth be told,
| don’t know how this magic number is generated, o let’s just take it as gospd.

Analysis Routines

Enabl e() iscdled a the sart of every frame. Mogdtly it does nothing. If, however,
the host has enabled data collection, then Enabl e() decrementsthe countdown
variable. When that variable reaches zero, the function turns on the performance
counters and starts gathering data.

Di sabl e() iscdled a the end of every frame. If Col | ect istrue, then this
function turns data collection back off. It then hdts the target, dlowing the host to
read the gathered information.

Ent er Reset () iscaled a the start of every procedure. If datais being collected,
this function increments the procedure’ s ingtruction counter, then usesthe nt pc
assembly ingtruction, “Move To Performance Counter,” to clear both of the
performance counters. The syntax for thisingruction is very smple:

nt pc src, dest

sr ¢ isthe EE core register to copy into the counter, while dest specifiesthe
counter (either O or 1—the dollar Sgn here smply indicates that thisis a number).
Note, this violates the normd “dest, sr¢” convention. Also note that the EE core
registers are 64 hits wide while the performance counters are only 32 bits wide, so
the upper 32 hits of the core register are discarded.

In this case, we copy register GPRO into the two counters. This specid register
aways contains the value 0, 0 in effect we' re resetting the counters.

Reset () worksjust likeEnt er Reset (), except that it’s called within a procedure
to reset the counters as necessary. As such, it doesn’'t increment the instruction
counter, since that' s already been done at the top of the procedure. Reset () is
generdly used after returning from procedure calls, to keep the caled procedure' s
events from “contaminating” the cdler’s profile.

Helper Routines

The next two functions, get count er 0() and get count er 1() , aewritten entirdy
in as=mbly language—as well they should be, considering how trivid they arel
Each function firg issuesaj r r a indruction, sarting areturn to the cdler.
Branches dway's execute the next ingtruction after the branch before transferring
control, and in this case that next indruction isnf pc. Thisingruction, “Move

From Performance Counter,” isjust the reverse of nt pc, with thefollowing

syntax:

nf pc dest, src

Analysis Tools Construction Kit 05-125

Thistimeit does follow the norma convention: dest isthe EE core regigter to
copy into, while sr ¢ specifies the counter (either O or 1 again). The 32-bit counter
issgn-extended to fill the 64-bit destination register.

Accunul at e() isasmple C function that usesget count er 0() and
get count er 1() to read the performance counters and add them to the running
totals stored in the profile data buffer.

Thent ps() function isawrapper for nt ps, the “Move To Performance-event
Specifier” indruction. Thisingruction has the same syntax asnt pc: nt ps src,
dest . For sr ¢, we use GPR4 (also known as a0), the register holding the first
function argument. Unlike the performance counter s, there' s only one
performance-event specifier, and so the only valid value for dest isO.

The next indruction after nt ps iSsync. p. Thissmply tells the processor to wait
until the previous indruction finishes execution. This is hecessary because we
don’'t want to leave this routine without knowing that the performance counters
are properly initidized.

The more assembly-aware of you might now be asking, “If sync. p isnhecessary
after mt ps, why isn't it necessary after nt pc?” Good question! The answer is that
it is necessary we just don’t care. Yes, it's possible that by failing to sync after
clearing the performance counters, we will miss afew processor events. However,
given that we have to clear the counters at the start (and often end) of every
function cdl, putting sync. p there would restart the pipeline and utterly kill our
performance. On the other hand, you' I want to go ahead and synchronize writing
analyss tools that demand higher accuracy than this general-purpose one.

At the end of the function, we do the standardj r r a to returnto the caler. The
nop (“No OPeration”) ingruction is just a placeholder—the delay dot has to have
something init, and nop isharmless. The only other thing we could put thereis
thesync. p indruction, which unfortunatdly isillegd in dday dots.

Y ou can probably guess what the last two functions do. That’ s right:

enabl e_count ers() enablesthe counters, and di sabl e_count ers() disables
them. Thisis done by setting or clearing bit 31 of the performance-event specifier
regiser.

Firgt, we use nf ps to fetch the current value into GPR1. Then | ui loads the
immediate value 0x8000 into the topmost 16 bits of GPR2, clearing the bottom 16
bits. (The folderal is necessary because MIPS chips can't load immediate 32- bit
vaues)

To enable the counters, GPR2 is ORed againgt GPR1 and the result stored in GPR1.
To disable the counters, GPR2 is negated and then ANDed into GPR1. In either case,
we now use nt ps to store GPRL into the performance-event specifier. A sync. p to
make sure the change “takes,” thetraditiona j r ra/ nop pair, and we're al done!

Okay, you get the idea. The COPO performance counters do al thereal andyss
work, of course—this code just sets them up and lets them do their job. Now let’s
look at the instrumentation process.

Analysis Tools Construction Kit 05-126

PS2Counter: Instrumentation

Open up the instrumentation tool project, which is probably CAProgram
FilesMetrowerks\ATtaCK for PS2\Examples\PS2Counter\Inst\
ps2counter_ingt.mcp. Within this project open ps2counter_inst.c.

Themai n() functionislargely boilerplate, which at this point in the course |
think we can safely ignore. Let’sjump straight to the good part, starting with the
I nst runent () function.

Instrumentation

First, we declare the Pr Dat Structureand thel niti al i ze() andyssroutine.
Thenweinsatacdl tolnitialize() a thedart of the target application. In
addition to the profile data buffer, this routine gets passed flag vaues indicating
which eventsto log in counter O and counter 1. (Note that the code here talks
about “counter 1" and “counter 2,” but as these are more correctly termed 0 and 1,
that’s how I'll continue to refer to them.)

Aswe saw previoudy, the analyss routines are desgned to gather asingle frame
of dataat atime. Idedly, there is some function in the target application thet is
dready caled a the top of each frame—for example, there might be afunction
that handles dl the world physics, which would generdly be thefirgt thing
processed each frame of the game loop.

If there s some convenient function available to indicate the Sart of aframe, the
user specifiesit on the tool’s command line, and the instrumentation code inserts
acdl toEnabl e() a the sart of the function. If there s not such afunction, then
one will have to be created in order to use thistool. Likewise, the user must
gpecify afunction name to mark the end of aframe; acdl to bi sabl e() is
inserted before that function.

With that out of the way, the instrumentation code now declaresthe remaining
three andlysis routines, and starts iterating over the gpplication’s procedures. This
iswhere things redly get interesing—open up cl assi fy. c.

Classification

Thisfile containsthefunction d assi fy() and itssupport functions. Cl assi fy()
takes a procedure and determines which of three categories it belongs to:

COUNT: Proceduresin this category get instrumented and profiled normally. This
is the default. The procedures specified by the user as marking the start and end of
each frame are always classfied as COUNT, since the data-collection system relies
on those routines getting instrumented.

| NPARENT: Proceduresin this category are profiled as part of their calers. In other
words, the performance counters are not reset when these procedures are called,
and the procedures aren’t instrumented. For all intents and purposes, the tool

treats these procedures as if they wereinlined.

Analysis Tools Construction Kit 05127

So what qualifies a procedure as | NPARENT? Well firgt of dll, if a procedure can’t
be instrumented—for ingtance, if it's part of the SCE libraries—then it sa*“black
box.” The only way to profile such procedures is via the performance counters.
By clearing the counters before each cdl, and checking them after the return, we
could profile these routines independently. However, what would we actudly do
with that information? It's not as though we can optimize the library code! So, we
will amply treat these library routines asif they were part of ther cdlers.

Procedures are dso classified as| NPARENT if they’re“ample” A smple
procedure has no loops, makes no calls to non-simple procedures and is less than
100 ingtructions long. Such procedures don’t offer alot of opportunity for
individud profiling and tuning, o we just treat them as part of the parent. Indeed,
when performance is more critica than code size, such procedures are prime
candidates for being inlined, a which point they redlly are part of the parent.

Thetest for amplicity isdonein | sSi npl e() . Thisfunction smply iterates over
the ingructions within a procedure. If an indruction is a callste, then the target
procedure is itsdlf tested for amplicity by arecursve cal to | sSi npl e() . (Of
course, thismeansthat if you have two functions in your gpplication that cal each
other, PS2Counter will crash with a stack fault. In the assgnment &t the end of
thislesson, we'll look at one way to keep this from happening.)

If an ingtruction is abranch, then the function gets the target address of the branch
and checks to see whether that addressis greater than or less than the current
ingtruction’s address. Note that, while callsites are so branches, we ve dready
checked whether the ingtruction is a callsite before we get here, so we know that
the branch target is within this procedure. A branch backward to an earlier
indruction within the same procedure is, dmost by definition, aloop—it's
possible to write assembly code in which that’ s not true, but the compiler doesn't
do that.

EXCLUDE: Proceduresin thisfinad category are excluded from the profile entirely.
These procedures, identified by name, are ones known not to offer any useful
profiling information. Right now this congsts only of the library routines
sceGsSyncV() andsceGsSyncPat h() . Normally, these routines would be
classfied as | NPARENT. However, these routines' idle loops generate large
numbers of system events (especialy instruction issues and ingruction-cache
misses) that will obscure the rlevant profiling results.

Fed free to add any other routines to the exclusion list that you see fit. Remember
the principle advocated earlier in this lesson: Don't collect information that you' re
not going to use.

Now go back to ps2count er _i nst . ¢, where we Il wrap up navigation and look
a execution.

Analysis Tools Construction Kit

05-128

PS2Counter: Navigation, Execution and Output

Navigation and Instrumentation

The tool now iterates over every procedure in the application, classfyingit. The
instrumentation depends on the procedure’ s category:

COUNT

This category isthe default. Procedures in this category get insrumented first

with acdl toEnt er Reset () a the start, and Accun() &t the end. Clearing the
performance counters a the start and reading them at the end collects profile data
for just the single procedure.

Oncethose cals are in place, the navigation code looks inside the procedure for
cdl stes. Cdlsto counTed and EXCLUDEd procedures are not counted insde this
procedure—CouUNTed procedures are profiled in their own right, while ExcLUDEd
procedures aren't profiled at dl. Thus, these calls are instrumented with Accunt()
beforehand and Reset () afterwards.

Cdlsto | NPARENT require no specid handling, since they’ re supposed to be part
of the caler’ s profile,

INPARENT and EXCLUDE

If aprocedure is| NPARENT, then its profile isincluded in that of the parent, and so
we don't need to instrument it. If a procedure is EXCLUDE, then we don't want to
ingrument it. They amount to the same thing: Procedures in these categories are
amply skipped.

Note that indirect cals—for example, C++ virtud function calls—can’t be
classfied, since the target is unknown a instrumentation-time. These default to
COUNT, isolating them from the cdler’ s profile to make sure they don't get
counted twice. However, if these procedures arein fact smple, then whenit's
their turn to be ingrumented, they’ Il be classified as| NPARENT and won't get
counted a dl. The upshot of dl thisisthat PS2Counter isredly not designed for
C++, 0if you're working in C++ you' |l need to customize the tool.

Download, Execution and Output

Once the instrumentation is finished, the tool cdlsRuni t () . Thisfunctionis
mostly boilerplate, connecting to the target and launching the gpplication
immediatdly. The function then dropsinto aloop waiting for user input. When the
user hitsENTER, the loop callsSnapshot Franme() .

Snapshot Frame() firg hatsthe target and sets the HostEnable flag to TRUE,
then resumes the target. When the Enable() andysis routine gets caled at the sart
of the next frame, the target redlizes that HostEnable has been modified—that’s
the only way atarget application can detect that it’s been suspended by the host.
This sartsthe “settle” countdown process, at the end of which asingle frame of
profile information is gathered. Once that frame ends, the target hdts itsdlf.

Analysis Tools Construction Kit

Most ATtaCK tools read their information from the target in an event handler,
snce they can't predict when the target application will stop. In this case, though,
the tool knows that the target will stop very soon (1/6" of a second, generaly)
after the user hitsENTER. Thus, the tool Smply cdlsat ck_wai t () to suspend
itsdlf until the target stops.

When at ck_wai t () returns, we know that the target has aframe of data ready to
read. The DunpCount er s() function handlesthis, in awholly unremarkable way.
Its last act isto zero-out the profile data buffer on the target—thisis purely a one-
frame-at-a-time prdfiler.

ME Command Prompt

D:sshtests\PE2Countersbinsps2 >ps2ecounter D:sCodelarriorsExamplesssce2BB wulshlows
imiss dmiss FrameBegins FrameEnds
i .. 18
.. 36
.. 55
.. 73
A
ing... 188:x
FPress ENTER to dump counter output. x—ENTER to gquit.

Procedure 1% Misszes D% Misses
CreatelViewingMatrix

SetUiewPosition
SetParticlePosition

Fig.

05-01: PS2Counter Output

Whew!

And with that, we re now done with the entire APl—at this point you should be
able to create any ATtaCK tool you need. Our last two lessons are labs, in which
we |l look at eight more “red-world’ tools to give you more. Those should go
pretty quick, so let’s go ahead and get started with Lesson 06: Profiling
Applications.

Analysis Tools Construction Kit 05-130

Lesson 05 Assignment

Tasked with fine-tuning your PlayStation 2 game' s render system, you break
out PS2Counter to get someinitia, overdl information. However, when
PS2Counter tries to instrument your gpplication, the tool crashes with a stack
fault.

Fortunately, you remember reading in this course that PS2Counter cannot
handle recursve functions. A quick check with the other programmers reveds
that, sure enough, the particle-animation system uses a recursive function. But
you gtill need to profile the gpplication.

Fix PS2Counter s0 that it no longer crashes when trying to ingrument
recursive functions. The crash hgppensin | sSi npl e() , foundincl assi fy. c,
and can be prevented just by modifying that function.

Hint:

Remember from Lesson 02 that two handles to the same object will dways be
the same, and can be tested for equality usng ==.

Answer:

There s basicaly two ways to fix this problem. To reinforce the hacker
mindset you should use with ATtaCK tools, I'm only going to present the
“fast and dirty” solution. For the purigts, though, I'll tell you the * proper”
solution at the end.

The basic problem isthat, if afunction being analyzed by 1 sSi npl e() cdls
itsdf, thenit will cal 1 sSi npl e() onitdf, whichinturn calsi sSi npl e()
onitsdf, and so forth, and so forth. ..

So your god isto keep 1 sSi npl e() fromcdling 1 sSi npl e() againonthe
current function. That turns out to be very easy: Y ou dready know the handle

to the current function (it' s the argument ppr oc), and you know that, no

matter what, every procedure handle that refers to that same function will

have the same vaue. Thus, you can just check to see whether the target
procedure’ s handle, as returned from at ck_ent _proc() , isequa to ppr oc—if
itis thendon’'t cdl 1 sSi npl e() ! Infact, Snce afunction that recursvely
cdlsitdf is pretty much not smple by definition, you can just return
ATCK_FALSE without further ado.

So the quick-and-dirty fix isto turn this (line 146 or thereabouts):

if (!pent || !1sSinple(atck_ent_proc(pent), &ninst2)) {
into this
if (!pent || atck_ent_proc(pent) == pproc ||

'l sSi npl e(atck_ent _proc(pent), &ninst2)) {

Notice that, snce the compiler endeavorsto resolve the if statement as quickly
as possible, the second clause won't get executed if the firgt istrue, and the

Analysis Tools Construction Kit 05131

third won't get executed if the second is true. Therefore, if the target of the
cdlgtein question isthisfunction itsdf, 1 sSi npl e() returnsS ATCK_FALSE
immediately rather than getting caught in an infinite loop.

| promised the purists the “proper” solution, which requires sating what the
red problemis If X cdlsY,and Y cdlsZ, and Z cdls X, then when

| sSi npl e() triesto andyze X, it will inevitably drop into the same infinite
loop asif X cdled X. Our quick-and-dirty fix does nothing to prevent this
generd-case bug.

What we' d have to do to really fix the problem is maintain a stack of parent
procedure handles. Every time sSi npl e() isentered, it pushesthe ppr oc
argument onto that stack; every timeit exits it pops the stack. Every time

I sSi npl e() isabout to recurseinto itsef, it searches the stack to make sure
that the target procedure isn’t a parent of the current procedure.

Now you can see why | focused on the quick fix. The“right” solutionisbig
and complicated, and unnecessary in the most common case (X cdling X). In
between projects, when you' re honing your anaysistools, you can implement
this sort of genera-purpose fix, to save yourself time down the road. But in
the middle of a project, go for the quick hack. Y ou're here to fix your game,
not your tools.

Analysis Tools Construction Kit

05-132

Lesson 05 Quiz

1. True or fase: The only purpose of analysistoolsis optimization.
A. True
B. Fdse

2. True or fase: Changing your agorithm is often the best way to fix not only
performance problems but bugs of dl kinds.

A. True
B. Fdse
3. Which of thefollowing is aways feature of awell-designed ATtaCK tool?
A. Hexibility
B. Good programming syle
C. Smplicty
D. A graphicd user interface

4. True or fdse: The best place to andyze your datais on the target, in the
andyssroutines.

A. True
B. Fdse

5. True or fase: It's easiest and safest for analysis routines to read registers
directly, rather than relying on ATtaCK to passthemiin.

A. True
B. Fdse

6. Which of the following isavalid ATtaCK analysis-routine declaration on
the PlayStation 2?

A. “Get Target (val addr)”
B. “Get Tar get (ATCK_TARGADDR) ”
C. “Get St ack(ATCKM PS_REG GPR29) "
D. “Get Stack(val ui nt 64)”
7. Which of the following isavdid place to use ATCK_EFFADDR?
A. atck_proc_callafter()
B. atck_call _call before()
C. atck_inst_call before()

D. atck_inst_callafter()

Analysis Tools Construction Kit 05133

8. True or fdse You must dways use atck_ingt_isdlowed() to verify that a
dynamic argument is safe before trying to indrument an indruction with it.

A. True
B. Fdse

9. True or false: An addressisdl that’ s required to completely identify any
indruction in a program.

A. True
B. Fdse

10. Which of the following does a MIPS gpplication (that is, a PlayStation 2
game) store on the stack?

A. Function arguments
B. Locd variables

C. Return addresses
D. None of the above

Analysis Tools Construction Kit 05134

Lesson 06: Profiling Applications

The firg five lessons cover everything you need to know to develop ATtaCK
tools. Our sixth lesson will redly be more of alab, as we examine four tools to
tackle common profiling and debugging tasks: verifying code compliance,
examining your branchprediction performance, caculating which functions are
worth inlining and catching registers thet are used before they finish loading from
memory. These tools will probably be useful to you asis, but we'll dso spend
plenty of time discussing ways to improve and tailor them to your exact needs.

Verifying Code Compliance

Code vdidation isaform of gatic andyssin which you review your gpplication
looking for certain types of expected problems. For example, when you finish
writing afunction, you might go back and review it to make sure you initialized
dl itsvariables. That's arudimentary form of code vdidation—the “expected
problem” you're looking for is an uninitidized varigble.

The best-known example of code validation islint, atool that reviews C source
for common (and not-so-common) errors. Uninitidized variables are just one of
many, many problems that lint will catch. The value of code vaidation is that
these problems might not show up during norma testing and debugging.

ATtaCK can be used for binary code vaidation, looking for expected problemsin
the binary code. The last program we' ll ook at in this lesson, for instance, scans
the binary code looking for places where you use aregister immediately after it's
loaded from memory.

The firgt tool we |l be examining dso does code vdidation. Cdled TRCTodl, it
testsfor Sony TRC compliance. As part of the PlayStation 2 licensing approval
process, Sony prohibits certain functions from being caled in shipping
goplications. These are kernd functions which are vaid and useful for debugging,
but which could crash an end-user’ s system. There are other functions that Sony
requires be present, various initialization library routines that must be called for a
PlayStation 2 gpplication to function properly.

TRCTool checksfor both these categories of functions. It readsalist of them
from atext file, and then scans the program to seeif any prohibited functions are
cdled, and conversely to make sure that al the required functions are called.

Now, thistool isn't foolproof. TRCTool uses static andysis only, which means
that it's bascally predicting what the program will do in action. Since that
prediction isimperfect, the tool can be fooled. For instance, if your gpplication
cdlsarequired function conditionaly, the condition must be true for the function
to be executed. TRCTool doesn't try to check whether the condition is dways (or
ever!) true, it just notes that the required function call is present. Thetool isredly
just for pre-screening your gpplication, so datic andysislike thisis sufficient.

Analysis Tools Construction Kit

06-135

TRCTool

Open the project file, trc_tool_ps2.mcp, located in the Thrill Seeker
Tools\TRC\ing subdirectory off your ATtaCK folder. (On adefault ingdlation,
thiswill be CAProgram FilesMetrowerks\ATtaCK for PS2\Thrill Seeker
Tools\TRC\Ingt\trc_tool_ps2.mcp.)

Right away you' Il notice something different—this program’ s written in C++! As
you'll see next page, the tool spends most of itstime just parsing its configuration
file, atask that is easier to manage in an object-oriented language.

Normdly | wouldn’t recommend writing an ATtaCK tool in C++—the “quick-
and-dirty” coding gpproach ATtaCK facilitates doesn’t mix well with object-
oriented programming. However, if you' re writing atool that you intend to extend
and reuse over severd projects, the maintenance and design burden of writing
good C++ code can pay for itself.

(Later oninthislesson, we' |l see a quick-and-dirty tool written in C++ for
another reason: to take advantage of the STL..)

Now that you' re past the shock of seeing . cpp file extensors, let’ s review the
project’ s contents:

trc_tool.cpp containsmai n() and doesdl the andysis and reporting.

ProcedureCal | Det ai | s. cpp and . h implement the
Procedur eCal | Det ai | s object, used for holding the analysis resullts.

TRCConf i gur ati on. cpp and. h implement the TRCConf i gur ati on
object, which parses and contains the lists of prohibited and required
functions.

TRCPr ocedur e. cpp and . h implement TRCPr ocedur e, a helper object
used by TRCConf i gur ati on.

CadlSite.cpp and . h contain CalSite, a C++ wrapper object for
atck_call_t.

UnderterminedCallSite.cpp and . h contain the UndeterminedCd|Site
object, another C++ wrapper, and this one for stes that make indirect
function cals—i.e., whose targets cannot be determined. In spite of its
name, it doesn't inherit from CallSite.

Strangdy enough, the most complex codein this program isfound in
initidization, so we |l gart there.

TRC: Initialization and Navigation

TRCConfiguration Object

It' sredly atestament to the ease of writing ATtaCK tools that the most complex
code in this tool—nearly the most complex codein this entire coursel—isthe
code to read and parse the configuration file. Actualy, ATtaCK provides code to

Analysis Tools Construction Kit 06-136

do this too, but this particular program doesn't take advantage of that. The good
newsistha, this being C++, you can easly take this parang code and adapt it to
your own projects.

The TRCConf i gur at i on object has afairly standard interface that doesn’t call for
alot of examination. The object maintains three lists: prohibited functions,

required functions and SCE library functions. Thefirs two lists have been
discussed. Thethird list is used to dlow the tool to identify and skip any functions
provided by the SCE libraries.

The prohibited and required lists are composed of TRCPr ocedur e objects, which
are just structures containing two strings, the name of the procedure and the
reason why it’s either required or prohibited. These lists are public members,
implemented usng thevect or STL class. By contras, the “ SCE library routines’
lig is protected, its implementation hidden from the user by an access method,

bl sSceFunct i on() . That's definitely better design, but either way works.

The other access methods are st r Get Ver si on() and st r Get Conf i gFi | ename() .
The firg returns a verson string read from the configuration file, while the second
judt returns the name of the configuration file itsdf.

That’s about it for the object’ s interface—pretty minimaist. All the work happens
inthe initidization method vPar seConf i gurati onFi | e().

Parsing

TRCTool expectsto find four membersin its configuration files: VERSI ON, a
verson sring; SCE_FUNCTI ONS, the name of atext file to parsefor alist of SCE
functions, REQUI RED, the list of required functions; and PROHI BI TED, the list of
prohibited functions. For an examplefile, openuptrc1_6. t xt , found in the same
folder asthe project.

Each of these membersis represented using asmple XML-like syntax. The two
lists are dlimited with open and close tags (for example, <REQUI RED> and

</ REQUI RED>), while the two string members are contained in salf-closed tags
(<SCE_FUNCTI ONS fil e="sce_functions.txt"/>). Any line beginning with #
isacomment, ignored entirely.

vPar seConf i gurati onFi | e() usesasmple state machine to parse thisformat.
The sHf-closed tags don't need states, Since they’ re parsed entirely when
encountered. The opening and closing tags for the prohibited and required lists
trigger Sate trangtions; within each ate, every line read is passed to

vPar seFuncti onSpec().

vPar seFunct i onSpec() receivesareferenceto thelist being read, and aline of
text to parse. Thefirg thing expected on each line is the procedure name, which
of course must not have any spaces. After a space comes the reason why this
procedure belongs to the lis—just asmple text string, surrounded by quotes.

Unlike the other two ligts, the SCE functionsligt is read from another text file.
The name of that file is gpecified in the SCEFUNCTI ONS tag. Thefileitsdf, parsed
by vLoadSceFuncti ons() , just contains one name per line, with no comments.

Analysis Tools Construction Kit 06-137

Thisfileis crested automaticaly from the SCE library symboal table, using a Perl
tool contained in the TRC\ Gr abSCESyns folder. Sncethisisn't aPerl course, welll
ignore that tool—whenever you're curious, it'll be there waiting for you.

Navigation

With that out of the way, go back to trc_tool.cpp. Once the configuration fileis
read, we get back to the standard boilerplate that’ s becoming so familiar. After
that, we clear our two ligts of cdl stes. WeE'll see how those get used ina
momertt.

Unlike the other ATtaCK tools we' ve seen, this one uses recursion rather than

iteration to walk the program. In iteration, atool runs through every image, then
through every procedure in each image, and then through every cal stein each
procedure. In recursion, though, the tool takes a particular procedure and runs
through every cdl sitein it; for each cdl ste, the tool finds the target procedure
and runsthrough every cdl Stein it.

Thisprocess startsin vFor eachCal | Si t eFr omMai n(), SO that' swhere we'll Sart
too.

vForeachCallSiteFromMain()

This function takes two arguments. Thefird isthe handle of the program to
andyze. The second is a pointer to afunction to invoke on each cdl stein the
program’s chain of execution. Ignore that for non—we' Il look &t it in detall soon
enough.

The firg thing this function does is check to make sure the program is
ingrumentable. Thisis dill agatic andysstool, however, so it can run agangt
non-ingrumentable programs. The most likely reason for a program not to be
ingrumentable isthat it was compiled with gec rather than CodeWarrior. By
default, the tool will run againgt gec-compiled applications, but if for some reason
you don't want it to, you can pass in the command line option —no- gcc to prevent
it.

Next, we look up the entry point for mai n() and passit to

vRecur seCal | Si tes(), thefunction that will do the recursion.

vRecurseCallSites()

This function takes two arguments. The firgt is the handle of an entry point. The
second is the function pointer we ve dready mentioned. Keep ignoring that
function pointer and just look at what we do with the entry-point handle.

The function looks up the procedure handle associated with the entry point, and
then gets that procedure s instrumentability attribute. Instrumentable procedures
get andyzed, as do uninstrumentable ones in the absence of the—no- gcc option.
However, procedures from the Sony libraries—that is, those for which

bl sSceFuncti on() returnstrue—are skipped.

Analysis Tools Construction Kit

06-138

If the procedure isn't skipped, we proceed to iterate through dl its call stes. If the
target of acal steis known, then we cal our gatic-analyss code—thefunction

to which we received the pointer—on that target, and then pass the target entry
point into vRecur seCal | Si t es() itsdf. If, on the other hand, the Sit€' starget is
unknown, we cal vRecor dUndet er mi nedCal | Site() instead.

Now let’slook at our static-analysis routines. Go on to the next page.

TRC: Analysis and Reporting

Analysis

The recurson routines cdl afunction on every cal stein the program. That
function isidentified by a pointer for versility: Y ou can use the same routine to
invoke any function recursively over the program. In thistool, though, only one
function gets cdled, vAddcal | Si t eToHasht abl e() .

vAddCallSiteToHashtable()

Thisfunction createsanew Cal | Si t e object, which representsasingle cal stein
the program. This object, dong with the name of the target procedure, are passed
to addPr ocedur eCal | ToHast abl e() . (Yes, that'SHast abl e, Not Hasht abl e—
the source contains a typo. Now you know why thisisin the “ Thrill Seeker

Tools’ folder.)

To add the call to the table (which is redlly implemented using a vector, not a
hashtable—the hashtable is on the “to-do” list), first the routine scans through the
table to see whether aPr ocedur eCal | Det ai | s object with that name aready
exigs. If it does, then the cdlldite is added to the object’ sinternd list. Otherwise, a
new Pr ocedur eCal | Det ai | s object is created.

CallSite Object

Thisisjust awrgpper for ATtaCK’sat ck_cal | _t object—it'ssmple, but it
givesyou an ideaof how awdl-designed set of C++ wrapper objects could
improve ATtaCK development. Its constructor takes handles of the procedure
containing the cdll, the ATtaCK callste object, and a boolean flag indicating
whether the Site gppearsin read-only code. Access methods are provided for these
members, plus there' s a fourth access method that wraps

atck_cal |l _targnane().

ProcedureCallDetails Object

This object has just two members: the name of atarget procedure, and a set of the
CallSite objects, which target that procedure. The object adso has methods that
provide access to those members—pretty basic stuff.

Analysis Tools Construction Kit 06-139

vRecordUndeterminedCallSite()

When the target of acdl Ste can't be determined, this function sees whether the
gteisdready dored in the list of undetermined cdl stes. If it is, then no further
actionis needed. If not, anew Undet er nmi nedCal | Si t e object is created and
added to thelist.

UndeterminedCallSite Object

Indirect cal sites might or might not be calling prohibited or required functions,
Sincethetool can't figure them out, it amply reportsthe cdl siteto the user. The
UndeterminedCall Site object encapsulates the little information the tool does have
about the ste—primarily the source filename and line number where the Site can
be found.

Output

Thetool’ssyntax isvery Smple t rct ool configfile app.configfileisthe
configuration file—use trcl_6.txt, located in the same folder as the toal. app isthe
goplication to vaidate.

Once launched, the program runs for alittle while and spits out its results, looking
something like this

[Z3]c:\Program Files',Metrowerks\ATtacK for PS24Thrill Seeker T

TEST — Required function calls to *sceSifSync
FAILED** HNo function calls found.
Reason for test: for ensuring IOP has rebooted hefore continuing

TEST — Reguired function calls to ’sceSifInitRpc’
PASSED. call to required procedure from:

main {D:~CodeWarriorsExamplesssce2@f@~wvul~hlow~hlow
.2

TEST — Reguired function calls to ‘sceCdInit’
FAILED*?* Mo function calls found.
Reaszon for test: to load anything from CD

TEST — Required function calls to ’scefifLoadModule’
PASSED,. call to required procedure from:

>main <D:~CodeWarrior~Examplesssce2BB@ vul«hlouwsblouw
.C

>main <D:~CodeWarrior~Examplesssce2BB@ vul«hlouwsblouw
.c

LES)] <D:~CodeWarriorsExamplesssce2BB@ vul“hlouwsblouw

<D:~CodeWarriorsExamplesssce2BB@ vul“hlouwsblouw

Fig. 06-01: TRCTool Output

Improvements

TRCTool isn't reedy for primetime yet. It's got three notable flaws: It can't
handle recursve gpplications; it does't guarantee that the required functions are
actudly cdled; and it can’'t handle indirect function cdls.

Of these, the recursion problem is unquestionably the wordt. Right now, the tool
does't have any mechanism to indicate that aroutine has already been examined.
For most gpplications, that's merely wasteful. If the target application itself uses
recursion, however, TRCTool will crash. Recursve agorithms are not at all
uncommon in games, epecidly in Al routines and particle-animation systems.

Analysis Tools Construction Kit

06-140

Fortunatdly, there's an easy fix available. Before recursing into a cal-Site' s target,
thetool cdlsvAddcal | Si t eToHasht abl e() for it. That functionin turn cdls
addPr ocedur eCal | ToHast abl e() . And that function determines whether the
procedure dready exigts in the table—in other words, that function knows
whether the procedure has been examined already.

Thus, al we need to do to fix this bug is pass a boolean return vaue back from
addPr ocedur eCal | ToHast abl e() , then passthat same value back from
vAddCal | Si t eToHasht abl e() . Thisvaue should bef al se if the procedure was
dready in thetable, or t r ue otherwise. We can then makethe cdl to
vRecurseCal | Si tes() conditiond on thisreturn vaue.

The other two problems are not nearly as severe, but they’ re not nearly as easy to
fix, ether. Guaranteeing that a particular function gets caled requires dynamic
andyss, adding instrumentation to every cdl Ste that targets required functions.
The ingrumentation should pass a“required function ID,” which the andyss

code can use to check the call off alist.

With that mechanism in place, handling indirect function cals becomes asmple
matter. Add instrumentation to every indirect cal that passesthe cdled address
Via ATCK_TARGADDR. The andlyss code' s required-function table would then have
an address listed for each function. The called address would be matched against
the known addresses of the required functions to see whether one should be
checked off. Since there are only a handful of required functions, this wouldn't
dow the program down noticesbly.

Analyzing Branch Prediction

Because the EE is s0 heavily pipdined, branches present a specia problem. By
the time the processor determines whether the branch will be taken or nat, it
aready has as many as 9x indructions after that branch loaded in the pipeline. If
the branch isn't taken, those instructions execute normaly and no timeislogt. If
the branch is taken, however, those ingtructions must be flushed out of the
pipeline, which garts al over again at the target.

This can waste ten nanoseconds per branch, which may not sound like much but it
adds up. Worse yet, if any of those Sx indructions lie in another cache line—
which, since cache lines are 16 ingtructions wide, they will about 37% of the
time—then you incur the hit of awasted cache missin addition to the cache miss
caused by the branch itsdlf. (If you' re unfamiliar with termslike “ cache miss”

just wait—we |l be covering the cache in detail next lesson.)

The EE indruction st gives you two ways to aleviate this problem. Firg, the
Jump ingtructions provide for unconditional branches. Since the chip knows thet
the branch will be taken, it doesn’t bother loading the ingtructions beyond it.

Second, the Branch-Likdy ingructions dlow you to identify conditiona branches
that are usudly taken. As with Jumps, Branch Likely ingtructions assume thet the
branch will be taken, and start loading the pipeline with ingructions from the

Analysis Tools Construction Kit 06-141

target address. Of coursg, if a Branch Likely turns out to fal through instead, then
the hit isjust as bad as when aregular conditiond branch is taken.

Now, branch prediction isn't nearly as important as managing the cache well.
Neverthdess, it's still an important speed factor. It's dso afactor that’ srelatively
easy to twesk. In assembly, you can replace Branches with Branch Likelies. In C,
you canreversethesense of i f statements. We'll discuss both those optimizations
later in this lesson,

But the firgt step in solving a problem is recognizing you have one. You need a
tool to monitor your application’s branches, logging the missed predictions. By an
amazing coincidence, such atoal isaready dtting on your hard drive. Open up
branch_i nst _ps2. ncp fromyour Exanpl es\ Branch\ I nst folder (by default,
thiswill beC: \ Progr am Fi | es\ Met r ower ks\ ATt aCK f or

PS2\ Exanpl es\ Branch\ I nst\ branch_i nst _ps2. ncp.)

Branch

Thisisavery basic tool. It instruments every conditiona branch withacal to a
counter routine. ATtaCK passes this routine a flag to indicate whether the branch
istaken. This routine updates a counter for every branch, and a counter for every
taken branch, to calculate the percentage of branches taken.

We can cover everything of interest here in about five minutes. Open
branch_i nst. c. Themai n() functionisjus aboilerplate that cals
I nstrument () andthen Runl t (), Sowe Il skip that part.

I nst rument () doestwo things. Firg, if the user specifies a procedure name on
the command line, that procedure gets instrumented with a cdl to the andyss
routine Repor t () . That routine halts the target, alowing the host to read the data.
The net result of thisisthat the user can specify a procedure in the target
application that causes the counters to be read. This function might be called a
the end of each level, say, or upon pressing a control-pad button.

The rest of the application getsiterated over, indrumenting every instrumentable
indruction that is a conditiona branch. Conditiona branches are identified using
theat ck_i nst _i scbranch() method of the instruction object. The
ingrumentation cal passesthe ATCK_TAKEN flag, which isreceived as
ATCK_FALSE if the branch condition isfdse, or ATCK_TRUE if it'strue.

The analyss code isn't even worth looking at, dthoughit'sin
Branch\Ana\branch_and.c if you're curious. It maintains two integer counters,
one that tallies the totad number of cdlsto the anadlyss routine—that is, the
number of conditiona branches—and one that counts the number of branches
taken.

Execution and Output

The syntax isbr anch app report _proc. Thefird argument isthe application
name, while the second is the name of the procedure to hat on—just leave that
blank for now. The tool downloads and launches the application immediately; hit

Analysis Tools Construction Kit 06-142

ENTER to get the data, then x- ENTER to quit. Y our output will look something like
this

ME Command Prompt

D:=~Attack PS2-EZAMPLES-~BRAMCH-bin“ps2>hranch D:“\Codellarrior-ExamplesssceZBB~uul*
blowscw_rel._elf

Downloading... 18x

Dovnloading... 37x

Dovnloading... 55

Dovnloading... 74

Dovnloading... 92x

Dovnloading... 18@:x

Press ENTER to get data. x—ENTER to quit

Total branches: 1942989, 452 taken
ke

D:~Attack PS2\EXAMPLES~BRANCH-binxps2>

Fig. 06-02: Branch Output

Asyou can see, thisjust reports the total number of conditiona branches, and the
percentage that were taken. Don't you fed enlightened?

Thetroubleis, thistool violates one of my analysis principles Don't ask
guestionsif you're not going to use the answer. In this case, just what exactly are
you going to do with the information that 45% of your conditiona branches are
taken? Y ou don't even know whether that’s good or bad!

If you think back to PS2Counter from the last lesson, you'll redlize that this tool
doesn't do anything the EE performance counters can't do. In fact, the
performance counters do it better, since they measure every ingruction,
ingrumentable or not, and don’t dow down the application’s performance at all.

But thistool’sred snisthat it treats dl conditiona branches the same. Some of
those conditiona branches are Branch Likely, in which case we want them taken.
Furthermore, we redly need the count for each individual branch, so that we
know which onesto tweak and which to leave done.

The whole point of ATtaCK, though, isthat you can write and modify tools as
needed. So let’s do exactly that and turn this program into something redly
useful.

Branch: Improvement

Despite its shortcomings, Branch is till a sample program, and we don't want to
destroy it. But the easiest way to create our new tool, BranchPred, isto modify
Branch. Besides, thisis agood opportunity to give you experiencein modifying
exising ATtaCK tools.

Thefirg thing to do is change the Access Paths settings in the origina Branch
project from “Project Relative’ to “ Absolute Path.” Thiswon't breek the origina

Analysis Tools Construction Kit

06-143

project, and it will make sure that the new project compiles properly wherever we
put it. Be sure to change the library path (found under “User Paths’) and the
include path (found under “ System Paths’) in both the instrumentation-tool and

H Target Settings Panels N Access Paths
z:EH = Target 211 ¢ User Paths [Always Search Lzer Paths
o - Target Settings " System Paths
" E - Buid Extras R User Paths
w @ - Runtime Settings \d {F'miect}
w @ - File Mappings v | HPrgjscth Mnclude
. Gouce Tress I :\Frogran Files'Metrow
86 Target Please Select an Access Path e |
= Language Settings
~ [/C++ Language Path Tvpe Compiler Relative ﬂ
o EAC++ W armings
- findows RC |Project Relative
= Caode Generation b ¢ |Compiler Relative
i %86 Processor i [System Relative

Fig. 06-03: Change Access Paths

Once you finish changing the access paths, close each project to save the new
setings. Now copy everything in Exanpl es\ Br anch to anew folder elsewhere on
your drive, named Br anchPr ed. Don't bother renaming any other files, dthough
you probably do want to go in to the “x86 Target” settings and change the output
filenamefrom br anch. exe to br anchpr ed. exe.

Our basic god isto add the ability to measure each branch’s prediction
individudly. Whilewe're a it, we'll fix how Branch Likdly indructions are
handled, so that they count as missed predictions when not taken. Thiswill

require anumber of smal changes to both the indrumentation tool and andysis
code, but nothing very big.

For making these changes, you' ve got two choices. The hard way is to figure out
how to make them yourself, based on my step-by- step description. The easy way
issmply to download the “new and improved” versons of the C filesfrom the

course supplemental materid file—just save these new files on top of the old ones
you copied from the origina Branch folder.

Navigation and Instrumentation

Open br anch_i nst . ¢, 0 that you can ether make the following changes yoursaf
(vay!) or seethefind results (boo):

1. Add<at ckps2. h>tothelist of headers. Thisfile contains the PlayStation
2-spexific definitions, which we're going to need.

2. Well need agloba pointer to abuffer of br dat _t structures, to hold the
individua branch statistics. We' Il dso need agloba counter to hold the
number of instrumented branches (and thus the size of the buffer). Call
these pBuf f er and nBranches.

Analysis Tools Construction Kit 06-144

3. We need a counter—cdl it br anchl D—declared at the start of
I nst rument () . Thiscounter gets passed in as a new argument for the
TraceBr () andyssroutine. It'sthen incremented after every branch
that’ s insrumented.

4. Theandyssroutine will need to be told whether the branch islikely or
unlikely, so that it knows whether to log a taken branch as a hit or amiss.
Thiswill be done by anew function caled | sBr anchLi kel y(), which
bases its decison on whether the branch ingtruction’ s “ pseudo- opcode”
matches alist of known Branch Likely opcodes.

5. Intheandysscode, well add an “isbranch likely” flag as an extra
argument to Tr aceBr () ; in the ingrumentation loop, we pass the return
from1 sBranchLi kel y().

6. After the ingrumentation loop finishes, and we know how many branches
there are, set nBr anches equa to br anchl D. Then dlocate abuffer of
nBranches brdat _t dructures, storing the pointer in pBuf f er .

7. Findly, add an ingrumentation cal to anew andyssroutine,
Initialize(),a thedgart of the program. This routine takes a pointer to
the buffer, which means that we must declare the Br Dat Structure, then
pass ATtaCK the number of buffer dements (nBr anches) and the buffer
address (pBuf f er).

Analysis Changes

WEe re not done with the insrumentation tool yet, but thisisthelogica timeto
look at the changesto the analysis code. Open br anch_anal _ps2. ncp, then open
branch_anal . ¢ to makethe following additions:

8. BranchDat a becomesapointer to abrdat _t structure, rather than a
brdat _t structure.

9. TraceBr () now takesthree arguments: br anchl D, pr edi ct ed and
act ual . You saw in the insrumentation cal what those arguments are.

10. Br anchDat a. nbr anches becomes Br anchDat a[br anchl D] . nbr anches.

11. BranchDat a. nt aken becomes Br anchDat a[br anchl D] . nt aken, and is
only incremented if pr edi ct ed equasact ual .

12. Weneedasmplel ni tial i ze() function, which initidizesBr anchDat a
with thebr dat _t pointer passed to it.

Closebr anch_anal . ¢ and make the andyss-code project. Now dl that’sleft are
the changes to the output code, which we' Il tackle on the next page.

Analysis Tools Construction Kit 06-145

BranchPred: Analysis

Output Changes
The only remaining function to changeisPr i nt Dat a() , asfollows

13. Before, the target’ s Br anchDat a variable was a structure. Now it's a
pointer to an array of structures. So now we need to read the contents of
the pointer, then use that address to read the contents of the buffer.

14. Copy the entire iteration loop from | nst r ument () here, so that we can
turn branch IDs into source filenames and line numbers. Don't forget to
copy the declaration of the br anchl D counter, too!

15. Changethecdl toat ck_i mg_wri te() a theendof theimageiteration
looptoat ck_i ng_rel ease() .

16. Replacethecall toat ck_i nst _cal | bef ore() inddetheiteration loop
with acal to the new function Anal yzeBr anch() .

17. Attheend of Pri nt Dat a() , zero out the results buffer and write it back to
the target.

Last, we need to create the Anal yzeBr anch() function that reports the results of a
sngle branch. It recaives the branch 1D and a handle to the ingtruction in question,
and performs the following tasks:

18. Return immediately if the branch was never reeched (i.e,, if
pBuf f er [br anchl D] . nbr anches equals zero).

19. Cdculate the percentage of time the branch was predicted correctly. If that
vaueis greater than or equa to 50%, the branch is fine and we don’'t need
to report anything about it.

20. If that vadue isless than 50%, however, report the source filename and line
number of the branch, whether it's currently likely or unlikely, and how
often the prediction failed.

Execution and Output

Apart from the tool’ s name, the syntax hasn’t changed from the regular Branch
program: br anchpr ed app. Thetool downloads and runs the application as
before, but now the output is much more informative:

Analysis Tools Construction Kit 06-146

% Command Prompt

Dounloading... 92
Douwnloading... 18@8:x
Press ENTER to get data. x—ENIER to guit

File D:“Codellarrior:Examplesssce2@B~vul~bhlowsblow.c. line 181: Branch—unlikely a

ccurate only Bx of the time (12851 out of 1953393813 branches)

File D:“Codellarrior:Examplesssce2@Bvul~blowvsblow.c,. line 245: Branch—unlikely a

ccurate only 1% of the time <1 out of 78 hranches>

File D:“\CodeWarrior:Examplesssce2B@B-vulshlowsblow.c,. line 253: Branch-unlikely a

ccurate only 12% of the time (1137224 out of 8982736 branches)

File D:>Codellarrior:Examplesssce2@8~vul~blowsphysics.c. line 551: Branch—unlikel]

y accurate only 1x of the time (1 out of 78 branches)

File D:“Codellarrior:Examplesszce2@Bvul~blowsphysicz.c,. line 56%: Branch—unlikel]

y accurate only 8% of the time (B out of 4 hranches>

File D= \Code”atl101\Exampleo\oceZBB\uui\hlou\phyo1co. line 58%7: Branch—unlikel
me ¢1137224 out of 8982736 branches)
sce2@@~vulshlowsphysics.c, line 783: Branch—unlikel
e (1 out of 78 branches)

File D:“Codellarrior:Examplesszce2@B vul~blowsphysicz.c,. line ?36: Branch—unlikel]

y accurate only 44% of the time (6% out of 145 branches?

File D:“\CodeWarrior:Examplesssce2B@B-vulshlowsphysics.c. line 882: Branch—unlikel]

y accurate only Bx of the time {8 out of 9859396 branches?

X

E:~UINNT~PROFILES“AdministratorDESKTOP stephenhranchpred’

Fig. 06-04: BranchPred Output

Interpretation

Most likely, your application will have anumber of mispredicted branches. Now
what?

Firg, remember that you can (and should!) ignore most of them. In the sample
output above, for example, there are three branches that happen millions or even
billions of times, and six other branches that happen at most afew hundred times.
Only those three most common ones merit any attention et al; therest are
irrelevant.

When you look at the source code in question, you'll find that these branches
occur in two places: if satements and loops. Of the two, if Statements are easy to
optimize; loops require some tinkering.

To change the branch prediction of an if satement, just reverse the order of the
clauses. For example, consder the following example:

if (x <vy)
a++,;
el se
b++;
In assembly, this becomes the following pseudocode:
test x -y
i f non-negative goto BCl ause
a=a+1
got o Done
BCl ause:
b=b+1
Done:

Analysis Tools Construction Kit

06-147

Looking a it thisway, you can immediately see where the mispredicted branch is:
the®i f negative goto BC ause” indruction. (The“got o Done” indructionis
an unconditiona branch, which by definition is always correctly predicted!) In

this example, x isusudly greater than or equd to y. Thus, by reversing the order

of the two clauses, like so:

if (x >=vy)
b++;
el se

at++;

...then we diminate the misprediction:

test x -y
if negative goto BCl ause
a=a+1
got o Done

BCl ause:
b=Db+1

Done:

Fixing loopsis more of achalenge. You can't smply reverse the direction of the
comparison, because the compiler is, in effect, cregting an i f statement at the
bottom of the loop for you. What you have to do is replace the C loop syntax with
your own “hand-rolled” versgon, in which you writethei f statement so that you
can get the direction right. An even better option isto replace that i f statement
with abit of inline assembly to use one of the Branch Likely ingructions. Both
those techniques are outside the scope of this course, however.

Improvements
Thisisamuch better tool than the origind Branch, but it’s il not perfect.

For one thing, the output ought to be sorted, o that the first branches on the list
are the ones most deserving of attention. Don't cull the unimportant branches out,
however—if the user is converting a function to assembly anyway, fixing branch
prediction is basicdly free, and s0 it’ s worth doing even when the gains are
margind.

A more subgtantive change would be to sample over time, rather than compiling a
grand tota of al procedures. Adopting the frame-by-frame collection mechanism
of PS2Counter, for instance, the tool could collect ten frames of dataat atime,
then stop and let the target gather the information.

Sampling over time like this dlows you andyze branch prediction in different
circumstances, For example, clipping functions tent to have lots of branches, and
they behave differently in different Stuations. Observing their behavior in red-
time could tell you, for ingtance, that when performance matters most (when the
most partialy-clipped objects are on screen, let’ s say), the branch prediction is at
itsworst. Since that doesn’t happen as often, the total branch prediction statistics

Analysis Tools Construction Kit 06-148

are pretty good, but you still want to flip the branches—most of the time you'd
happily sacrifice some best-case performance to boost your worst-case
performance.

Looking for Inlining Opportunities

Inlining is the process of taking the body of afunction call and placing it directly
into the calling routine. Doing S0 saves the cogt of afunctioncall, a the expense
of making the program dightly larger.

Thetermis primarily associated with C++ because that language adlows you to
suggest to the compiler which functions would be suitable for inlining. However,
it’s an important technique in any language, and it's possible to do by hand in C
or C++. Indeed, that’ s the only reliable way to do it, Ssnce a C++ compiler is
never required to honor your inlining suggestions.

So when would you inline? The rule is “whenever speed is more important that
compactness” In practice, thismeansthat if you have afunction thet is frequently
cdled from asmal number of locations, it's agood candidate for inlining—the
frequent cals make the function-cal overhead sgnificant, while the smal number
of cdl dtes means that inlining won't increase the Sze of the program very much.

Unlike many optimizations, thisisn't an “dther-or” twesk. You caninlinea
function in one location, and “outling’ it (thet is, leave it as anormd function
cdl) in another. C++ does exactly that whenever you use a pointer to an inlined
function—it crestes an “outling’ copy and gives you apointer to it. Thisiswhy
functions can be declared asboth vi rt ual andi nl i ne in C++.

Inliner

Thistool uses gatic and dynamic analys's to recommend candidates for inlining.
Static analysisis used to determine which functions are smdl and smple enough
to be viable candidates. Then, dynamic andyds tracks the number of cals made
from each cdl ste to these functions. As mentioned before, a smple function thet
gets cdled alarge number of times from a small number of locationsis an
excdlent candidate for inlining.

I’ve written this tool in C++ for afew reasons. Partly it's an experiment—I’d
never written an ATtaCK tool in C++ before, and wanted to see how well it
worked. Partly it's a demongtration, so that the hard-core C++ programmers
taking this course don't fed left out. But modly it's to take advantage of the
Standard Template Library. This program has to create and maintain a number of
lists, and STL makes that task much, much easier.

Alas, hadtily written C++ is one of the gravest programming Sins one can commit.
| don’t recommend the C++ style of this program to anyone—it accomplishesits
mission, which isthe best I'll say of it. Still, this program and the earlier

TRCToal can give you some ideas on how well-written C++ can redly benefit
you in cregting ATtaCK tools.

Analysis Tools Construction Kit

06-149

Thisis another tool that’s not included as part of the ATtaCK distribution, o
you'll need to download it from the course supplemental materid folder. Once
you'’ ve downloaded and unzipped the project (i nl i ner . ncp), openit and then
open the indrumentation tool’smainfile, i nl i ner. cpp.

Pretty sparse, isn't it? | took the lazy-man’s gpproach to C++ programming and
stuck al the code in one big object, in this case caled RunCont ext . Using objects
like this has about as much in common with “ object- oriented programming” as
chicken feed does with chicken sdlad, but it's quick and easy. As|’ve said before,
the key to getting the most out of ATtaCK isto learn how to put together tools
quickly to tackle specific problems—Inliner took me dl of two hoursto write.

Okay, with the mea culpa is out of theway, look a i nl i ner. cpp long enough to
seewhat it'sdoing. It creates aRunCont ext object on the stack, then invokes the

| ni t Sessi on(), Bui | dCandi dat eLi st (), | nstrument () and Run() methods of

that object.
Now open up the real mainfile RunCont ext . cpp.

RunContext Object

InitSession() Method

This function and the destructor thet follows it demongtrate the virtues of writing
C++ programsin ATtaCK. The InitSession() method handles dl the boilerplate
initidization code that goesinto the sart of every ATtaCK program. With some
very dight modifications, it (and the rest of the RunCont ext object) could be
made completely generic, giving you a base object from which to inherit for other
programs.

BuildCandidateList() Method

Our tool’ sfird task isto use datic andyssto build a candidate list. Toward that
end, we define acandi dat e object that will hold dl the information we need
regarding a particular candidate procedure. The RunCont ext object then creates
and mantansavect or of these Candi dat e objects.

To dothis, it iterates over every procedure in every image. A new Candi dat e
object is congtructed using the procedure handle and the image s ID. Then that
object isqueried to find out if it'savdid candidate—we Il see exactly what that
entails later on, when we examine the Candi dat e object in detall.

If the object isavalid candidate, it’'s added to the list. Otherwisg, it’'s deleted. In
ether case, the loop continues until al procedures have been checked. Remember
that procedure handles, like most ATtaCK handles, last until the program has
been released, not the image, so we' re not running any risk of having the handles
invdidated by exiting the loop.

Instrument() Method

Now we need to create alist of every cdl dte that targets one of the candidate
procedures. The processto do that is very smple: Iterate over every cdl ste, and

Analysis Tools Construction Kit

06-150

check to see whether its target address matches the address of a candidate
procedure.

That's precisdy what the | nst r ument () method does. The target address of each
cdl steispassed into theFi ndTar get | nLi st () method, which scansthe
candidate lig to find a match. Assuming the target isin the candidate lig, its
associated Candi dat e object isreturned. This, dong with the ATtaCK indruction
object representing the cdl Site, isused to create anew Cal | Si t e object, and then
the call steisingrumented with acal beforehand to the LogCal | () andyss
routine.

After the iteration loop is finished and we have a count of the tota number of call
stesingrumented, abuffer of at ck_ui nt 32_t countersis dlocated. This buffer
ispassedto astandard I ni ti al i ze() anadyssroutine. Theinstrumented program
is then written out.

We haven't finished with the RunCont ext object—there' s still the download,
execution and reporting code lft to cover. However, to understand the rest of the
tool, we need to look at the Candi dat e and Cal | Si t e objects and the analysis
routines. Let’s do that next, then come back to RunCont ext .

Inliner: Instrumenation and Analysis

Candidate Object

Both the Candi dat e and Cal | Si t e objectsare defined in Candi dat e. h and
implemented in Candi dat e. cpp.

Constructor

The congtructor does a substantia amount of work. Not only does it retrieve and
store the procedure’ simportant information, such as address and source code
location, it aso performs the check to see whether the procedureisavaid
candidate.

Firg, we cdculate how many cache lines this procedure spans. I'll explain what
this means next page, and we'll discussthe cachein detail in Lesson 07.

Basicdly, though, cache lines are fixed 64- byte blocks of memory. To figure out
how many of these blocks a procedure spans, we AND its address with 63, to see
how far into the first block the procedure begins. Then we add that to the total
number of indructions, add 63 (so that we still count afind, incomplete cache

line) and divide by 64.

If the number of cache lines exceeds an arbitrary threshold—ten, in this case—
then we assume that the impact on the cache of inlining the procedure outweighs
the benefits of removing the function-call overhead.

Assuming the procedure is smdl enough overdl, we then iterate over every
ingruction in it, much aswe did in PS2Counter. If an ingruction is a backward
branch, then the procedure most likely has aloop, which disqudifiesit—even just

Analysis Tools Construction Kit

06-151

afew passes through aloop consume far more time than the function-cal
overhead, so there’ s no point in inlining procedures with loops.

DoesAddressMatch() Method

This inline method tests the object’ s address and image ID members againg the
gpecified ones. Thisis used to search through the list of candidates to find amatch
for aparticular cal-gte starget. Thisisaso used by an oper at or ==() method to
see whether two Candi dat e objects refer to the same procedure.

Display() Method

This method demonstrates another nice feature of C++ for ATtaCK tools. The
Candi dat e object isresponsible for digplaying its own profile informetion, so that
the calling program doesn’'t need to know how the object isimplemented or what
data it contains. When welook at the RunCont ext object’ s display code, youll
see how clean this makes things.

By the way, if we were using stream 1/O in this program, better style would have
been to make this method an overloaded oper at or <<() function ingtead.

CallSite Object

Just asthe candi dat e object stores information about a candidate procedure, a
Cal | Si t e object encapsulates information about a cal site targeting one of those
candidate procedures. Its methods can be summarized very quickly:

The congtructor fetches and stores the source filename and line number for
the ingtruction representing the call ste.

The andlysis code will gather a set of counters, one for every cdl Ste.
Those counters will then be copied into their corresponding Cal | Sit e
objectsusing the Set Cal | Count () method.

The DoesCandi dat eMat ch() method is used by the tool’ s display code to
filter through the cdl-gteligt, so that it can print just the call-Sites that
target a gpecific candidate procedure.

Aswith the Candi dat e object, theCal | Si t e object is responsible for
printing out its own profile information usng the bi spl ay() method.
Analysis Code

The andysscode, found in anal _code_PS2. ¢, barely requires any explanation,
gnceit'sin C—you ve seen lots of code likethis. Thelnitiali ze() function
sets up the buffer of atck_uint32_t counters, whileLogcCal | () Smply increments
one of those counters.

Analysis Tools Construction Kit 06-152

RunContext Object: Download and Execution

The download and execution code of RunCont ext isdesigned to be completely
generic. If you reuse this object in your own ATtaCK tool, you only have to
override the output function, the Handl eSt op() method.

Run() Method

This method firgt cdls LockDevi ce() , which initidizes the device connection as
required. Then it downloads and runs the program. Note that thet hi s pointer is
passed to at ck_i downl oad() . The event handler, a static method of this object,
will receive this pointer so that it can call the right object’ sHandl eSt op()
method.

Note that we don't retart the target after sopping it here, we smply return. This
toal is designed to run the gpplication and fetch the data just once—you'll see
why when we look at the output code.

LockDevice() and UnlockDevice() Methods

This code is designed to support multiple instances of the RunContext object—
that is, multiple programs downloaded and running at the same time. I’'m not sure
why | did this, snce | doubt very much anyone will ever actualy download two
programs a once. However, ATtaCK supportsit, so | figured | might as well.
Certainly the code was easy.

The ATtaCK handle to the device connection is stored in agatic member. If this
member haan't been initidized, LockDevi ce() initidizes the connection. It then
increments alock count, s0 that we know when it’' s safe to disconnect.

The disconnection is handled by Unl ockDevi ce() , which is caled by the object’s
destructor. If the deviceisinitialized, then the lock count is decremented. When

the lock count goes to zero, the device is disconnected and its handle set to NULL.
This exact same mechanism, by the way, is used on the object’ s sesson and

config handles as well.

Since multiple RuncCont ext ingances dl share a angle device connection, they dl
share asngle event handler as well. Thus, the event handler is a satic method. As
mentioned earlier, this method receives a pointer to the RunCont ext object
associated with the program that generated the event. If the event is
ATCK_TEVT_STOPPED, this pointer is used to invoke the object’ sHandl eSt op()
method. This mechanism could have been extended to the other event types, but
they dmost never have speciad handling associated with them.

Handl eSt op() isresponsblefor retrieving and displaying the profile data. By an
amazing coincidence, that’s dl that’ s |eft to cover in this program, so let’s get
righttoit.

Analysis Tools Construction Kit

06-153

Inliner: Output, Interpretation and Improvements

RunContext Object: Output

Y ou' ve dready seen the code that actudly prints out the profile information—
that’sin the Candi dat e and Cal | Si t e objects Di spl ay() methods. All the
RunCont ext object hasto do is decide which objects to print out and the order to
print them in. That happensin Handl eSt op() .

HandleStop() Method

Fird, if we don't aready know the address of the target’ s buffer, we need to fetch
it: Read the symbol table to find the address of the pointer, then read that address
to find the address of the buffer.

Next, upload the target buffer to our local copy. Since our cal-stelist conssts of
C++ objects, it would have been awkward at best to copy the target buffer directly
to thislist. Instead, we loop through the list, saving each eemert of the profile
buffer to its corresponding Cal | Si t e object.

Now we sort the cal | Si t e list by target address, o that we can conveniently
print each candidate' s associated cdl Stes. To do thiswe usethe STL sort ()
function. Much likethegsort () function we ve aready used, this requires some
form of comparison function. This being C++, asmple function pointer would be
far too prosaic; instead, sort () takesareferenceto a*“functor,” an object that
behaveslike afunction pointer by implementing an oper at or () () method. The
functor in question, ConpcCal | Si t es, isfoundin Candi dat e. h, and Imply
compares the two sites based on target address.

Oncethelig is sorted, therest is easy. First we iterate through every Candi dat e
object, printing its information. Then we iterate through the entire cal | Si t e lig,
looking for the first one that maiches the current candidate. Since thet list is

sorted, once we find one that matches, we can continue iterating, printing each

one until one stops matching. At tha point, we know that there won't be any more
gtesinthelis for this candidate, SO we go on to the next one.

Notice that after we print out acal dte, we delete it from the list. This speeds up
the search for subsequent candidates, but makesiit nigh-impossible to resume the
program after displaying the information once. That shouldn’t be necessary. If
you want to be able to collect the datain batches, though, you'll need to replace
the sorting mechanism with one that uses a separate list of pointers—that list gets
sorted, and entries from that list get deleted, leaving the origind cdl-gteligt
untouched.

To see the result of dl this code, typei nl i ner app onthe command line. You
should get something like this

Analysis Tools Construction Kit 06-1%4

ME Command Prompt

E:“WINNT~PROFILES*“Admninistrator\DESKTOP~stephen~inliner>inst_tool E:“WINNT“FProf i
les“AdministratorsDesktoprstephensblow_rel._elf

Dovnloading... 18x

Dovnloading... 37x

Dovnloading... 56%

Dovnloading. .. 74

Dovwnloading... 23x

Dovnloading... 188x

Press ENTER to finish.

Function CreateliewingMatrix (D:-CodeWarrior:Examples:sce2@@~vul~blowsblow.c. 1i
ne 368>:

Occupies 41 cache lines; makes 35 calls.

Called 155 times from D:“CodelWarriorsExamplesssce2B@~vul-~blowshlow.c, 1i
ne 261 .

E:“\WINNI~PROFILES“Administrator DESKTOP.\stephen~inliner>

Fig. 06-05: Inliner Output

Note that the only “candidate’ hereisn't avery good one. Actudly, | didn't have
asample program with any good candidates, so | had to lift the cache-line
threshold just to get any output &t al. A red game gpplication will have plenty of
viable candidates, however.

Interpretation

Asyou can seg, the output becomes your roadmap for inlining: A function thet is
cdled alarge number of times from asmal number of locationsisaprime
candidate.

If you were purely concerned about speed, of course, you' d inline everything.
However, as a practica matter, there comes a point where tiny speed gains are not
worth making your code hundreds of times bigger. More importantly, tiny gains
aren't worth the effort of actudly inlining the code—remember, your timeisalot
more valuable than the CPU'’s.

Actudly, even if speed were your only concern, inlining would often be the
wrong choice, thanks to the ingtruction cache. As you may recall, each cache line
isablock of memory containing 16 ingructions, the cache can hold 256 of these
blocks. If your program isjust running straight through, without any branches,
then the cache isirrdevant. However, once you start looping and branching, the
cache matters agreat ded.

In particular, it's extremely important that al the code from the top to the bottom
of aloop, induding any functions in which that loop cals, fit within the cache,
That's one of the ways inlining helps—a distant function probably won't bein the
cache, but an adjacent ingtruction will be. But on the other hand, if theinlined
function itsalf blows the cache, dueto its Sze or its own function cdls, then the
effort iswasted.

When you do decide to inline afunction, smply adding thei nl i ne keyword may
not help much, Snce the compiler isfree to ignore your suggestion. Even if it
decidesto inline the function, it does so everywhere, which may do more harm

Analysis Tools Construction Kit 06-155

than good. We just spent alot of effort figuring out the best placesto inline, and
it' sashameto have that knowledge go to waste.

To inline afunction by hand, you ve got two choices: C macros or assembly
language. Of the two, macros are obvioudy much easier to write and maintain.
Odds are, though, that if afunction isredly worth your timetoinline, it's
probably worth your time to move it into assembly language, where you can
perform other optimizations a the same time.

Improvements

Sinceinlining is S0 cache-sengitive, we should incorporate some measure of
cache-awarenessinto Inliner. At aminimum, the tool should count the number of
cdlsto different functions each candidate makes. A procedure that cdls just one
function athousand times doesn’t consume nearly as much cache space asa
procedure that cals ten functions once each.

To do thejob right, you need to have a pretty accurate model of how the cache
works. The PS2Cache toal that we'll cover next lesson includes such amode.
PS2Cache uses dynamic andysis to build a nearly- perfect map of the
goplication’s cache usage. Inliner doesn't need that level of accuracy, though, and
could get by with gtatic analyss. All it needsis some sense of what inlining a
particular function will do to the cache usage.

There s another type of performance tweek that’s related to inlining, caled loop
unralling. With inlining, you make your program larger to cut down on the
number of function calls you make; with loop unrolling, you make your program
larger to cut down on the number of branches. A function is agood candidate for
inlining if it is cdled alarge number of times from a smal number of locations; a
loop isagood candidate for unrolling if it is executed alarge number of times but
only runs through afew passes each time.

You get theidea: Loop unralling isredly just inlining done with basic blocks
rather than procedures. Turning Inliner into “Unroller” isevery bit aseasy asiit
sounds. There' s even some benefit to performing both analyses a the same time,
S0 that you get a picture of how the two interact. For instance, Inliner right now
excludes procedures that have loops, under the assumption that the loop blows
away the bendfits of inlining. However, if anadyss determined thet the

procedure s loop was a good candidate for unrolling, then suddenly that function
might become a good candidate for inlining.

Thisis getting into the relm of computer-aided software engineering—there’ s
big money in thisfidd if you build something truly innovativel Computer
processing power keeps getting cheaper, while programmer time keeps getting
more expensive. The obvious solution is to use computers to write programs, and
people who discover clever solutions to that problem are going to become rich.
Someday the only code that humans write will be the code that tells computers
how to write the rest of the code.

Did that make sense? Well, never mind, let’s move on to our last program for this
lab.

Analysis Tools Construction Kit 06-156

Detecting Load Delays

The EE Core does alot of things a once. When operating at peak efficiency, it
issues two ingructions every cycle. Redly, though, each ingtruction takes severd
cyclesto work its way through the pipeline, so the EE is often processng a dozen
ingructions at once. With dl of that going on, one would expect to have problems
trying to use aregister that an earlier ingtruction modified.

For the most part, everything works smoothly, no matter what you do—even
when two Smultaneous ingtructions are both using the same registers, which is
more than | can say for the Pentium. However, there' s ill one Situation that
causes problems:. If one ingruction triesto read aregigter that the immediately
preceding ingtruction loaded from memory, the EE has no choice but to wait until
that |load completes. This delay won't be very long—just afew cycles—but when
each ingruction takes about haf acycle, adday of even afew cyclesredly hurts.
Combine this with a cache miss and the delay gets even longer.

The prudent PlayStation 2 programmer avoids this “load delay” whenever
possible, by rearranging his code so that some other instruction comes between
theload and itsfirst use. The troubleis, it’'s easy to forget to do that, Sncethe
most natura way to write code isto load the register and then useit. Infact, I'd
go so far asto say that' sthe right way to code: Mot of the time, it'smore
important to make the code readable and easy to write than it is to squeeze those
extrafew cyclesout of it.

And, of coursg, if you'rewriting C code, you don’'t have much control over this.
The CodeWarrior compiler does about as good a job as possible when you turn on
optimization, but it just doesn’'t have the inteligence that a human being does.

Thus, there will come atime when you need to scan your code for this problem.
Armed with aligt of every load delay, you can then eva uate each and decide how
much effort it's worth to fix. Well, lo and behold, you can write an ATtaCK tool
to generate that list. Y ou don't even need to use dynamic analysis—you can do it
al with gatic andys's, which means you can even scan code compiled with non
CodeWarrior compilers.

RegStall

Thisoneisn't on the CD, s0 you'll have to download it from the supplementa
material folder. Once you do, open RegSt al | . ncp. Note that there' s only one
target, anceit’sjust a datic analyss too—and there' s just one source file, snce
it sasimple andysstool!

Openi nst _t ool . c. Thisfile, and indeed this whole program, has just two
functions, mai n() and Anal yze() . Of these, mai n() ISt very interesting, just
handling the usud initidization and command-line parsing tasks before it cdls
Anal yze() . That's where the rea work happens, so let’sfocus onit.

Analysis Tools Construction Kit 06-157

Analyze()

Thefirg thing this function does is dlocate a buffer to hold disassembly text. The
reporting code will print the disassembly of offending ingtructions, so that you
know which regigter is causing the load delay.

Next, we alocate three register-set objects: prevwr i t e, which will gorethe
registers loaded by the previousindruction; cur r ead, to store the registers read
by the current indruction; andr esul t , atemporary set used to Store the
intersection of the two. This mechanism is the heart of the tool, so rest assured
we Il examineit in detail very soon.

The outer iteration loops are boilerplate. First we iterate over theimagesin the
gpplication, then over the proceduresin each image.

The procedure iterator in turn iterates over each procedure’ s basic blocks. Just
before that loop, though, it clearspr evwr i t e—by thetime afunction call
transfers contral to the procedure, any vaue loaded by the ingructioninthecdl’s
delay dot will be ready for use, so thefirgt indruction of a procedure can never
suffer from load delay.

Also note that there are two pointers maintained outside the basic-block loop,
ppr evi nst and pol di nsti t . Theformer holds a handle to the previous
indruction, for the sole purpose of letting us print its disassembly out when we
find aload delay. (Since writing then reading a register cause adday, it's ussful
to print both the ingtruction that caused the delay and the immediately preceding
ingruction that loaded the register.)

However, keegping this old ingtruction handle around presents a problem. For
efficiency, we re usng iterator-lifesoan ingtruction handles. Remember thet the
atck_instit_new() method takes an extra argument, aflag that says whether the
ingtructions returned by that iterator should last for the lifespan of the image or

the lifegpan of the iterator. Since any production application will have many,

many thousands of ingructions, each of which takes up quite afew byteswithin
ATtaCK, we redly want to use iterator-life ingruction handles.

We iterate over the ingructions within asingle basic block, and then free up the
iterator. Thus, the ingtructions from one block would not normally be avallablein
the next block, yet the last ingtruction in abasic block could easly cause aload
delay. To resolve this, we don't release the old ingtruction iterator right away.
Instead, at the end of each basic block, we release the previous block’ s iterator,
and then store the current block’ siterator in pol di nsti t .

After dlearing those variables, we start the basic block iterator. As promised, for
each basic block we iterate over the ingtructions. Skip over what we actudly do to
those indructions—I’ [l cover that next.

After the ingruction iterator finishes, we see whether there' s a poldingtit lying
around, and if there iswe rdlease it. After that, we set poldingtit equd to pindtit.

At the end of the basic block iterator, we do that same operation again: If
poldingtit isn’'t null, then we release it. Then we release the bblock iterator and
exit to the procedure loop. When that completes we rel ease the procedure iterator,

Analysis Tools Construction Kit 06-158

release the image and exit to the image loop. When that completes, we re done—
we release everything and exit.

So what little work this program does is contained within afew linesingde the
ingtruction iterator loop. Let’s ook there next.

Analysis and Output

Thefirg thing that happens within the ingruction loop isthat cur r ead gets

cleared by acdl toat ck_regs_remal | (). Thenatck_i nst _i nregs() addsto
cur r ead the set of registers read by thisingtruction. The st must be cleared first
because at ck_i nst _i nregs() adds the registersto the set, rather than replacing
the set’ s contents with the new registers.

Next we useat ck_r egs_i nt set () to Set result equd to the intersection of
curread and prevw i t e. Thelatter, remember, contains the register loaded by
the previous—we Il seeit get set afew lines from now. Cdculating the
intersection of the two sets meansthat if pr evwr i t e’ Sregister appearsin
cur r ead, it will gppear inr esul t aswdl; otherwise the set will be empty.

If resul t contains one or more registers, counted by at ck_r egs_nuny() , then we
know it’s not empty, which means we know that the current ingtruction reads a
register loaded by the previous ingtruction. We then print out diagnogtic
information: the ingruction’s source file, line number and disassembly, aswell as
the disassembly of the previous ingtruction. (Now you see why we had to jump
through hoopsto keep ppr evi nst available!) Note that it's not possible to get
here without ppr evi nst being vdid—this will never get cdled for the first
ingruction in a procedure—and so we don’t have to check for NULL.

After that test, regardless of its outcome, we clear pr evwr i t e. Then we check to
see whether the current ingruction is aload, using the convenient ATtaCK

method at ck_i nst _i sl oad() . If thisingruction isaload, thenwe set prevwri t e
to the regigers written to by thisingruction—it'll just be asingle regider, the one
loaded.

Findly, we st ppr evi nst egqud to pi nst , and continue the loop. And that’ s the
end of the interesting code. The rest of the program wraps things up with the usua
boilerplate.

Interpretation
Here' swhat the output will look like:

Analysis Tools Construction Kit

06-159

ME Command Prompt

862:
1u 3, 252(p29D
> addu - 3. b
Load delay ztall CodelarriorsExamplesssce2B@wul blowsphyzics.c,
867:

1w 3. 256(r29D
> addwn ~28,. r3, rb

Load delay stall in fi ~GCodeWarriorsExamplesssce2@@~wvul~bhlowsphysics.c.

873:

1w 3, 268Cr29)
> addu 23, r3. prh
ngcsl delay stall i i CodelarriorsExanplesssce2B@vulsbhlowsphysics.c,

1w 3. 264(r29>
> addu 21, r3. prh
Load delay stall in fi :~GCodeWarriorsExamplesssce2@@~wulblowsphysics . c.
#83:

1w 3, 268(r29>
> addu 22, r3. rh
Load delay stall i i sCodeWarriorsExanpleshsce2B@8 vulshlowsphysics.c,
885:

1w 3. 304(r29>
> addu 3. 3. 16

E:\WINNT\PROFILES~Administrator\DEEKTOP\stephen>

Fig. 06-06: RegStall Output
“Okay, it looks like this ‘load ddlay’ thing is happening pretty often. Now what?”

Wi, there s not much you can do in C. Make sure optimization is cranked al the
way up—ingtruction scheduling (which includes preventing load ddlays) kicksin

a optimization level 3. That helps, but it doesn’t make the problem go away—the
sample output above was run againgt a program that was compiled with the
maximum optimization.

What you'll need to do to redlly solve this problem is move code into assembly.
That's obvioudy a drastic step, too drastic to do just to prevent load delays.
Ingtead, you should be using thistool in conjunction with dl the others—Inliner,
PS2Cache, etc.

Look for functions that consume a sgnificant percentage of your execution time,
and that have alot of different performance problems as reveded by the toals.
Those are the best candidates for moving to assembly. The “ start-up cost” of
converting a C function to assembly is high, while the cost of each individud
optimization—inlining, loop unrolling, indtruction sequencing, branch prediction,
etc.—is comparatively very low. Y ou want to convert as few separate functions as
possible, but you want each of those functions to include as many different
optimizations as possble.

Also remember the 80/20 rule: There will be some smal portion of your program
where twesks like this will make the most impact. Don't waste time tweaking
anywhere else. On the other hand, once you're already tweaking a particular
function into assembly, you should ways use RegStd| to scan it for load delays.
The incrementa cost of swapping ingdructions around to prevent load ddlaysis
very smdl, easly judified by the payoff.

Improvements
| wrote RegStdl in less than an hour, so ther€' s plenty of room for improvement!

Fird, it's not completely accurate. When ATtaCK steps through a procedure, it
does s0 in order of address, not in order of execution. This program assumes that

Analysis Tools Construction Kit 06-160

the basic blocks are executed in order, one after the other, but that's not the
case—amog by definition, since basic blocks are defined by dterationsin the
flow of control.

When branches are actualy taken, of course, then the timing of the load delay
basicdly becomesirrdevant. So redly, the only time we should consider an
ingruction at the start of abasic block isif the preceding basic block ends with a
conditiona branch. Only then—and only if that branch fdls through—isit even
possible to see aload delay at the start of a block.

More interestingly, we could combine this tool with othersinto a“megatool.” As
discussed above, the best candidates for hand optimization in assembly are
functions that have alot of separate problems. Y ou could run each tool separately
and then fold their results together by hand, but if you find yoursaf doing that
very often, you'll save timein the long run by folding the tool s together.

The reporting for such a megatool would sort everything by function. Each
problem incident would have a*“score” associated with it—idedlly the score
would be the rough number of cycles the problem wastes. Y ou'd then sort
functions by their score, from highest to lowest, and for each function list every
individua problem and the number of times it occurs.

Note that in order to get the score correct for the statically analyzed problems,
you'’ d need to multiply by the number of times the problem was encountered. For
example, let’s say aload delay gets a score of 3. You' d want to insert
ingrumentation at the start of that load’ s basic block to count the number of times
it happens, and then multiply the score by that amount.

In fact, thisis a good improvement for SmpProf, too. If you remember SmpProf,
it dows down the program somewhat, because it adds alot of instrumentation.
However, you could use these other tools static analysis to screen out functions
whose internd profile won't be very interesting: If function X() doesn’t have any
mispredicted branches, load delays or other internd problems, then you' re not
going to be optimizing it, and if you're not going to optimize it, you probably

don't need to profileit a al.

Ultimately, though, it al comes down to your persona optimization technique.
Keep in mind one of my guiddines from Lesson 05: Don't ask questions when the
answer doesn't matter. If you' re not looking for functions to hand-optimize with
assembly, then don't bother gathering detailed lists of potential assembly tweaks!

Just One More!

That concludes our penultimate lesson. Next up is Lesson 07, another lab, in
which we Il look a memory problems and memory andysstools.

Analysis Tools Construction Kit

06-161

Lesson 07: Analyzing Memory and Cache
Usage

Our find lesson is another lab, covering four tools to solve common memory
problems. Asusud, we ll talk about improving these tools as well as how to use
them as-is.

Catching Misaligned Memory Accesses

In generd, memory accesses on the PlayStation 2 must be digned on amultiple
of their 9ze: word loads must be aigned on word boundaries, hafword stores on
halfword boundaries, and so forth. Most chips have this restriction. Accesses that
violate this rule generate an exception—a very powerful detection tool!

However, the EE’s* multimediaextensons’ to the MIPS ingtruction set work a
little differently. Those extensons fegture two indructions, LQ (L oad Quadword)
and sQ (Store Quadword) that operate on 128 bits at atime, avery handy festure
for game operations

Like the EE’ s other memory-access indructions, these only work on multiples of
their sze, namely 16 bytes. However, unlike the other ingructions, invaid
addresses don’'t generate exceptions. Instead, the bottommoaost four bits of the
address smply get masked off.

At firg glance, thismay seem like a helpful festure: “Nest, if | screw up, the
goplication won't crash!” But in fact it'snot very hepful at dl. After dl, if the
bits being masked off are non-zero, you' ve probably made a mistake, either in
your dgorithm or in your memory alocation. Now, when would you rather find
out about that mistake: the minute it happens, or after aweek of desperate
debugging and andysis as you try to figure out why the firgt three pixels of your
textures are dways random colors?

PS2Quad

That'swhere our firgt tool of thislesson, PS2Quad, comesin: It looks for and
catches these misaligned accesses, generating a* pseudo-exception” by hdting the
sysem.

The concept behind PS2Quad is extremely smple. The instrumentation loop
looksfor every LQ and sQindruction, and inserts a cdl to andys's code before
each one. The andysisroutine check’ s the effected address' bottom four bits, and
hdts the target if any of them are non-zero.

PS2Quad islocated in the Examples folder of your ATtaCK ingtalation—the full
path isprobably C:\ Program Fi | es\ Met r ower ks\ ATt aCK f or

PS2\ Exanpl es\ PS2Quad. Within that folder isthe Ingt folder, containing the
indrumentation-tool project ps2quad_i nst . ncp. Open that project, then open its
only sourcefile, ps2quad_i nst . c.

Analysis Tools Construction Kit 07-162

Instrumentation

Thel nst runment () function usesabasic iteration loop to step through every
image in the program, then every procedure in each image, then every basic block
in each procedure, then every ingtruction in each basic block.

For each ingtruction, we retrieve its * pseudo-opcode.” Thisis an ATtaCK-defined
enumerated type that indicates what the ingruction basicdly is. By comparing this
vaueto ATCKPS2_OP_LQand ATCKPS2_OP_SQ, we check to see whether the
ingtruction in question is one of the quadword access ingructions, LQ or sQ. While
we're a it, we make sure the ingruction can be instrumented with
ATCK_EFFADDR—If it can't, no point in proceeding further with it.

Assuming thisis an insrumentable quadword indruction, we insert an
indrumentation cal before it. Thisinstrumentation cals the QuadCheck()
andysis routine passing it the image |D number, the address and the effected
address of the ingtruction. We Il see how those are used in a moment.

That's dl the insrumentation loop has to do. After that, the loop finishes, the
ingrumented gpplication iswritten out, and the tool downloads and runsthe
program. Let's see what the andlysis code will do—open up

Anal \ ps2quad_anal . ntp, then openitsonly sourcefile, ps2quad_anal . c.

Analysis

There' sjust asingle results Sructure, Quadbat . Thetool isgoing to hdt the
program immediately upon a misaigned access, so there' s no need for a buffer of
multiple results.

The QuadCheck() routine receives the image ID, the ingtruction’s address and
the address that ingtruction is trying to access. If that address ANDed against 0x0F
iszero—that is, if dl of the bottom four bits are set—then the addressis

quadword aigned, and the routine smply returns.

However, if it's not, then we need to raise our “pseudo-exception.” The vaues
passed into the routine are stored in the QuadDat structure, the target is stopped
and the program outputs the diagnostic information.

Output

TheRunl t () and Handl eEvt () functions are more or less cut-and- paste from
other ATtaCK tools, so we can ignore them. To the extent that anything
interesting happensin thistoal, it happensin Pri nt M sal i gn() .

Fird, this function declares the quaddat_t structure to ATtaCK, so that it can read
the entire structure at once. It then gets the address of the target’ s structure, and
uploads its contents into the loca copy.

Next, the function needsto find the offending ingtruction. It can look up the
indruction by address, but firgt it needs an image handle. We couldn’t pass an
image handle to the analyss routine, but we did pass an image 1D number, which
isnow in our loca copy of quaddat .

Analysis Tools Construction Kit

07-163

TheGet I ng() function returns an image handle based on an image 1D number. It
does thissmply by iterating through the images in the program until it reachesthe
specified ID.

Once we have the indruction handle, we can start dumping out information about
the misdigned access. the ingruction type (LQ or SQ), the source filename and
line number and the offending address.

To make the output more useful, we then disassemble a forty-line window around
theingruction. If you'll remember back to Lesson 02, we discussed iterating from
one object to its shlings. The best way to do that isto step out to the parent, then
iterate across the parent. We do that here by getting the basic block that contains
the ingtruction, then the procedure that contains the basic block. This procedure is
then passed to Pri nt Di sasn() , ahdper function.

Print Di sasm() disassembles a40-byte “window,” five ingructions on either Sde
of the offending quadword access. Thiswindow beginsat addr _st art (the target
ingruction’s address minus 20) and runsto addr _end (addr _st art plus40).

Firgt, the function prints out the procedure' s name, and alocates a buffer to hold
the disassembly text. Then it iterates through every basic block in the procedure,
then through every ingtruction in each basic block. If an indruction’s addressfdls
within the window, its disassembly text is fetched and printed.

And that's dl there is to PS2Quad. Normdly I’d show you the tool’ s output, but
like they say, no news is good news—most programs won't have this particular
bug, so for most programs there is no output. Certainly | couldn’t find a sample
program that had the problem.

Improvements

Thistool’s amost too smple to improve! To be redly useful, though, it needsto
run dl the time—the nature of the quadword access problem means that you
won't usudly know you need to look for it. The overhead of PS2Quad is very
small, so you should probably fold thisinto the other tools. That way, whenever
you're performing one form of andysis, you're dso watching out for this bug,

Hunting Down Memory Leaks

What's the worst bug you've ever had to track down? More than hdf the time
when | ask people that, they tell me about a memory leak. Leaks are notorious for
being easy to commit and hard to track down.

To have ahope of finding the legk in hours rather than days (or weeks!), you need
agood memory-leak detection tool. The programmer smply not releasing the
memory causes some leaks, and ingpecting the code can spot those. More often,
though, the leak occurs because a pointer gets modified (and thus can no longer
be used to release the block), or worse yet gets overwritten entirely, orphaning the
block.

Analysis Tools Construction Kit 07-164

Following every memory pointer around for its entire lifespan, watching for it to
change, is smply not something human beings can do. Computers are grest &t it,
though, and tools to do exactly that have been available on the PC for many years
now. These tools are indispensable, but they generaly don’t exist on game
platforms.

So let’ swrite onel ATtaCK gives us dl the pieces we need to track memory
dlocations. The processissmple:

Log every cdl to mal | oc() —the bytes requested and the pointer returned
Log every cdl tofree()

Run through the logs, diminating matched pairsof mal | oc() /free() cdls
Anything left intheligt isalesk

The thorniest problem is managing these logs. At eight bytes per cdl, they can get
big very quickly. Many gpplicationsusemal | oc() to alocate large numbers of
small structures, o in aworst-case scenario the log could consume as much
memory as the gpplication’s datal

To keep that from happening, dl the analyss and log management should be done
on the hogt. The target should just gather the data, as quickly and minimally as
possible. When the target’ s buffer isfull, it should halt itself and let the host read
and clear the buffer. That way, most of the logs are stored in the host’s RAM
rather than the target’s.

Thistool—we Il cdl it Plumber, since it stops lesks—isn't indluded in the
ATtaCK digtribution, so you'll have to get it from the supplemental materid
folder. Once you' ve unzipped the project, open up p! unber . ntp, then open
i nsttool.c fromthel nstrumentation Tool folder.

Navigation and Instrumentation

Asusud, we ll kip thetypicd initidization code and go sraight to

I nst rumrent () . Thisfunction performsthe usua steps of declaring our data
gructure and andydis routines, then iterating through every cdl Stein every
procedure in every image. For each call Ste, the name of the target function is
retrieved.

If that nameis“mal | oc”, then obvioudy thisisacdl tomal 1 oc(), SOwe
instrument it. Conceptually, we just want to log the bytes requested and the
pointer returned. However, in practice, we can't count on registers not changing
across the function call. Therefore we need to read the bytes requested before the
cdl, and the pointer returned after the cal.

To do this, we add instrumentation before the call that passes the contents of
register ATCKM PS_REG_GPR4. In assembly code, this register is known as a0, and
it typicdly holds the first argument of C function calls. In this case, that argument
will be the number of bytesto alocate. Next, we add instrumentation after the call
dteto get the pointer that mal | oc() returns. This pointer comes back in register
vO, which in ATtaCK-speak iSATCKM PS_REG GPR2.

Analysis Tools Construction Kit 07-165

For both instrumentation cals, we aso passthe calste ID. Notice that thisID
datsat 1, not O. Later on, we'll useacdlgte ID vadue of Oto indicate alist entry
that’ s dready been resolved.

If the call target’ snameis“free”, thenthisisacdl tofree() and our jobis
much easer. f ree() doesn't have areturn vaue, so al we need is
indrumentation before the cdll to log the vaue of ATCKM PS_REG_GPR4. Aswith
mal | oc(),wedso passinthecdlsteID.

Analysis Routines

Plumber’s analysis code is complicated because of that split between “before’ and
“efter.” If we were interrupted in between these two instrumentation calls by
another alocation, there’ s no tdling what state the list would wind up in.

Certainly the profile would become usdess. Thus, we need to ensure that no other
andysis routines can possibly run in between the two cals that surround

mal | oc() . Sure enough, ATtaCK gives us a mechanism to handle this—mutexes.

Initialize()

Asusud, this gets cdled a the start of the gpplication. And asusud, it receivesa
pointer to a buffer allocated by ATtaCK, saving that pointer in aknown variable
s0 that both the host and target can find it.

Here, though, I ni ti al i ze() dso recaivesthe number of dementsin the buffer.
We need to track the buffer sze in the analysis code, because when we vefilled
the limited buffer space we'll stop and let the host reed and clear the buffer. That
way, we don't have to dlocate a buffer large enough to hold every memory
dlocation.

Findly, weinitidize the mutex variable. All thisrequiresis passng the variable's
addressto at ckt arg_i ni t | ock() .Thisinitidization must be done in code that's
guaranteed to be executed single-threaded. Since andlysis routines called usng

at ck_cal | bef ore() run before the program even starts, thisfitsthe bill.

BeforeAlloc() and AfterAlloc()
These areredly just one routine split into two halves.

Before the alocation call, we lock the mutex. The subsequent whi | e loop looks
drange, but ignore it for aminute—suffice it to say that it’s ensuring the buffer
has room. In any case, by the time we make it past the loop, we know that we're
holding alock to the mutex. That meansthat if the gpplication is dlocating
memory in another thread (and thus locked the mutex in that thread before us),
that thread will have to finish first before we can proceed.

Once we're past that, we set the bytes member of the current buffer entry equal to
cal | er _a0, which are the contents of register a0 passed to us by ATtaCK. Thisis
the number of bytes requested. We also savecal | si t el Dinthe Sructure€ s

cal | si t el D member. Then we return, which alows the system to proceed.

Analysis Tools Construction Kit 07-166

The application branches to malloc(), dlocates the block, and returns, a which
point Af t er Al | oc() activates. The pointer to the alocated block comesback in
VO, passed to us by ATtaCK. Thisvaueis stored in the ptr member of the current
gructure. Then, the log entry now being complete, we increment the buffer index.
That marks the end of our critical section, o we release the mutex.

At this point, if the buffer isnow full, we halt and let the host read and clear the
buffer. Note, however, that if another thread is waiting on the mutex, that thread
will execute before we get to this call—it wakes up the moment

at ckt ar g_unl ock() iscaled. That'swhy Bef or eAl | oc() had to make surethe

buffer wasn't dready full—in effect, the call to at ckt ar g_I ock() could resultin
the buffer index incrementing.

Look back at Bef or eAl I oc() . Now we can understand what's going on in that
whi | e loop. If the buffer isfull, then we need to hat and dlow the host to clear it.
This requires rleasing our mutex, Snce we can't hat while we ve got a mutex
locked. Then the loop hdts the target. Presumably the host clears the data and
resumes the target, a which point we lock the mutex again. Thus, it's not possible
to leave thisloop without @) the buffer having room, and b) holding the mutex.

BeforeRelease()

Cdlstofree() areeasy, ancefree() hasnoreturnvaue Thus, thisfunction
can be done dl at once rather than split. We till need to grab the mutex in case of
multithreading, though, since our analyss routine can till get interrupted. Y ou
can e that thisfunction isliterdly just Bef or eAl | oc() and After Al | oc()
pasted together. The one difference isthat byt es member is set to zero, indicating
that thiscdl isardease.

That’ sthe entirety of the andlysis code. In spite of having to jump through one
extrahoop, it's ill pretty smple. Next up: download, execution and outpt,
which iswhere dl the heavy lifting gets done.

Plumber: Execution and Output

Execution

TheRun() function is pretty much the same routine you' ve seen before. It
downloads and runs the gpplication immediately. The user can pause the target
and fetch the buffer by hitting ENTER, or he can smply let it run—when the buffer
isfull, aswe ve seen, the target will hdt itself. Since the andyss routines are
protected by a mutex, the host won't be able to halt the target in the middle of a
memory call, so the buffer is guaranteed aways to be vaid.

In either case, whether halted by the user or by the analysis code, when the target
stops it generates an event. The event handler then calsFet chAndCl ear () to
fetch and clear the contents of the buffer.

Analysis Tools Construction Kit

07-167

FetchAndClear()

Fr4, this function reads the contents of the analysis code’ s globd variables
TheBuf f er I ndex and TheBuf f er Pt r . The first gives the number of log entries
currently in the buffer, while the second is the address of the buffer itsdf. Then
the function reads that number of entries from the specified address. These new
log entries are sored in atemporary buffer, the one originaly alocated and
passed to ATtaCK inI nstrument () .

The temporary buffer needs to get gppended to our permanent results buffer. Firs,
though, that buffer has to be expanded to make room for the new entries. We
caculate the number of bytes the buffer dready contains, and the number of bytes
the buffer needs to grow by. If the buffer hasn't been dlocated yet, then we create
itusng mal | oc() ; otherwise, we expand it using r eal | oc() . Now we copy the
new bytesinto the buffer, sarting at the end of the exigting bytes, and add the
number of new entries to the count of existing entries.

Findly, we clear the target’ s TheBufferindex varigble. That's dl we have to do to
“clear the buffer.” We don’'t need to zero-out the buffer itsdf: Unlike most of the
other programs, this tool isn’'t counting, and o it’s not important that the counters
be reset to zero.

By the way, describing this process has made me redlize that I'm wasting time. |
don’t need the temporary buffer at dl, because | can just read directly into the
permanent buffer, offset by the number of items aready present. However, there's
no point in changing it now, since the code works. The cost of the extra copy
operation isamog totdly irrdevant.

This presents agood lesson: ATtaCK tools should emphasize speed of
programming over efficiency—at least on the host sde—because you'll be
running them on developer machines with plenty of processor speed and RAM.
Hardware is chegper than programmers, so trading hardware time for programmer
timeisadwaysworth it.

Asitslagst act, Fet chAnddl ear () resumesthe target. Eventualy the user will hit
x- ENTER to kill the gpplication, a which point control returnsfrom Run() to
mai n() , which then cdlsAnal yzeResul t s() , the reporting function.

Output

The output code is much more involved than for other tools, because it actualy
performs a portion of the analyss. The idea hereisto sort the log by alocated
address, then in order of occurrence. In the resulting list, any memory dlocation
that is properly released will appear asanal | oc() immediatey followed by a
free().Ifamll oc() appearsby itsdf, then we know that thereé snofree()
associated with it and it' s aleak.

To perform the sort, we first create an array of pointersto eementsin our results
aray. Thisleve of indirection alows usto sort the array without disrupting its
internd order. Since the array is dready sorted by the order in which the cdlls
happened, we don’'t want to lose that order—we need to know whether the

Analysis Tools Construction Kit

07-168

free() for aparticular address happened before or after that address was
allocated!

We usethe standard C library function gsort () , which is reasonably efficient but
more importantly is redly easy to use. This function sorts an array in place, taking
apointer to the buffer, the number of entriesto sort, the sze of each individua
entry and a pointer to a comparison function.

The comparison function we use hereis

Conpar eMerLogsByPt r ThenSequencel D() . Describing the function amost takes

lesstime than naming it: The entries are sorted by ascending vaue of pt r ; if two
entries have the same vaue, then they are sorted by their position in the origina
list (sothat af ree() awayscomes after its associated mal | oc()). The mutexes
in the analysi's code guarantee that entries will ways be added to thelog in order,
s0 the order of the origind list is the order the cals happened chronologicaly.
That'swhy indexes into the origind list are referred to as“ sequence ID.”

With the ligt sorted, we can now run through it to find mismatched alocations and
releases. Fird, every dlocation gets added to arunning tally of alocated bytes

and dlocated blocks. Then, for any mal | oc() immediady followed by afree(),
we add the alocated bytes to the “bytes freed” counter and increment the
“number of freed blocks’ counter. Then we clear out both the mal | oc() and the
free() from the sort array by setting their cal | si t el D membersto zero.

Once dl that is done, we see whether our “blocks dlocated” counter matches our
“blocks freed” counter. If so, then we congratulate the user and quit. Otherwise,
we report each offending dlocation.

Todothis we sort thelist again, thistime by cal | si t el D. The comparison
function for thisis called (take a deep breath!)

Conpar eMerLogsByCal | si t el DThenSequencel D() . It sortsthelist in order of
acending cal | si t el D. All entriesfor agiven calgte are then sorted by their
postion in the origind lis.

Now we reiterate over the program to get every mal | oc() andfree() cdlgte
For each site, we then increment through the results ligt until we find a

cal | si t el D greater than or equd to thisgte. If thefirst ID we find is greater than
the current one, then we can move on to the next calste—thanksto the sort, we
know that there aren’'t any entriesin the entire list for this Ste.

But if wefind an ID that equals the current one, then we know that this site was
respongble for one or more memory leaks. (Remember, the matched
malloc()/fre() pairs had their cal | si t el D values zeroed out.) We then print out
the diagnogtic information for the Ste, liging every entry for thisste ill in the

list. Here' swhat the output looks like:

Analysis Tools Construction Kit

07-169

ME Command Prompt

Instrumented 4 calls to malloc{> and 4 calls to free(>.
Press ENTER to download and run. x—ENTER to quit

Dovnloading... 15x

Dovnloading... 31x

Dovnloading... 47%

Dovnloading... 63x

Dovwnloading... 78x

Dovnloading... 94x

Dovwnloading... 188

Press ENTER to get data. x—ENTER to guit

x
ncount = 5@

You have a memory leak?

Unfreed mallocs at file D:wCodeYWarriorsExamplesssceZ@@ vulsbzplinesmain.c,. line
238:

3136 bytes at 531498
Unfreed mallocs at file D:wCodeWarriorsExamplesssceZB@@ wvulshsplinesmain.c,. line
233:

784 hytes at 5328ed
Total allocations: 58768 bytes in 26 blocks.
Total releases: 47848 bytes in 24 bhlocks.

E:\WINNT\PROFILES“Administrator\DESKTOP.stephensplumbersInstrumentation Tool>

Fig. 07-01: Plumber Output

Note that most programs will have a*memory lesk.” If you're going to keep a
block of memory until the program terminates, there’s no pressing need to release
the memory, so many people don't. However, trying to free every block you
alocate has the advantage of diminating that chaff during debugging. In any case,
armed with aligt of exactly which alocations never get freed, you shouldn’t have
any problem gfting out those “intentiond” memory lesks from the unintentiona
ones.

There' s another type of error thistool reports, unalocated releases. This occurs
whenf ree() iscaled with an invdid pointer. The most likely cause of thisis
incrementing your only copy of an alocated memory pointer.

Monitoring Stack Depth

On the PC, memory is rdatively easy to come by. More to the point, the
consequences of running out of memory aren’t too drastic—some unused part of
the operating system gets paged out to disk. At worst, your app’s performance
dies, but at least the app itself doesn't crash.

On the PlayStation 2, memory is much more of a premium. Fird, you're trying to
keep more datain memory, because reading from the DVD is dower than reading
from ahard drive. Second, when you run out of memory, that’sit, game over—
there s no virtua memory manager to cover your tracks. So every byteis
precious.

On the PC, you generdly don’t worry about the stack. If, during debugging, you
ever run out of stack space—assuming it’'s not caused by an infinite-recursion
bug—you smply increase the stack dlocation and go on with your life.

On the PlayStation 2, it's not so smple. Y ou want the stack to be assmdll as
possible, but you aso can't afford to ever run out of stack space. The congtraints
are especidly severeif you want to put your stack in scratchpad RAM, of which
you only have 16K!

Analysis Tools Construction Kit

07-170

This andysistool instruments your application to determine the degpest ack it
ever uses. During development, you can dlocate an overly large stack while you
collect this depth information. Just before release, you trim your stack to the
minimum you need (plus some safety margin)

DeepStack
This project isfound in the Thrill Seeker Tools folder (probably C: \ Progr am

Fi | es\ Metrower ks\ ATtaCK for PS2\Thrill Seeker Tool s), inthe subfolder

St ackDept h. Openii nst\ st acki nst _ps2. ncp, then open st ack. h.

Thisfile defines the data structure that our andysis routines will gather. It has two
members, a procedure ID and an address. Not only does this tool measure how
deep the stack gets, it aso tells you exactly which sequence of cdls resulted in the
deepest stack.

Now open st ack_i nst. c. Themai n() isaboilerplate, handling initidization,
dlocation of two buffers—one for deepest stack, one for current stack—and
driving the rest of the program. The work gets done in the functions

Dol nst rument (), DoRun() and DoPri nt () . Before welook at them, though, we
should probably look at the analysis routines.

Analysis
Open ana\StackAnal_ps2.mcp, then open stack_ana_ps2.c.

As mentioned, there are two buffers, one for the current cal stack and one for the
deepest call stack. In addition, there are counters to store the number of callsin
each stack, and variables to hold the deepest stack address.

Thelnitialize() functionis pretty standard. It receives buffer pointers from
ATtaCK, stores them and zero out the counters. Note that stacks start at high
addresses and build downward, so the sarting vaues for the maximum-depth
variables are the highest possible vaues.

TheRecor dDeepest St ack() function isa utility routine that copies dl the
“current” variablesto their “deepest” counterparts.

TheProcedur ecCal | () function gets caled before every procedure cal, receiving
the procedure ID and the function’s stack pointer after the frameis set up. The
firg thing that happensin this function is the address is checked to see whether

it’ sin the region reserved for interrupt handlers. An interrupt handler might call
back into the target gpplication, at which point the target function would use the
interrupt handler’ s stack rather than the gpplication’s origind stack. We're not
interested in measuring the interrupt handler stack, and since its address will be
much lower than the application stack’ s address, we need to filter it out.

If we pass that test, though, we add the current stack information to our call stack.
The current addressis set to the new stack address. The procedure ID and stack
address are pushed into our buffer, and the stack depth isincremented. Findly, if
the new stack address isless than the deegpest one to date, we cdll

Recor dDeepest St ack() to savethis stack as the deepest one.

Analysis Tools Construction Kit

07-171

TheProcedur eEnd() function has only one task to perform: It decrements the
stack depth as the stack frame gets released at the end of the procedure.

Findly, the st ackUpdat e() function gets caled whenever any ingruction
modifies the stack pointer (register 29). The addressis recorded, but the stack
depth isn't increased, since we're il within the same procedure. Again, if the
new addressis below the heretofore deepest address, we cdl

Recor dDeepest St ack() .

Armed with this understanding of the analysis routines, you could probably figure
out the instrumentation tool on your own, but we' |l go ahead and look at it.

Instrumentation

Dol nstrunment () first declaresthel nitial i ze() routing adding it to the start of
the gpplication. It dso declares the other routines so that they’ re available while

we iterate over the application. Then it dlocates a register-set object, which we'll
need to figure out whether any given indruction modifies ATCKM PS_REG_GPR29,
the stack register.

Next we iterate over every image, then over every procedure within each image.
Each ingrumentabl e procedure gets a call beforehand to Pr ocedurecal | (),
which receives the procedure ID and the contents of register 29. Every procedure
aso getsacall afterwardsto Pr ocedur eEnd() , which doesn’'t take any
arguments.

Now we iterate over the procedure s basic blocks and then over each block’s
ingructions. For each ingruction, we clear the register set and use

at ck_i nst _out regs() tofill it with every regiger thisingruction modifies. If
register 29 isamember of the resulting s, then this ingruction modifies the

gack pointer, and so we instrument it with acal after to St ackUpdat e() , passing
the new vaue of register 29 resulting from the ingtruction. (A cdl before would
pass the origina value of register 29, not the new one.)

Theiterator loops finish normdly, with each image getting written out Snce this
isadynamic andysistool. Findly the entire program gets written out, and
Dol nst rument () returnsto mai n() , whichwill then cdl DoRun() .

Download and Execution

DoRun() isjust more boilerplate that you' ve seen before. It has one interesting
feature, though—it was originaly written for earlier versons of the ATtaCK AP,
and S0 in the comments you can see some unfamiliar function calls. That's just of
higtoricd interest. In terms of present-day functiondity, DoRun() just launchesthe
goplication immediately and loops until it's finished.

Output

Findly, DoPri nt () iscaled to digplay the results. This function does something a
little more e aborate than most output routines.

Analysis Tools Construction Kit

07-172

Firdt, it iterates across the gpplication to put dl the function namesinto an array.
Thisarray can then be used to match labels to procedure 1Ds, making the output
more humanreadable.

For each leve of the gpplication’s degpest stack, DoPrint() displays the function
name and the stack address. It then subtractsthislevel’ s stack address from the
previous leve to display how many bytes were alocated.

"% Command Prompt H=]
Usage: stack <appr.

E:“WINNI~PROFILES“Administrator DESKTIOP«\stephen-stackdepthrdeepstack E:“WINNI-FPr|
of ilessAdministrator~Desktoprstephensblow_rel_elf

Dovwnloading...

Dovnloading. ..

Dovnloading. ..

Dowvnloading. ..

Dovnloading... 92x

Douwnloading... 188

Press Enter to stop application running and get results.

Deepest stack trace:
Allocated

i Ax7ffed6B Ax118
CreateliewingMatrix Bx?ffechd Bx2al

2 Btack levels
Deepest Stack address Bx7ffe?hd

E:\WINNT\PROFILES~Administrator\DEEKTOP\stephenstackdepth>

Fig. 07-02: DeepStack Output

Interpretation

Okay, so what should you actudly do with the information thet your gpplication
consumes 944 bytes of stack space? If you' re not pushing the limits of system
RAM, then do nothing and leave well enough done.

Mogt likely, though, you need al the space you can get. Or, if your stack issmdll
enough, you want to move it to scratchpad RAM, to speed up the gpplication and
save cache space for more important data. The linker control file allows you to
gpecify how big (_st ack_si ze) and where (_st ack_addr) the stack should be.
However, that's an advanced subject outside the scope of this course—you'll have
to read the LCF documentation that came with CodeWarrior for more

informetion.

Improvement

Thisis another one of those programs that are pretty hard to improve: 1t does what
it does. The best possible “improvement” would be to combine this program with
other ones, so that no matter what tool you' re running, you' ve also got the stack
informetion.

Y ou redly need to always monitor stack depth, so that when it comestimeto trim
the stack to the minimum size you need, you' re confident that you' ve covered
every possible stuation. Toward that end, even if you don’'t merge thistool with
others (such as SimpProf), you could at least add code-coverage to this tool, so
that at the end of the run it tells you which routines weren't called. Y our test

Analysis Tools Construction Kit 07-173

session must run every routine in the app at least once for you to have any
confidence a dl in your stack depth figure.

Analyzing Cache Usage

Our last sample program is probably the sngle most vauable one of the bunch.
The other programs are dl useful, but you could write them yoursdlf without too
much difficulty.

This program is much more advanced. It uses amixture of atic and dynamic
andysisto actudly smulate the behavior of the PlayStation 2's data and code
caches, o that it can tell you exactly where and when your application ismissing
the cache.

The importance of good cache usage cannot be overstated. Poor cache usage can
kill the performance of even the most well-optimized assembly code; savvy cache
usage can make even unoptimized C code run fast enough for release.

The cacheisn’t the most important aspect of PlayStation 2 optimization—that
honor belongs to keeping the VUO and VU1 pipdines full, atopic outsde the
scope of this course. But it’s the most important aspect of EE Core optimization,
and certainly if your EE core code is dow, you're going to find it very difficult to
keep the vector units happy.

PS2Cache

It's much easier to say what this program does than to explain how it doesit. The
andyssroutines smulate the behavior of the cache. Insrumentation callsthis
cache smulator every time an ingruction reads from or writes to memory.

To amulate the operation of the ingtruction cache, normaly we' d need to add
insrumentation every time an indruction is executed. However, thanks to
ATtaCK’s detic analys's, we can smply add instrumentation at the head of every
basic block. Within the block, we know that every ingruction will be executed in
order, S0 we can figure out ahead of time what the cache behavior will be.

Every time the smulator determines that the cache is hit or missed, it increments
the appropriate counter for the procedure that caused the cache activity. Actualy,
it d be a smple matter to increase the resolution, so that it logs the cache
performance of every ingruction.

Asde from using the frame- at- a-time collection mechanism that we saw aready
with PS2Counter, the instrumentation tool doesn’t do anything out of the

ordinary. All the heavy lifting is done in the andlys's routines—understand those
and you understand the program. But to understand those, you need to understand
how the cache works.

Analysis Tools Construction Kit

07-174

The PlayStation 2 Caches

Instruction Cache

The PlayStation 2 has two caches, a 16K one for instructions and an 8K one for
data. For now, let’sjust look at the instruction cache—the data cache works
exactly the same, gpart from being read/write instead of read-only.

The indruction cache has 128 “lines,” each of which congsts of two “ways’; each
way holds 64 bytes. Thisadds up to 128 x 2 x 64, or 16K. Y ou can think of away
asasmdl buffer of super-fast RAM. When the EE executes indructions, it first
checksto see whether the ingtruction isin a cache way. If it is, it reads from that
rather than memory. Otherwise, it loads 16 indructions into the way and

continues.

So what are lines? Lines are how the EE organizes the ways. Imagine if you were
writing software to smulate a cache—not coincidentally, we re about to! How
would you check to see whether an address was dready cached? The dow way
would be to store, for each way, the address it’s caching, and smply scan the list
of 256 ways to see whether the requested address was there. That might be good
enough for software, but it’ swildly impracticd in hardware.

Instead, the EE organizes the waysinto an array of 128 pairs of ways. It then
indexes this array by shifting the address right six bits (dividing it by 64) and
ANDIng the result with 127. What this meansisthat a given address will aways
be found in one of the two ways of a specific cacheling, if it'sto be found in the
cecheat dl.

This aso means that two addresses can both expect to occupy the same cache
line. For example, the addresses 0x 100EE00 and 0x16BCE00 can both occupy just
oneline, line 56. That's where the ways come into play: If way O of line 56

dready holds 0x100EE00, then 0x16BCE00 will get stored in way 1. If both ways
arefull, then the line least-recently filled will be reused.

The Data Cache

As mentioned, the data cache is very smilar to the ingtruction cache. (Almost asiif
they planned it that way!) The data cache hasjust 64 lines, ill of two 64-byte
ways each. Data lines are indexed by shifting right 6 bits and then ANDing the
result with 63.

Just like the ingtruction cache, the data cache stores the mapped address, a“least-
recently-used flag” bit and 64 bytes of data for each way. Since the data cacheis
read/write, it so stores adirty flag bit. The dirty flag indicates that the contents
of the cache way do not match the contents of the mapped RAM.

When would this hgppen? Basicadly anytime you write. When you write to
memory, the cache first makes sure the destination is mapped to afull cache way,
asfor aread. Then it writes the data to the cache, but not the mapped RAM.
Instead it just marks the way as dirty. Aslong as that way remains mapped to the
same address, it remains dirty. When that way gets mapped to a different address
due to aread or write miss, however, the way is written to memory, in an

Analysis Tools Construction Kit

07-175

operation known as “writeback.” If your app never misses the cache again, the
datawill never get written to RAM. (But how would you know?)

Oh, and in case you're wondering: The scraichpad RAM isn't cached, becauseit’s
just asfast as the cache. (It's essentidly part of the cache.) When you consider
that the scratchpad is twice as big as the entire data cache, you can understand
why it's so important to use the scratchpad properly. And in addition to the
scratchpad RAM, you can lock individua ways in the data cache to turn them into
64-byte blocks of scratchpad RAM. But both those topics are beyond the scope of
thislesson.

PS2Cache

So armed with our new understanding of how the cache operates, let’ s see how
PS2Cache smulates this behavior.

Analysis

Open Examples\PS2Cache\Ana\ps2cache and.mcp (by default located in
C\Program FilesMetrowerks\ATtaCK for PS2\). Within that, open
ps2cache andl.c.

Once we're padt the boilerplate, the first thing we seeisaway _t dructure. Thisis
the data Structure that smulates a single way. We described each way as holding
the address, a hit-flag for whether it was used recently and 64 bytes of data. Well,
we're just concerned with the cache' s overall behavior—we re not actudly
caching anything—so we don't have the 64 bytes of data. But we' ve got the
address, called pf n_v, and the LRF hit-flag, r . (The labels make sense if you read
the hardware documentation for the cache. Don't try to understand them right
NOW.)

In addition, there' s the aforementioned dirty-flag bit for the data cache, aswell as
ahit to indicate whether away islocked. Thedirty flag isused for smulating
writebacks; the locked flag is ignored, since this version of the tool doesn't
smulate cache locking. Both flags are ignored for the ingtruction cache, of course,
but for convenience and clarity we use the same way structure for each cache.

These gtructures are grouped together into a two-eement array, which then
becomesthel i ne_t sructure. The cachesthemsdves, | Cache and DCache, are
arrays of these structures (with 128 and 64 € ements respectively).

Next we ve got the usua stuff any analysistool needs: a pointer to aresults

buffer, and the same countdown and enable variables that we saw in PS2Counter
back in Lesson 05. If you don’t remember that program’ s details, you should look
there for more information.

Thelnitialize() function works as advertised, setting up the variables and
clearing both cache arrays. Notice that pf n_v isset to 1. Pf n_v actudly holdsthe
address shifted |eft one bit. The bottommost bit is zero if the addressisvaid—

i.e, if theway isfilled with data—or 1 if the way isempty. The actud PlayStation

Analysis Tools Construction Kit

07-176

2 cache usss avery smilar but not identica mechanism, which we don’t have to
worry about—thisis a perfectly fine amulation of that sysem.

TheEnabl e() and Di sabl e() routines are cut-and- paste from PS2Counter. The
important thing to remember isthat our andysis routines will check the boolean
variadble Collect; if that isfdse, then we don't gather any data.

Thisisthelast I'm going to talk about Col | ect ; you'll seeit in every other
routine, but I’'m going to act as though it' sawaystrue. Let mejust say this The
cache amulation runs dl thetime, regardless of Col | ect , asit must to be
accurate. Col | ect just determines whether we're actualy going to measure the
results of the smulation thisframe.

DWite(), DRead() andI Ref () Smulate the behavior of datawrites, data reads
and indruction reeds, respectively. Let’slook at them in the reverse order, since
that' s actudly how they make the most sense.

IRef()

Thisroutine receives a procedure 1D (for indexing the results buffer), the address
of the firg referenced ingruction shifted right six bits, and the number of
ingructions that will be referenced in thisway. Normdly that number is 16, but if
abasic block ends before the end of the 16-ingtruction way, the number will be
less.

Aspromised, the Cache array isindexed by shifting the referenced address right
gx bitsand ANDing it againgt 127 (Ox7F). The insrumentation tool handlesthe
shift-right for us, so dl we need to do isthe AND.

The “tag” isthe address, stored in the format used by the cacheitself. Each cache
way stores not the full mapped address, but just that address's page frame
number. (Page frame numbers are abbreviated PFN. Our way structure holds the
PFN, combined with the “vadid flag” bit, in the dructure pf n_v. | told you the
name made sensel)

Page frame numbers are addresses shifted right 12 bits. The address has dready
been shifted right 6 bits, so we just need to shift it another six bitsto get the PFN.
Toturnit into avaue suitable for soring in pf n_v, we then shift it Ieft one bit—
remember, away isvdid if pf n_v’slowermost bit is zero.

Now we get the cache line for thisindex, and check both that lin€ s ways to see
whether either oneis @) valid and b) maps the referenced address. If so, we
increment this procedure’ s “referenced ingtruction” counter by the number of
indructionsin thisway.

If not, though, things get interesting. First, we log amiss, and increment the
reference counter anyway—after dl, the instructions get referenced regardless of
whether the cache misses, it just takes longer.

Now we need to figure out which cache way will get filled. The confusing
datement ! ((pline->w 0] .pfn_v | pline->w1].pfn_v) & 1) bascdly
evauates as 1 if the bottommost bits of both ways pf n_v membersare 0, or 0
otherwise. That is, if both ways are vdid, then we have to choose between them

Analysis Tools Construction Kit 07-177

based on LRF flags. If only oneis vdid, however, then the non-vaid way gets
filled.

If both ways are vaid, then we XOR the two LRF flags. Thisis exactly how the
hardware doesit. A way’s LRF flag gets inverted whenever that way isfilled. The
upshot of al this which you can readily work out for yoursdf if you wish, isthat
ways get filled in the following order: O, then 1, then overwrite O, then overwrite

1, and so forth.

Next, ther bit (the LRF flag) gets XORed againg 1, which invertsit aswe just
saw. Findly, the tag gets stored in the way to indicate that thisway is now filled
with that particular address.

The data cache uses two functions, one to Smulate reads and the other writes.

DRead()

The data cache works like the ingtruction cache, except that it can be both read
and written, and has only 64 lines. So, not DRead() worksjust likel Ref (),
except that it makes provison for writeback events, and it indexes the 64-dement
DCache aray.

Another difference is that we have to shift the address right six bits (which is what
SzwWAY_LOG is defined as) oursalves to get the index, and 12 bitsto get the PFN.
Thisis because we get this address from ATtaCK’s ATCK_EFFADDR dynamic
argument, and there€’ sno way to tel ATtaCK to shift the vaue right six bits for

us. Thiswill become clear when we look &t the instrumentation code.

If either way matches our tag, we chak up adata read without amiss and
continue. Otherwise, we chak up the read and the miss, and then smulate the
cache-fill behavior: Figure out which way is going to befilled, then flip its LRF

bit and store the tag. Since this cache is writable, we have to check to see whether
theway isdirty. If it is, then we log awriteback event. In either case, it’snot dirty
anymore, so we clear the dirty hit.

Y ou might be wondering why this function doesn’'t look morelike | Ref () .
Frankly, I wonder that too—there' s no actud difference in the result of the two
functions, but | Ref () iswritten inadunkier form. | guessit was written first and
never got cleaned up.

DWrite()

Fortunately, Dw i t e() looksexactly like DRead() , with one exception: On a
cache hit, we mark the specified way as dirty, to reflect the results of the write
operation.

And that' s the cache smulator! Next we Il look at the instrumentation code.

Instrumentation

Most of the instrumentation discussion in PS2Counter gpplies here, too, because
the two tools are very smilar. They differ in the innermost loops, of course.

Analysis Tools Construction Kit

07-178

The firgt intruction in each basic block, and every 16™ instruction theresfter, gets
ingrumented with acdl to | Ref () . Remember that there are 16 indructionsin a
cache way. The instrumentation cal passes the procedure ID, the ingtruction’s
address shifted right six bits, and the number of ingructions to load into this
line—either 16 or the number remaining in the basic block, whichever islower.

If an indruction isaload, then it gets instrumented with acal to DRead() . If the
indruction is a gore, then it getsingrumented with acal tobw i t e() . Both
routines take the procedure 1D and the dynamic argument ATCK_EFFADDR. AS
discussed, ther€' s no way to shift this argument right Six bits herein the
ingrumentation tool, so we have to let the analysis routine do that (at the cost of a
few run-time cycles).

If the ingtruction has the CACHE opcode, it’s one of the specid EE indtructions that
manipulate the cache—for ingtance, thisis how cache lines are locked. This
verson of thetool doesn’t smulate cache locking, and truth betold it san
extremely advanced procedure. If you need to work with cache locking, then you
undergtand it well enough to modify this tool yoursf!

And that' sit for instrumentation.

Download, Execution and Output

Thisredly doeswork just like PS2Counter, so refer there for more information.
Aswith that toal, this one only gathers a single frame of data at atime. Unlike
that tool, though, the anadlys's code il has plenty of work to do even when not
collecting data—otherwise the cache smulation would become invdid.

Ironically, the cache smulation instrumentation wrecks the application’s own
cache performance. So what' s being smulated is how the cache would be
behaving, if only there weren't dl these function calls every 16 ingtructions and at
every load and store. When you try out this tool, you'll see that it Sgnificantly
degrades your gpplication’s performance. Thistoal is not onethat you'll be
running dl thetime!

At any rate, when the user hitSENTER, asingle frame of dataiis collected and
reported. By now you can figure out what's going on here without my help. The
typica output looks like this:

Analysis Tools Construction Kit

07-179

I-Count I-Misse

]

SetParticlePosition 1374808
erateUiewingHatrix 984

137180

I-Count

SetParticlePosition
CreateliewingMatrix
main
SetUiewPozition

139514

Fig. 07-03: PS2Cache Output

Interpretation

Thisone’'ssmple. “Cache misses are bad, m’'kay?’ Some cache misses are
necessary, but that shouldn’t stop you from doing everything in your power to
avoid dl of them.

Y ou avoid 1$ misses by tightening your code so that your key loops span as few
cache lines as possible. In the Blow sample program analyzed above, for instance,
you'll note that there are no 1$ misses—the entire render loop fits within the

cache. So the more compact your code the better, which is just another good
reason to move operations out to the vector units rather than handling them in the
MIPS core. The other way to redly squeeze your code down isto move your tight
inner loops into assembly, and use inlining to eiminate branches.

Beyond that, watch for coincidences where your code happens to jump among
routines separated by 8K—you'll wind up missing the cache because of the way
ways share lines, even if the code in question is smdler than 16K. Thisis
something that a specid-purpose ATtaCK tool could detect, even just using static
andyss. See “Improvement,” below, for adiscussion of that idea.

Asfor D$ misses, the only way to avoid them is to organize your data or your
dgorithmsin a cache-friendly manner. Let's say you have an Al pathfinding
routine that frequently scans your map data, which is stored asa 2D array with
rows more than 64 bytes across. Traversing thisgrid verticadly will cause acache
miss every row. Instead, organize the map into chunks, where aparticular cdll’s
neighbors are kept within 64 bytes of that cell. Or move the map to scratchpad
RAM—that's exactly the kind of thing it' s therefor.

Improvement

As mentioned, thistool doesn’t smulate cache locking. It's also not smart enough
to tell that an addressiis in the scratchpad and thus won't be cached. The former is
hard to fix; the latter is easy—just test the address to see whether it’sin the range
0x70000000 t0 0x70003FFF. In either case, if you need this feature, you

Analysis Tools Construction Kit

07-180

understand how to add it—ATtaCK is certainly much easer than PlayStation 2
optimization!

As mentioned above, coincidence can cause you to blow your ingruction cache
inadvertently. It wouldn’t be hard to write a gtatic tool to scan for this. For each
procedure, determine the range of addresses it cdls, shifting them right by six bits
and ANDing them with 127 as the cache does. Then look for any function thet
cdls another with overlgpping cache lines. Smply by rearranging the order of
functionsin your C source file, you can probably break up these overlapping
pars.

If you're redlly serioudy using PS2Cache, you need amore detailed output than it
currently supports. Right now it gives a good overview of the entire gpplication,
at a per-procedure level. A more detalled verson would dlow you to specify alist
of procedures for which to provide an instruction-level profile, so that you know
exactly which ingructions are blowing the cache. Again, if you need it, then

you' re advanced enough to write it yoursalf.

That’s All, Folks!

And with that, we ve reached the end of the course. | hope I’ ve given you the
confidence and inspiration to write your own ATtaCK tools. These sample tools
arenice, and give you agood head start on some common anaysis tasks, but you
won't tap into the red power of ATtaCK until you start devel oping custom tools
that target your specific code problems.

Thanks for coming, and good luck with your programd!

How To Contact Metrowerks

U.SA. and Internationa | Metrowerks Corporation
9801 Metric Blvd., Suite #100
Austin, TX 78758

U.SA.

World Wide Web | http:/Mmww.metrowerks.com/games
Games Support Team | ps2_support@metrowerks.com
Sdes, Marketing, & Licendng | games@metrowerks.com
Phone | 800-377-5416
Fax | 512-997-4901

Analysis Tools Construction Kit 07-181

Quiz Answer Key

Quiz Lesson 01

1. Thelessons are the most important part of this course. What' s the second
most important part of the course?
B Theexample programs. Correct. The second most important part of the courseisthe

wide range of sample programs, which demonstrate practical solutionsto ATtaCK
problems.

2. Trueor fdse Regresson testing is the most common method of detecting
code errors.
B False. Correct. Regression testing is very powerful, but many programs, especially
games, aren’t suited for it without substantial work. The most common method of

detecting code errorsis human testing (playtesting). Y ou can develop ATtaCK tools
to assist these testers, in addition to writing tools for programmers.

3. Wha' sthe difference between usng ATtaCK and smply writing andys's
code directly into your program, for instance by using asserts?

B ATtaCK workswith the binary image rather than the source code. Correct. The
differenceisthat A TtaCK can add analysis code to your program’s binary executable
image, without disrupting your source files or requiring you to recompile.

4. Which team member should develop ATtaCK toals, and why?
C A senior programmer, because analysis and optimization are critical. Correct. Code

analysisisan important task that deserves the attention of senior programmers.

5. Trueor fdse ATtaCK andyss codeiswritten and compiled just like any
other PlayStation 2 program.

B False. Correct. ATtaCK analysis codeis substantially different from normal
PlayStation 2 applications. For example, it uses different project settings, it can’t
access the normal Sony libraries, and it doesn’t have amain() function.

Quiz Lesson 02
1. How many ingructions are in each basic block?

D. None of the above. Correct. A basic block consists of a sequence of instructions that
do not change the flow of control—in other words, that do not contain any branches
or calls. One block could contain anywhere from one to millions of instructions.

2. When ATtaCK iterates through al the procedures in an image, which of
the following will appear inthe lig?

C. Both. Correct. ATtaCK searches the program for function calls, but also reads the
symbol table. Thus, proceduresthat are never called show up aswell as procedures
that do not have symbols.

3. Which of thefollowing ismost likely to be alegitimate ATtaCK function?

Analysis Tools Construction Kit 07-182

B. atck_iprog_close(atck_iprog_t*).Correct. Thisfunction beginswith
atck_, has an object name asits second word, and takes a handle to that object asits
first argument. It could easily be legitimate—in fact, it is!

4. You have two ingruction-object handles, X and Y. Comparing them, you
learn that X islessthan Y. What do you now know about these two
ingtructions?

D. XandY represent two different instructions. Correct. ATtaCK’ s handle management
is completely opaque; thereis nothing you can learn from the relative values of two
handles. However, if X islessthan Y, then X and Y are not equal. Since all handles
to the same object will be the same, you know that X and Y are not the same
instruction.

5. Trueor fds= You cannot write ATtaCK instrumentation toolsin C++.

B. False. Correct. Instrumentation tools can be written in C++, and indeed there are
many advantages to doing so. Analysis code cannot be writtenin C++.

6. You can use aprocedure handle to create an iterator for three of these
object types. Which one can not be iterated across in a procedure?

A. Instructions. Correct. Procedures can create iteratorsfor their basic blocks, entry
points and call sites. Only basic blocks can create instruction iterators.

7. Trueor fase Theladt ingruction in abasic block will dways be some
kind of branch, cdl or return.

B. False. Correct. On the EE, theinstruction immediately following a branch executes
while the branch is being resolved. The second-to-last instruction in abasic block
will always be some kind of branch, but the last instruction could be almost
anything.

8. Which of the following objects needs to be released after use?

B. Image. Correct. Y ou only need to release image objects, using
atck_ing_release() oratck_ing_ wite().

9. Of the following, which can appear multiple times within abasic block?

D. None of the above. Correct. Basic blocks are defined as sequences of instructions
that are always executed together. Thus, they are only entered at the beginning, and
can only be exited at the end.

10. True or false: Before ending your ATtaCK session, you must free any
grings returned from methods like atck _appname().

B. False. Correct. The strings returned from ATtaCK methods last aslong as their
parent objects do—for programs, that’s until the programis closed, while for
everything else that’ suntil the containing imageis released. In no case should you
try to free these pointers yourself.

Pop Quiz Lesson 03
Bef or ePr oc(06)
Bef or eEnt (0600)
Bef or eBB(0600)
Bef or el nst (060000) / Afterlnst(060000)

Analysis Tools Construction Kit 07-183

Bef or el nst (060001) / Afterlnst(060001)
Bef or el nst (060002) / Afterlnst(060002)
Af t er BB(0600)

Bef or eBB(0601)

Entry point instrumentation only gets called if the procedure is actually entered
there.

Bef orel nst (060100) / Afterlnst(060100)
Bef orel nst (060101) / Afterlnst(060101)
Bef orel nst (060102) / Afterlnst(060102)
Bef orel nst (060103) / Afterlnst(060103)
Bef orel nst (060104) / Afterlnst(060104)
Bef or el nst (060105) / Afterlnst(060105)
The call instruction finishes before the call itself takes place.
Bef or el nst (060106) / Afterlnst(060106)
The instruction in the delay slot also happens before the call.
Af t er BB(0601)
A basic-block ends when its last instruction ends, before the call takes place.
Bef oreCal | (0600)
Bef or eProc(1E)
After Proc(1E)
AfterCall (0600)
Bef or eBB(0602)
Bef orel nst (060200) / Afterlnst(060200)
Bef orel nst (060201) / Afterlnst(060201)
Bef or el nst (060202) / Afterlnst(060202)
Af t er BB(0602)
After Proc(06)

Quiz Lesson 03
1. Which of thefallowing is an advantage that sampling has over
ingrumentation?

B. Convenience. Correct. Sampling is more convenient, because the target application
doesn’t need to be modified at all. However, sampling is generally slower, less
accurate and less selective.

2. Trueor fase Ingrumentation can be added both before and after entry
points.
B. False. Correct. Instrumentation may only be added before an entry point.

Analysis Tools Construction Kit 07-184

3. Trueor fase Cdlsadded to the same object execute in the order they
were added.

A. True. Correct. Calls added to the same location through two different objects, on the
other hand, execute “ bottom up”—for example, a call before an entry point happens
before any calls before the basic block that entry point begins.

4. Trueor fase Indrumentation added after acal Steis guaranteed to be
executed.

B. False. Correct. Some procedures never return to the caller. Use
atck_cal | _returns() tocheck for these procedures.

5. Which of thefallowing lines of codeisnot required in ATtaCK analyss
code?

B. #i ncl ude <at ckt ar gps2. h>. Correct. This header file contains constants

needed on the PlayStation 2. Many analysis routines won't need these constants at
al.

6. Trueor fas=e Anayssroutines are unable to communicate with the host
directly.

A. True. Correct. The only way analysis routines can send data to the host is by writing it
to memory, which the host can then read.

7. Which of thefollowing isavalid return type for an analysis routine?

C. voi d. Correct. Analysisroutines are alwaysvoi d functions.

8. Trueor fdse You haveto be careful when ingrumenting branches on the
PlayStation 2, to avoid displacing the indruction in the “branch dday”’ daot.

B. False Correct. ATtaCK handles all implementation details like thisfor you—you
never have to worry about instrumentation code breaking your program.

Quiz Lesson 04
1. Wherecanyoufind thefilereferredto by <syscf g>?

C. Thedirectory containingat ck. | i b. Correct. The default system configuration file
syscfg.txt isfoundinthel i b\ ps2 subdirectory, which also contains the
ATtaCK library files.

2. Trueor fdse An ATtaCK tool can monitor the status of the target system
without using an event handler.

A. True. Correct. While event handlers are probably the best way to monitor the target,
you can also poll itusingat ck_stat us().

3. Trueor fase The event-handler asgumentsdev| D and pr ogl D must be
pointers to structures.

B. False. Correct. ATtaCK does nothing with these arguments other than remember
them and pass them to the event handler. They can contain any value at all, aslong
asitcanbecastintoavoi d*.

4. Trueor false: The ATtaCK config-file system only lets you read, not write, files.

A. True. Correct. However, the config file format is simple text, so you can easily create
your own functions to write out thesefiles.

Analysis Tools Construction Kit 07-185

5. Trueor fdse Theonly way to createanew i pr og handeisby cdling
at ck_iopen().
B. False. Correct. Youasogetanew i pr og handleback from
atck_finish wite().

6. Which of the following isnot an option expected by at ck_connect () ?

D. devl D. Correct. devl D isan argument expected by at ck_connect (), while
therest are optionsthat at ck_connect () expectsto find in the configuration file.

7. Which of the following functions may not be called from within an event
handler?

A. atck_stop() . Correct. Event handlers may not call functions that will themselves
generate events, such asat ck_wai t () andat ck_stop().atck_kill () and
at ck_conti nue(), although they affect the target’ s execution, do not generate
events.

8. When an gpplication haslocked amutex usng at ckt arg_| ock(),
how can the gpplication be halted or interrupted?

C. By thehost stopping thetarget withat ck_ki I | () . Correct. When an application
has locked a mutex, it may not be halted or interrupted except by at ck_ki Il ().

9. Trueor fase Every member in an ATtaCK structure declaration needsto be named.

B. False. Correct. ATtaCK only cares about the structure’ s layout, and so ATtaCK
declarations do not permit you to name members.

10. True or fase: Y ou are not required to use the specia ATtaCK memory-
dlocation methodssuch asat ck_mal | oc() .

A. True. Correct. These methods exist for your convenience only and are purely
optional. However, if you allocate memory with them, you must free that memory
withat ck_free(),notthenormal Cruntimef ree() function.

Quiz 05: Designing Analysis Tools
1. Trueor fdse The only purpose of anadysistoolsis optimization.

B. Fase Correct. Analysistools are useful for all aspects of debugging, of which
optimization isjust one part.

2. Trueor fase Changing your agorithm is often the best way to fix not
only performance problems but bugs of al kinds.

A. True. Correct. You should try to fix bugs at as high alevel as possible.
3. Which of thefdllowing is dways feature of awdl-designed ATtaCK tool?
C. Simplicity. Correct. ATtaCK tools should be focused, lightweight and simple.

4. Trueor fase The best place to analyze your datais on the target, in the
andyssroutines.

B. False. Correct. Notwithstanding the name, analysis routines should be as streamlined
as possible, only gathering the minimum data required. Put the code that actually
processes the data on the host.

Analysis Tools Construction Kit 07-186

5. Trueor fase It'seasiest and safest for analysis routinesto read registers
directly, rather than relying on ATtaCK to passthem in.

B. False. Correct. Not only isit easier to use ATtaCK to read the registers, but it also
ensures that the value doesn’t change in between the instrumented instruction and the
analysis routine.

6. Which of the following isavdid ATtaCK andyds-routine declaration on
the PlayStation 2?

A. “Get Target (val addr)” Correct. Keywords such as regv64 and valaddr warn
ATtaCK to expect adynamic argument flag. The instrumentation call itself tells
ATtaCK which dynamic argumentsto use.

7. Which of the following isavalid placeto use ATCK_EFFADDR?

C. atck_inst_call before().Correct. ATCK_EFFADDR isonly valid with
instrumentation added before an instruction using atck_inst_callbefore().

8. Trueor fdse You mus dways use atck_ingt_isdlowed() to verify that a
dynamic argument is safe before trying to instrument an ingruction with it.

B. False. Correct. Many dynamic arguments, such asregisters, are always safe with
instructions and never need to be checked.

9. Trueor fdse Anaddressisal that's required to completely identify any
indruction in a program.

B. False. Correct. Since each image hasits own address space, you must have both an
address and an image ID to identify an instruction.

10. Which of the following does a MIPS gpplication (that is, a PlayStation 2
game) store on the stack?

B. Local variables. Correct. Function arguments and return addresses go in special
registers, while local variables go on the stack.

Analysis Tools Construction Kit 07-187

