Graphical User Interface programming with SQUIRREL

Reference manual of the User Interface Add-Ons

Version 0.71
March 11, 2001

GUL bUf.7df?78

Kirilla http://www.kirilla.com

Graphical User Interface programming with SQUIRREL
Copyright (©1999-2001 Kirilla. All Rights Reserved

No part of this manual may be reproduced or transmitted in any form, electronic or mechanical, for any purpose
without the prior written agreement of Kirilla .

The contents of this document are furnished for informational use only; they are subject to change without notice
and should not be understood as a commitment by Kirilla . Kirilla has tried to make the information in this
document as accurate and reliable as possible, but assume no liability for errors or omissions.

Kirilla will revise often the software described in this document and reserves the right to make such changes
without notification.

Author: Jean-Louis Villecroze
Email: jlv@kirilla.com
Web site: http://www.kirilla.com

This document was prepared with IATEX 2¢.
TeXis a trademark of the American Mathematical Society

Contents

About this Document

1

Basis of GUI Building

11
1.2
1.3
14
1.5
1.6
1.7
1.8

HelloWorld
Running GUI Programs e
Adding respond to the useractions
Event Driving programmingo o e
Widgetsas parents e e e
Gluingwidgets e
Widget alignment withinaparent.
Expandingwidgets

The Window

21

2.2
2.3
24
25

Typesof WINdow
2.1.1 Window Look (Or Type) o o
212 Window Feel
2.1.3 Subset & Application.
CreatingaWindow e
Methods
Configuration
HOOKS o e

The Widgets

3.1

3.2

3.3

Thewidget
311 Methods e
3.1.2 Configuration
313 HOOKS . . . o
314 Flags . . . o
Thewidget Banner e e e e
3.2.1 Construction
322 Methods e
3.23 Configuration
324 HOOKS e e
325 Example
Thewidget BarberPole
3.3.1 Construction
332 Methods

[N

H
NN N O Www

[

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.3.3 Configuration 42

334 HOOKS . . . o 42
335 Example 43
Thewidget BOX o o o o e e 44
3.4.1 Construction 44
342 Methods 44
3.4.3 Configuration 44
344 HOOKS o e 45
345 Example ... 45
Thewidget Button 47
351 Construction 47
352 Methods e 47
353 Configuration L 47
354 HOOKS o o 48
355 Example 48
Thewidget CheckBoX e 51
3.6.1 Construction 51
3.6.2 Methods 51
3.6.3 Configuration 51
3.6.4 HOOKS 51
365 Example 52
Thewidget ColorControl 56
3.7.1 Construction 56
3.7.2 Methods e 56
3.7.3 Configuration L 56
374 HOOKS . . . o o 57
375 Example 57
Thewidget DropList e e e 59
3.8.1 Construction 59
3.8.2 Methods 59
3.8.3 Configuration 59
384 HOOKS o o 59
3.85 Example 60
Thewidget ENtry o e e e e 61
3.9.1 Construction 61
3.9.2 Methods 61
3.93 Configuration L 62
3.9.4 HOOKS 63
3.95 Example 63
Thewidget Frame e 65
3.10.1 Construction 65
3.10.2 Methods 65
3.10.3 Configuration 65
3104 HOOKS . . . o o o 65
3.10.5 Example 66
Thewidgets MenuBarand Menu 68
3111 Construction e e 68
3.11.2 Methods 68

3.11.3 Configuration 70

3114 HOOKS . . . o 70
3115 Example 70
312 Thewidget Memo o 73
3.12.1 Construction e 73
3122 Methods 73
3.12.3 Configuration L 74
3124 HOOKS . . . o o 74
3125 Example 75
3.13 Thewidget Odometer 77
3.13.1 Construction e 77
3.13.2 Methods 77
3.13.3 Configuration 77
3134 HOOKS o e 77
3135 Example 77
3.14 Thewidget RadioButton 79
3141 Construction e 79
3142 Methods o e 79
3.14.3 Configuration 79
3144 HOOKS . . . o o e 79
3145 Example 80
3.15 Thewidget SimpleList 82
3.15.1 Construction 82
3.15.2 Methods 82
3.15.3 Configuration 82
3154 HOOKS . . . o o o 83
3155 Example 83
3.16 Thewidget StatusBar 85
3.16.1 Construction 85
3.16.2 Methods e 85
3.16.3 Configuration 85
3.16.4 HOOKS o o 86
3.16.5 Example 86
317 Thewidget Text o o o 87
3.17.1 Construction 87
3.17.2 Methods e 87
3.17.3 Configuration 87
317.4 HOOKS . . . o o 87
3175 Example . .. 88
3.18 Thewidget VIewer e 89
3.18.1 Construction 89
3182 Methods 89
3.18.3 Configuration 90
3184 HOOKS . . . o o o 90
3185 Example 90

4 Supports 91

A1 FONtS . . L e e e 91
411 PrimitiveS e e 91
412 FontobjeCt 92
413 AlLittleexample e 94

4.2 Color List e e 95

43 PrimitiVES o e 95

5 Release notes 99

5.1 Release 0.71 e e e 99
511 Changes. o o i i i 99
5.1.2 AddItions e 99
51.3 Bugsfixed 100

5.2 Release 0.68 e 100
521 NOteS e 100
522 Changes. o o 100
5.2.3 AddItions e 100
524 Bugsfixed 100

5.3 Release 0.67 e 100
531 NOtes e e e e 100
532 Changes. o o 100
5.3.3 AddItioNs e 100
534 Bugsfixed 101

54 Release 0.64 e e 101
541 NOEES e e e 101
542 Changes. o o 101
543 AddItions L e 101
544 Bugsfixed 101

5,5 Release 0.60 e e 101
551 NOtES e e 101
552 Changes. o i i 101
5,53 Additions e 101
55.4 Bugsfixed 102

5.6 Release 0.54 e 102
5.6.1 NOTES e e e 102
56.2 Changes. i i i 102
5.6.3 AddItions e e 102
56.4 Bugsfixed 102

5.7 Release 0.49 e e e 102
571 NOtes e e e 102
572 Changes. o o 102
5.7.3 AddItioNs e 102
574 Bugsfixed 103

5.8 Release 0.46 e e 103
5.8.1 NOtes e e e 103
582 Changes. o o 103
5,83 AddItions e 103
584 Bugsfixed 103

Index 104

List of Tables

11

21
2.2
2.3
24
2.5

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24

41

The 4 different methodsto runa SQUIRREL SCript o i 5
Window’s LOOK o e e 23
Window’s Feel 24
Window’s Flags o e e 25
Window’s Configuration e 31
Window’s HOOKS o e e 32
Widget’s common configuration 35
WIdQEt'S CUISOIS . . . o o o o o e e e e e e e e e 35
Widget’'s HOOKS o o 38
Widget’s Flags 39
Banner’s configuration L 41
Box’s configuration e e e 45
Button’s configuration L e 47
Button’s hooks 48
CheckBox’s configuration 51
CheckBox’shooks 52
ColorControl’s configuration e 56
ColorControl’shooks e 57
DropList’sconfiguration e 59
DropList’shooks o 59
Entry’s configuration 62
Entry’shooks 63
Frame’sconfiguration 66
Menu’s configuration e e e e e 70
Memo’s configuration 75
RadioButton’s configuration 79
RadioButton’shooks 80
SimpleList’s hooks 83
StatusBar’s configuration 86
Viewer'sdisplay styles 89
Fontencoding 93

Vi

List of Figures

11
1.2
13
14
15
1.6
1.7
1.8
1.9
1.10
111
1.12
1.13
1.14
1.15
1.16
1.17
1.18
1.19
1.20
121
1.22
1.23
1.24
1.25
1.26

21
2.2
2.3

3.1
3.2
3.3
3.4
3.5
3.6

HelloWorld e 4
Hello World witha Textwidget e ettt 5
HelloWorld resized 6
HelloWorld withaframe 7
3widgetsinaframe. e 8
AfterthesecondcalltoGlue 8
Withtwo frames. e 9
Using 3D Looking frame e 9
Afterresizing of thewindow L 10
Gluingonthebottom e 10
Gluing on the bottom after inverting the widgetsorder. 11
Bottom gluing after resizing of thewindow 11
Right gluing after resizing of thewindow 12
Differentsize of widgets 12
Center horizontal alignment fora framewidget 13
Window resized with a horizontal alignment 14
Both widgets horizontally aligned and the window isresized 14
Both frame aligned vertically and horizontally when the window isresized 15
A frame centered vertically and horizontally 16
All frames centered vertically and horizontally 17
Differentsize of widgets 17
Frame expanded horizontally 18
Frame expanded horizontally and window resized 18
Frame expanded vertically and horizontally 19
Both frameexpanded 19
Text widget centered inan expandedframe oo 20
Notclosablewindow 26
Modal window notresizable 26
Simple window without zoombutton 27
Bannerupdated 41
Spining BarberPole 43
Boxwithatextlabel 45
Box withawidgetlabel 46
Unsizedbuttons 48
Expandedbuttons 49

vii

3.7

3.8

3.9

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30
3.31

41

Fixed buttons 49

Fixed buttons with a fixed-sizefont 50
Several CheckBOX e 53
CheckBox withadefaultstate 54
Buttoninvoked L 54
CheckBox’s state updated by the variable’svaluechange 55
AColorControl e 57
AColorControl e 58
ADIopLiSt 60
AEntrywidget 63
A Entry widget updated by its linked variable o o 64
A Frame widget with a bordered relief 66
A Frame widget witharaisedrelief 67
A Frame widget with a lowered relief 67
A Frame widget withouta border 67
Asimple MenuBarwithMenu 71
Menu width submenu 72
Memoexample 76
The Odometerwidget e 78
RadioButton example 81
Single selection ina SimpleList L 84
Multiple selection ina SimpleList 84
AStatusBarexample e e 86
Asimple Textexample e e 88
The Viewer widget 90
Browsing theinstalled font 95

viii

About this Document

This document covers the following SQUIRREL Add-Ons:

e GUI (Main Add-on)

e Imaging (Image viewer widget)

e Widgets (Extra set of widgets)
SQUIRREL is a programming language from the Logo family for the Be operating system (BeQOS).
You may consult the SQUIRREL Developer’s Guide for a complete coverage of this language. We will

assume in this document a good previous knowledge of SQUIRREL . Exposure to the Be Developer’s
Guide (a.k.a BeBook) from the Be Development Team could also be very useful.

At this time, neither the GUI Add-On nor this document is perfect. We would appreciate notification
of any errors you may find.

This manual is divided into four parts:

Basis of GUI Building introduces all the GUI concepts

The Window discusses the Window in depth

The Widgets lists and describes all the widgets available

Supports lists and describes several useful primitives and font objects
Release notes contains pertinent information on the releases

It should be understood that several features are still to be added in upcoming releases, in particular,
more widgets.

We have used in this document several documentation conventions which are :

o All code elements are presented in a distinct font like print *"foo

e Primitive syntax is usually a mix of code element and italic font. The part in italic is always the
input of the primitive.

e Primitive inputs use special kind of symbols :

— (word) indicate that the input is optional
— word | number indicate that the input could be either a word or a number

— (word)+ indicate that several words could be inputted to the primitive, but at least one is
required.

— (word)* indicate that several words could be inputted to the primitive, but that one is op-
tional.

A big Mahalo to Susan Banh* and Ulrich ”scholly” Scholz for reading this document and correcting
most of it english mistakes.

Please enjoy reading this manual and building GUI with SQUIRREL !

Jean-Louis, March 11, 2001

land al my love

Chapter 1

Basis of GUI Building

Like most of the recent (or less) scripting languages like Tcl or Python, SQUIRREL disposes of a
special tool for building Graphical User Interfaces, in much the same way as Tk has been added to Tcl
or Python.

This Add-On to SQUIRREL is a warper to the Be Interface Kit and was written for the SQUIRREL
programming language. This Add-On makes it easy to create widgets and frameworks to be placed on
a window.

This manual concentrates on the features of the GUI Add-On of SQUIRREL rather than on the Be
Interface Kit. You may consult the Be Developer Guide for a complete coverage of this Kit as well as
other Kits.

Graphical User Interfaces are rather difficult to put on static paper as they are dynamic. We encourage
you to run each example found in this chapter to get a better feeling for them. Experimenting with
this Add-On and SQUIRREL is also a good way to learn GUI programming. Installing other packages
other than SQUIRREL is not required since this Add-on is part of the standard SQUIRREL distribution.

Let’s start now by a set of small examples to illustrate the very basics of GUI building with SQUIRREL .

1.1 Hello World

Traditionally, the first example on whatever computer language is always this one, with or without
GUI. As shown below, it takes four lines of SQUIRREL to produce the code :

Example 1

make "hello Window "titled “Squirrel” [100 100]
make "‘button Button “Hello World !~

Glue :hello "top [] :button

$hello~show

A oo NN -

1.2. RUNNING GUI PROGRAMS

That’s all ... no inheritance and no class. It’s that simple. A window is created when the code is
executed and it’s look like :

5

Hello World |

Figure 1.1: Hello World

Even a trivial example like this Hello World demonstrates a great deal about the common steps in GUI
programming :

1. Create a window
2. Create a widget
3. Arrange the widget on a parent (a window here)

4. Brins the window to the screen

Once the window is created, SQUIRREL will wait for it to be destroyed and will process all the user-
generated events. When the window appears, the widgets will be displayed only after being glued
(placed) first on the window or on a parent widget.

The Glue primitive used to place the button on the window is the geometry manager which controls
how the widgets are arranged in a parent widget (or a window). The first input of this primitive is al-
ways the parent followed by the side the child is to be placed. In this particular case, it would be the top
side. The third input is the vertical and horizontal padding. It’s a space in pixels which will separate
the widgets from the side of the parent or the other widgets glued on the parent. It’s always defined as a
list of two integers. If the list is empty, no padding is used. The last input is the widget that needs to be
glued on the parent. It could be more than one widget by adding other objects as input to the primitive.

Widget gluing is how Squirrel arranges widgets in a parent. 1t’s a very easy and popular way of placing
the widgets.

1.2 Running GUI Programs
There are different ways to run a SQUIRREL GUI program, like with any other script:

You may choose the method which fits best your needs. The use of Package files within a Shell script
is the most common.

CHAPTER 1. BASIS OF GUI BUILDING

1.3. ADDING RESPOND TO THE USER ACTIONS

Methods Descriptions Command
Program file | Passing the program file as argument to | % Squirrel.dr4 myfile.sqi
SQUIRREL
Package file | Loading the program file from SQUIRREL | load myfile.sqi
Shell script | Adding #!/path/Squirrel .5as first | % myFile.sqi
line of the program file
Interactively | Typing the code in the SQUIRREL console | @> make "hello Window

Table 1.1: The 4 different methods to run a SQUIRREL script

1.3 Adding respond to the user actions

The example 1 features a button, which when the user clicks on it, could perform an operation. We
didn’t use this possibility in the example so we could have simply written our Hello World example
using a simple Text widget :

Example 2

make "hello Window "titled ”Squirrel” [100 100]
make "text Text “Hello World !’

Glue :hello "top [] :text

$hello~show

B CS I\ R

The result is:

Hello Wiorld |

Figure 1.2: Hello World with a Text widget

The window that we have created inherited its size from when the widgets were glued on. In our two
examples, the size of the window is not the same as the size of the button and the text are not the same.
The way the window was created allows the user to resize it by using the bottom right corner of the
border as shown in the next figure:

CHAPTER 1. BASIS OF GUI BUILDING

1.4. EVENT DRIVING PROGRAMMING

© 00O NOoO Ol b WN -

Squirrel

Hello vlorld |

Figure 1.3: Hello World resized

If we want our Example 1 to perform an action when the button is pressed by the user, we will have
to insert a function to the primitive Hook a callback function (also called : hook) which can then be
triggered by the user.

Example 3

to exit :src
$hello™quit
end

make "hello Window "titled ”Squirrel” [100 100]
make "button Button “Hello World !~

Hook :button "invoked "exit

Glue :hello "top [] :button

$hello~show

The function ex it will ask the window to quit, which then terminates the application when the button
will be pressed. Take note of the inputs of the primitive Hook on line 7 : first we have the widget to
register a hook for, followed by the name of the event, and then the name of the function to execute.
A further in depth discussion will be given on the Hook primitive and callbacks.

Hook functions can be any kind of function or primitive. However, their inputs must match the number
expected by SQUIRREL . In the Example 3 the exit function had one argument which was filled when
the hook was called by SQUIRREL to the calling widget. In this example, the calling widget was the
button.

1.4 Event Driving programming

SQUIRREL works in much the same way as most GUI programming languages do such as Tcl or Del-
phi. It’s event driven. The coding of an interface starts with the creation of the widget, followed by
the registration of the action to perform, when events trigger them.

Programming a GUI is a combination of event driven programming and sequential programming.
Events trigger functions which in turn execute sequential instructions or generate another event, which
will triggers events and so on ...

CHAPTER 1. BASIS OF GUI BUILDING

1.5. WIDGETSASPARENTS

1.5 Widgets as parents

As mentioned earlier, a widget could also be a parent to other widgets. Not all the widgets could
assume this role. The widget Frame demonstrates this possibility in the next example:

Example 4

make "hello Window "titled ”Squirrel” [100 100]
make 'frame Frame

make "text Text “Hello World !’

Glue :frame "top [] :text

Glue :hello "top [] :frame

$hello~show

o OB WD

This example builds a frame widget and glues on it a simple text widget displaying the string Hel 1o
World !~. The next figure illustrates this :

Helle Yiltorld !

Figure 1.4: Hello World with a frame

The window offers pretty much the same feature except it’s a bit larger than in the Example 2. As well,
the background of the text widget is now gray. All the changes are due to the frame widget, which by
default bares a gray color. This is the color inherited by other widgets that get glued on.

Let’s now try to glue three widgets on a frame, a text and two buttons:

Example 5

make "‘win Window "“titled >Squirrel” [100 100]
make "f Frame "flatened

make "text Text “How\’s the weather out there ?~
make bl Button ”Good’

make "'b2 Button ’Bad’

Glue :f "top []1 :-text

Glue :f "left [] :bl

Glue :f "right [] :b2

Glue :win "top [] :f

$win~show

© 00O ~NO Ol b WDN -

=
o

This example creates three widgets, stores them in the variable text, bl and b2 and glues them on
the frame. Since we want a special layout for each widget, we need to issue three calls to the primitive
Glue in order to glue each widget where we want:

CHAPTER 1. BASIS OF GUI BUILDING

1.6. GLUING WIDGETS

1

Squirrel |

How's the weather out there
Good

Figure 1.5: 3 widgets in a frame

1.6 Gluing widgets

The layout of the widgets in the previous example could appear a bit surprising but it’s actually what
we have asked for. The geometry manager of SQUIRREL is working sequentially in the order given to
the widget. In this example the widget - text will be glued first, followed by the button b1 and then
=b2. When :b1 is glued on the frame, the text widget is already there and so the geometry manager
would place the button on the left of anything already glued:

1

Squirrel |

How's the weather out there ?
Gond

Figure 1.6: After the second call to Glue

If we wanted to have the two buttons side-by-side below the text, we should have put the buttons on a
new frame and glued it on the frame with the text widget like that shown in the next example :

Example 6

make "win Window ""titled ”Squirrel” [100 100]
make "‘frame Frame

make "buttons Frame

make "'text Text ’How\’s the weather out there ?~
make bl Button ”Good’

make b2 Button ’Bad’

Glue :frame "top [] :text

Glue :buttons "left [] :bl

Glue :buttons "right [] :b2

Glue :win "top [] :frame :buttons

$win~show

© 00N OB~ WD -

[
- O

The new frame zbuttons is holding the two button widgets. This frame is glued in the same Glue
call than the first frame used (holding the text widget) but following it so glued below the : frame
frame.

Using frames is the best way to achieve what you want. Divide and conquer is the motto of the
successful gluing strategy. We could have also given a 3D appearance to our button frame by using
one of the Frame widget options:

CHAPTER 1. BASIS OF GUI BUILDING

1.6. GLUING WIDGETS

squirrel |

How's the weather out there 7

Food | Ead

Figure 1.7: With two frames

Example 7

make "win Window ""titled ”Squirrel” [100 100]
make "‘frame Frame

make "buttons Frame "raised

make "'text Text ’How\’s the weather out there ?~
make bl Button ”Good’

make b2 Button ’Bad’

Glue :frame "top [] :text

Glue :buttons "left [] :bl

Glue :buttons "right [] :b2

Glue :win "top [] :frame :buttons

$win~show

© 00 N OB~ WD -

[
- O

The frame widget will be discussed later but it supports several 3D Looks like the raised look used in
this example:

Squirrel |
How's the weather out there 7

Food | Ead

Figure 1.8: Using 3D Looking frame

When the user resizes the window (if he’s allowed to), the geometry manager will change the position
and the size of the widgets according to their configurations and to what is possible. If we try on the
Example 7, we will get :

The geometry manager is aware of only four positions within aparent: top bottom left right.
When both frames are glued on top of the window, their positions will not be changed when we resize
the parent.

It may appear than in the Figure 1.7, that the two frames are left justified within the window. This is
always the default with the geometry manager. We will see later in another example how to change
this alignment but first let’s try to set our frames to always follow the bottom side of the window :

CHAPTER 1. BASIS OF GUI BUILDING

1.6. GLUING WIDGETS 10

Squirrel |

How's the weather sut fhere »

Gond J Bad

Figure 1.9: After resizing of the window

Example 8
1 make "win Window "titled ”Squirrel” [100 100]
2 make "frame Frame
3 make "buttons Frame ''raised
4 make "text Text “How\’s the weather out there ?~
5 make "bl Button “Good’
6 make "b2 Button *Bad’
7 Glue :frame "top [] :text
8 Glue :buttons "left [] :bl
9 Glue :buttons "right [] :b2
10 Glue :win "bottom [] :frame :buttons
11 $win~show

The change in Example 7 is located on line 10, within the Glue primitive which places the two frames
on the window. Instead of the top position we ask for the bottom position and the next Figure show
what’s happening :

Squirrel |

Good I Bad

How's the weather out there 7

Figure 1.10: Gluing on the bottom

The ordering of the Glue primitive in which the widgets are given as input will determine the way
the geometry manager will place them. When gluing on the bottom of a parent, the first widget will
always be the last widget, the closer to the bottom side of the parent. To place the buttons below the
text, we need to invert the widgets order as shown in the next example :

Example 9

CHAPTER 1. BASIS OF GUI BUILDING

11

1.6. GLUING WIDGETS

make
make
make
make
make
make
Glue
Glue
Glue
Glue

© 00 NO O &~ WN -

[
- O

$win™

"win Window "titled ’Squirrel” [100 100]
"frame Frame

"buttons Frame "'raised

"text Text *How\’s the weather out there ?’
"bl Button *Good’

"b2 Button ’Bad’

:frame "top [] :text

:buttons "left [] :bl

zbuttons "'right [] :b2

:win "bottom [] :buttons :frame

show

The window looks something like the Figure 7 :

Squirrel |

How's the weather out there 7

Gowd I Ead

Figure 1.11: Gluing on the bottom after inverting the widgets order

The difference between the two examples is apparent when the user resizes the window:

squirrel |

How's the weather out there 7

Food Ead

Figure 1.12: Bottom gluing after resizing of the window

The two frames now follow the bottom side of the parent as expected. We would have obtained similar
results if we had glued it on the right :

CHAPTER 1. BASIS OF GUI BUILDING

1.7. WIDGET ALIGNMENT WITHIN A PARENT 12

Squirrel

y , e ?
Sand _ Bod Hiw's fhe weather out theee

Figure 1.13: Right gluing after resizing of the window

1.7 Widget alignment within a parent

In our previous example, we were lucky. The size of the text widget was exactly the same size as
that of the button’s frame, which makes the window appear neat. Let’s try another string for our text
widget using a different button string:

Example 10

make
make
make
make
make
make
Glue
Glue
Glue
Glue

© 00 NO O &~ WN -

[
- O

$win™

"win Window ""titled ’Squirrel” [100 100]
"frame Frame

"buttons Frame "'raised

"text Text “Wanna skydiving now ?~
"bl Button ’1 rather not’

"b2 Button ’Let\’s go!”’

:frame "top [] :text

:buttons "left [] :bl

zbuttons "'right [] :b2

win "bottom [] :buttons :frame
show

Squirrel !
Vifanna skydiving now 7

I rather mot || Let's got! |

Figure 1.14: Different size of widgets

Two things don’t appear right in this window; the white rectangle on the right and the button size are
different. Let’s now try to fix one of the two problems. The Button widget description, described later,
will show how to make them the same size.

Each type of widget in SQUIRREL disposes some configurable settings after the creation of the widget.
The one currently of interest to us is the horizontal and vertical alignment. For our next example, we
are going to set the horizontal alignment :

CHAPTER 1. BASIS OF GUI BUILDING

13 1.7. WIDGET ALIGNMENT WITHIN A PARENT

Example 11

make "win Window ""titled ”Squirrel” [100 100]
make 'frame Frame

$frame~config "align.h "set "center
make '‘buttons Frame ''raised

make "text Text “Wanna skydiving now ?~
make '"'bl Button ’1 rather not’

make *'b2 Button “Let\’s go!”

Glue :frame "top [] :text

Glue :buttons "left [] :bl

Glue :buttons "right [] :b2

Glue :win "bottom [] :buttons :frame
$win~show

© 00 NOoO O b~ WD -

e
N R O

The only difference between this example and the previous is the new third line that calls the method
config on the object frame. This call sets the horizontal alignment to the center, which horizontally
centers the frame as shown in the next figure :

Squirrel
Wlanra skeydiving row ?

I rather ot Let's gal

Figure 1.15: Center horizontal alignment for a frame widget
What is happening when the user resizes the window ? The geometry manager should change the

position of each widget according to the gluing rules and the widget configurations. So if the window
is wider, our text frame should always be centered like shown in the next figure :

CHAPTER 1. BASIS OF GUI BUILDING

1.7. WIDGET ALIGNMENT WITHIN A PARENT

14

Squirrel I

Vlanna skydiving new *

I rather not Let's gu

Figure 1.16: Window resized with a horizontal alignment

Example 12

make "‘win Window "“titled >Squirrel” [100 100]
make *frame Frame

$frame~config "align.h "set "center
make "‘buttons Frame "‘raised
$buttons~config "align.h "set 'center
make 'text Text “Wanna skydiving now ?~
make "'bl Button ’1 rather not”

make ‘b2 Button “Let\’s go!”

Glue :frame "top [] :text

Glue :buttons "left [] :bl

Glue :buttons "right [] :b2

Glue :win "bottom [] :buttons :frame
$win~show

© 00O N O Ol b WD -

I S
W N P O

The same method config with the same input is used here. The result becomes nicer:

squirrel |

Wlanna skydiving now ?

I rather ot : Let's gal

Figure 1.17: Both widgets horizontally aligned and the window is resized

What about also centering the two frames vertically also ? It should definitely be nicer ? The next
example implements this solution :

Example 13

CHAPTER 1. BASIS OF GUI BUILDING

15 1.7. WIDGET ALIGNMENT WITHIN A PARENT
1 make "win Window "titled “Squirrel” [100 100]
2 make "frame Frame
3 $frame~config "align.h "set "center
4 S$frame~config "align.v "'set "center
5 make "buttons Frame "raised
6 $buttonsTconfig "align.h "set "center
7 $buttons~config "align.v "'set ''center
8 make ""text Text “Wanna skydiving now ?~
9 make "bl Button ’1 rather not’

10 make b2 Button ’Let\’s go!”’

11 Glue :frame "top [] :text

12 Glue :buttons "left [] :bl

13 Glue :buttons "right [] :b2

14 Glue :win "top [] :frame :buttons
15 $win~show

Two lines have been added (line 4 and 7) to set the configuration of the two frame widgets for the ver-
tical alignment to be centered. We have also changed the gluing position of the frames on the window
so that only the top position will be accepted for vertical alignment.

Let’s now see what’s happening to the widget when the user is resizing the window :
Squirrel ;

Vilarnd sk diving now 7

I ratker rat Let's gol

Figure 1.18: Both frame aligned vertically and horizontally when the window is resized

It’s not quite what we were expecting. Although both widgets are horizontally centered, the vertical
alignment is not correct. It’s actually due to a limitation of the current version of the geometry man-
ager. This problem will be fixed in future releases. What we were expecting was to have the two
frames side by side in the middle of the window.

A working implementation would be to create a frame containing both frames, and then to align this
frame in the center, vertically and then horizontally. The next example demonstrates this possibility :

Example 14

1 make "win Window "titled *Squirrel” [100 100]

CHAPTER 1. BASIS OF GUI BUILDING

1.7. WIDGET ALIGNMENT WITHIN A PARENT

16

2 make "‘container Frame

3 $container~config "align.h "set "center
4 $container—config "align.v "set 'center
5 make "frame Frame

6 make "buttons Frame "raised

7 make "text Text ’Wanna skydiving now ?~
8 make "bl Button ’I rather not’

9 make "b2 Button “Let\’s go!’

10 Glue :frame "top [] :text

11 Glue :buttons "left [] :bl

12 Glue :buttons "right [] :b2

13 Glue :container "top [] :frame :buttons
14 Glue :win "top [] :container

15 $win~show

A new frame widget has been created and stored in the variable container, and its configuration
has been set to be always centered both vertically and horizontally. The two widget frames used
previously has been glued on this new frame.

Squirrel i

Witanra skydiving row *

[rather rat I Liet's gol

Figure 1.19: A frame centered vertically and horizontally

The result is now what we were expecting earlier, although we could have also set the text widget to
be centered within its parent. We would have then obtained this nicer window :

CHAPTER 1. BASIS OF GUI BUILDING

17 1.8. EXPANDING WIDGETS

Squirrel]

Vilarma skydiving row 7

I rather not Let's ga! |

Figure 1.20: All frames centered vertically and horizontally

1.8 Expanding widgets

Recall the Example 10 which was building the window:

Squirrel |

Vifanna skydiving now 7

I rather mot || Let's got! |

Figure 1.21: Different size of widgets

We could have the text frame expand itself to cover the white rectangle just by using an option from
the frame:

Example 15

make "‘win Window "titled *Squirrel” [100 100]
make 'frame Frame

$frame~config "expand.x "set true

make "‘buttons Frame "‘raised

make "text Text “Wanna skydiving now ?~
make '"'bl Button ’1 rather not’

make ''b2 Button “Let\’s go!”

Glue :frame "top [] :text

Glue :buttons "left [] :bl

Glue :buttons "right [] :b2

Glue :win "bottom [] :buttons :frame
$win~show

© 00 ~NO Ol b WDN -

Tl
N = O

The difference between Example 10 and this example is the third line that we have added which set
the horizontal expanding mode of the frame to true. This means that the frame could expand itself.
We could check the next figure to see if the result is correct:

CHAPTER 1. BASIS OF GUI BUILDING

1.8. EXPANDING WIDGETS 18

Squirrel |

Vifanna skydiving now 7

I rather mot || Let's got! |

Figure 1.22: Frame expanded horizontally
Squirrel !

Vilanna skydiving now 7

I rather mot || Let's got |

Figure 1.23: Frame expanded horizontally and window resized

What’s happening now when the user resizes the window ?

The frame has correctly expanded its width with respect to the new window width. We could have
also configure the text frame to expand its size vertically as the widget is glued on the bottom of the
window:

Example 16

make *"‘win Window "“titled >Squirrel” [100 100]
make 'frame Frame

$frame~config "expand.x "set true
$frame~config "expand.y "'set true

make "buttons Frame "‘raised

make 'text Text “Wanna skydiving now ?~
make "'bl Button ’1 rather not”

make *'b2 Button “Let\’s go!”

Glue :frame "top [] :text

Glue :buttons "left [] :bl

Glue :buttons "right [] :b2

Glue :win "bottom [] :buttons :frame
$win~show

© 00 N O Ol b WD -

I Y
w N PO

We add a new line (line 4) setting to the value true to configure the frame and give it an expanding
possibility in the vertical direction(expand .y) The window looks like this when the user resizes it:

We could now also expand the button frame for a better look :

Example 17

CHAPTER 1. BASIS OF GUI BUILDING

19

1.8. EXPANDING WIDGETS

© 00 ~NOoO Ol b WD -

e S Y =
A W NP O

Squirrel |

Wilarma skydiving now 7

I rather mot Let's ga!

Figure 1.24: Frame expanded vertically and horizontally

make *‘win Window "titled *Squirrel” [100 100]
make 'frame Frame

$frame~config "expand.x "set true
$Fframe~config "expand.y "'set true

make "‘buttons Frame "‘raised
$buttons~config "expand.x ''set true
make ''text Text “Wanna skydiving now ?~
make "'bl Button ’1 rather not”

make "'b2 Button “Let\’s go!~’

Glue :frame "top [] :text

Glue :buttons "left [] :bl

Glue :buttons "right [] :b2

Glue :win "bottom [] :buttons :frame
$win~show

Itis not necessary to set the expand . y property of the button’s frame for this frame is always between

the text frame and the bottom side of the window. When resized by the user, the window will appear
as:

squirrel |

Vilanma skydiving now ?

I rather not | Let's gaol

Figure 1.25: Both frame expanded

Notice the position of the button. One is on the left and the other is on the right due to the gluing
configuration for the buttons.

CHAPTER 1. BASIS OF GUI BUILDING

1.8. EXPANDING WIDGETS

To complete this set of simple examples of SQUIRREL GUI capabilities, let’s simply set the text widget
to be always centered within its parent frame:

Example 18
1 make "win Window "titled “Squirrel” [100 100]
2 make "frame Frame
3 S$frame~config "expand.x ''set true
4 S$frame~config "expand.y ''set true
5 make "buttons Frame "raised
6 $buttonsTconfig "expand.x ''set true
7 make "text Text *Wanna skydiving now ?~
8 S$text config "align.v "set "center
9 S$text config "align.h "set '"center
10 make "bl Button ’l rather not’
11 make "b2 Button ’Let\’s go!~’
12 Glue :frame "top [] :text
13 Glue :buttons "left [] :bl
14 Glue :buttons "right [] :b2
15 Glue :win "bottom [] :buttons :frame
16 $win~show

Squirrel !

Wiltanna skydivieg now ?

I rather not Let's ga!

Figure 1.26: Text widget centered in an expanded frame

CHAPTER 1. BASIS OF GUI BUILDING

Chapter 2

The Window

The top-level container in SQUIRREL is the Window. This widget is derived from the BWindow class
from the Be Interface Kit. This chapter provides a complete reference to this object.

2.1 Types of Window
The Window in BeOS could bare several looks and feels, with each one giving the window a different
behavior. When creating a window, it’s possible to specify the type of window, look or feel. The type

is actually a shortcut for a certain look and feel. According to the BeBook (BeOS development guide)
we have devised the following looks and feels.

2.1.1 Window Look (or Type)

The following table shows and describes the difference between all the possible looks :

Look Description Example

"bordered The window have a border, no title
table and can’t be moved, resized or
closed by the user

Continue on next page

21

2.1. TYPESOF WINDOW

22

Look
Continuing ...

Description

| Example

""document

The window have a border and a
title tab with a zoom and iconify
buttons. The window may be re-
sized by the user by using the right-
bottom corner tab (also called: re-
size corner). The gray tab around
the window frame could be used to
move the window.

"floating

The window has a thinner border
than the previous look and a smaller
title. This look is usually used as
a member window of an applica-
tion. The resize corner (bottom-
right) has been replaced by a more
simple corner allowing the user to
resize the window

Squirrel

"modal

The window has a thick border and
a simple resize corner but no title
tab. This window disables access
to any other window of the applica-
tion when shown on the screen. The
window can be closed by the user

Continue on next page

CHAPTER 2. THE WINDOW

23

2.1. TYPESOF WINDOW

2.1.2 Window Feel

Look
Continuing ...

Description

| Example

""no.bordered

The window has no title tab, no bor-
der, and no resize corner. The user
can close the window. (The red bor-
der in the picture is in fact part of
the screen background image; it has
been left to show the window which
is all white)

“titled

The window has a border, a title
tab with a zoom and iconify button.
The window may be resized by the
user by using a simple resize cor-
ner. The gray tab around the win-
dow frame could be used to move
the window

Table 2.1: Window’s Look

The feel of a window determines a window’s behavior relative to other windows of the same applica-

tion.

CHAPTER 2. THE WINDOW

2.2. CREATING A WINDOW

24

Name Description
"floating.all The window will float on top of any other
window of the application of its subset.
"floating.app The window will float on top of any other
window of the application of its subset.
The window will only be visible when one
of the windows in the application is active.
"floating.subset | The window will float on top of any other
window of the application of its subset.
The window will only be visible when one
of the windows in the subset is active.
"modal .all When on screen, the window will block the
activity of all other window of the applica-
tions and will be present on every screen.
""modal .app When on screen, the window will block the
activity of all other window of the applica-
tions and will be present on every screen.
The window will be visible only if one
window of the application is visible.
""modal . subset When on screen, the window will block the
activity of all other window of the applica-
tions and will be present on every screen.
The window will be visible only if another
window of the application or subset is vis-
ible.
"normal The window will not float or be modal.
It’s the default feel of the window
of type : "titled , "document,
""no.bordered and ""bordered.

Table 2.2: Window’s Feel

2.1.3 Subset & Application
The look and feel of a window introduces the notion of subsets and applications. By default, every
window created in an application is part of this application. But it’s possible to create within this

application several subsets of a window. Being part of a subset will only affect the modal and floating
windows.

2.2 Creating a window

As mentioned in the first chapter, creating a window in SQUIRREL is done by calling the Window
primitive. Although using this primitive is simple, several options could be inputs to the primitive in
order to change the behavior of the window.

The syntax of the Window primitive is :

CHAPTER 2. THE WINDOW

2.2. CREATING A WINDOW

Window word | list string list (word)*

The first input could be either a word or a list. It describes the look and feel of the window. When a
word is given, it will be taken as the type (defined mix of Look and Feel) of the window. A list will
be seen as the Look and Feel of the window and so must have two words as elements.

The second input is a string (or a word) which will be used as the title of the window. Window must
have a title even if there’s no title tab.

The third input is a list of two numbers which supplies the position on the screen where the window
must be displayed. The first element of the list is the x-axis and the second element of the list is the
y-axis.

The other input to the primitive will be seen (if they exist) as a flag to the window, describing what the
user will be allowed to do on the window, such as resizing or moving. The next table describes all the
flags:

Name Description

""accept.first.click | The window will receive a mouse click when the window is not the
active window, otherwise the window will be activated when the user
clicks on it. The click will not be received by the widget which the user
has clicked.

"not.closable The window will not be closable by the user. The title tab will not
display the usual closing button.

"not.h.resizable The window will not be horizontally resizable by the user.

"not.minimizable The window will not be minimizable by the user (put in the DeskBar).
Double clicking on the title tab will not minimize the window.

'not.movable The user will not be able to move the window around. Although, it will
be possible to put the window on another screen.
'not.resizable The window will not be resizable at all by the user. Neither vertically

nor horizontally. Note that the two gray lines on the right bottom corner
which indicate where to drag the window border for resizing.

"not.v.resizable The window will not be horizontally resizable by the user.

"not.zoomable The user will not be able to zoom (maximize) the window.

Table 2.3: Window’s Flags
Let’s now look at some examples of window creation :
Example 1

1 make "win Window "titled "Test [200 100] "not.closable
2 $win~show

The window is created with the type titled and will not be closable by the user as shown on the next
figure :

Example 2

CHAPTER 2. THE WINDOW

2.3. METHODS

26

Tezt

Figure 2.1: Not closable window

1 make "win Window "modal "'Question [200 100] "not.resizable
2 $win~show

The modal window will have no title table and will block all other windows of the application.

Figure 2.2: Modal window not resizable

Example 3

1 make "win Window "document ""Question [200 100] "not.zoomable
2 $win"show

2.3 Methods

When using the ability of any SQUIRREL object to call methods, a window has several primitives
which are accessible only to the window.

activate

$window activate

CHAPTER 2. THE WINDOW

27 2.3. METHODS

Question

Figure 2.3: Simple window without zoom button

Make the window the active window.

add.to.subset
$window add.to.subset window

Add a window given as input to the window’s subset.

bounds
$window bounds

Output the bounds of the window as a list of four numbers (left-top right-bottom).

center

$window center word (list)

Set or get the center of the window. When the first input is the word *'get, the method output a list
that contain the coordinates on the screen of the center of the window. If the input is "*set, the method

need a second input that must be a list of two numbers. The window then move on the screen to center
itself on those coordinates.

close
$window close

Close the window. If the window is the last window of the application, the application will be termi-
nated. This method has the same effect than the Quit method.

deactivate

$window deactivate

CHAPTER 2. THE WINDOW

2.3. METHODS

28

If the window was the active window, the window will lose its active status.

enable
$window~enable boolean

If the input is true, all the widgets will be enabled to the user. If the input is Fal se, all the widgets
will be disabled and the user will not be able to interact with them.

frame

$window frame

Output the frame of the window as a list of four numbers.
hide

$window™ hide

The window is removed from the screen but not destroyed. It is hidden from the user.

is.active
$window™is.active

Output true if the window is the active window, false if not.

is.front
$window™is. front

Output true if the window is the front most window on the screen, false if not.

is.hidden

$window™is_hidden

Output true if the window is hidden, false if not.

minimize

$window minimize

The window is removed from the screen and placed on the DeskBar.

move.by

CHAPTER 2. THE WINDOW

2.3. METHODS

$window move.by [horizontal vertical]
Shift the position of the window by the value given horizontally and vertically. A positive value is

given for a shift right or a shift to the top. A negative value is given for a shift left or a shift to the
bottom.

move.to
$window move.to [x y]

The window is moved to a new position on the screen as given by the coordinates of the new left upper
corner of the window.

quit
$window quit
Close the window. If the window is the last window of the application, the application will be termi-

nated. Using the keyboard shortcut COMMAND-Q will have the same effect than calling this method.
If a menu use the same shortcut, the menu callback will NOT be executed.

reglue
$window™reglue

Restart the gluing of all the widgets of the window. Usually done when a widget had been removed or
resized within its parent.

rem.from.subset
$window rem.from.subset window

Remove a window given as input from the window’s subset.

resize.by
$window resize.by number number

Resize the window by the value given as inputs (width, height).

resize.to
$window resize.to number number

Resize the window to the value given as inputs (width, height).
show

CHAPTER 2. THE WINDOW

2.4. CONFIGURATION

30

$window show

The window is displayed on the screen. This method is used after the window has been hidden or
when the window has been created.

unmimimize
$window unminimize

The window is "unmimimized” from the desk bar and displayed on the screen. The method is the
reverse of minimize.

widgets
$window~widgets

Output a list of all the widgets glued on the window.

2.4 Configuration

One of the window’s methods allows one to set or get the window configuration. This method is
config and follows the syntax :

$window config "getword
or
$window config "set word thing

Using ""get as a first argument will retrieve the value for the specified configuration, given as the
second input. "*set will set the configuration to the value of the third input. The configuration of a
Window may be changed at anytime during the application’s lifetime.

One word about constraint and Iimit: By default, the constraint is set to ""auto. The
window will in this case not allow the user to resize the window smaller than the size that fit perfectly
the window contents. If this config is set to "'none, the user will be allowed to resize the window
however he want. In ""manual, the maximun and minimum size can be set by the script with the
config ""Iimit. This config take as third input the word ""max or "‘min wheter you want to set the
minimum size or the maximum.

CHAPTER 2. THE WINDOW

31

2.5. HOOKS

Item Description value
"constraint Window size constraint A valid word ("auto
"none "‘manual)
"defaultbutton | Button by default of the window. When the user | A button object is
hits the Enter key of the keyboard, the window is | needed as input to set
active and this button will be invoked.
"feel Feel of the window A valid word
"focus Widget of the window having the focus A widget object glued on
the window
"font Default font used by the widgets of the window A font object
"limit Size limit of the window A list of 2 integers
"look Look of the window A valid word
"pulserate How often the widget of the window will receive | An integer
the pulse event (in ms)
"title Title of the window A string or word
"'zoom Maximum size the window could take when the | A list of 2 integers
user zoom it (width and height)
Table 2.4: Window’s Configuration
2.5 Hooks

Like widgets, functions could be defined in SQUIRREL to serve as callbacks for events generated by
the user on the window. Those hooks could be used to perform several tasks according to the applica-

tion’s need.

The following table describes all the possible hooks.Note that the name of the callback function could

be anything.
Name Description Function prototype
enter The mouse pointer entersthe | to enter :win
window frame ; win is the window object
end
leave The mouse pointer leaves | to leave :win
the window frame ; win is the window object
end
maximize The window has been un- | to maximize :-win
minimized ; win is the window object
end
minimize The window has been mim- | to minimize :-win
imized (put in the Desk Bar) | ; win is the window object
end

Continue on next page

CHAPTER 2. THE WINDOW

2.5. HOOKS

32

Name | Description | Function prototype
Continuing ...
move The window has been | to move :win :-:Xx :y
moved within the screen /* win is the window object
x and y are the new coordinates
of the left-top corner of the win-
dow */
end
quit The window has been asked | to quit :win
to quit. The function should | ; win s the window object
return true if the window | end
must quit, False else
resize The window has been re- | to resize :win :w :h
sized by the user ; win is the window object
; w is the new width (integer)
; h is the new height (integer)
end
workspaceactivate | The workspace where the | to wsactivate :win :ws :status
window is, has become the | ; win is the window object
active workspace or has lost | ; ws are the workspace number (in-
this status teger)
; status is true when the workspace
is active, Talse else.
end
workspacechange | The window has been | to wschange :win :old :new
moved to another workspace | ; win is the window object
; old is the previous workspace
number
; new is the new workspace number
end
zoom The user has zoomed the | to zoom :win :X :y :w :h
window ; win is the window object
; X and y are the new left-top cor-
ner coordinate of the window
; w and h and the new width and
height
end

Table 2.5: Window’s Hooks

CHAPTER 2. THE WINDOW

Chapter 3

The Widgets

All the graphical elements of SQUIRREL called widgets are even with their differences of the same
type and share a number of common methods, configurations and hooks.

This version of the GUI Add-on contains twelve basic widgets. This number will increase with every
release of this Add-on.

3.1 The widget

Like a window, any widget will have a set of methods, configurations and hooks. This section de-
scribes what’s common to all widgets. We will evaluate the flags specified during the creation of a
widget, which allows us to invoke more behavior.

3.1.1 Methods

config
$widget config word word (thing)
Get or set the element of the configuration of the widget. The first input is a word which indicates the

configuration to access. The second input must be the word "*get or "'set. When setting a configura-
tion, a third input is requested, otherwise the method will output the current value of the configuration.

enable
$widget~enable boolean

Set if the widget must be enabled or disabled to the user’s action.
invalidate

33

3.1. THEWIDGET

34

$widgetTinvalidate

Force the redraw of the widget.

is.enable

$widgetTis.enable

Output true if the widget is enabled, false if not.

is.focus

$widgetTis.focus

Output true if the widget has the keyboard focus, false if not.

3.1.2 Configuration

Like for the window, using the method config allows us to change the configuration of the widget.

For the vertical alignment of a widget, the valid words are : ""top "‘center '‘bottom and for
the horizontal alignment there is : "left

center and "'right.

Configuration | Purpose Value
"align Vertical and Horizontal Alignment | two words describing the horizon-
of the widget within its parent tal and the vertical alignment. The
method will output a list of the
alignment when it gets the config-
uration
"align.v Vertical alignment of the widget | a valid word
within its parent
“align.h Horizontal alignment of the widget | a valid word
within its parent
""bgcolor Background color of the widget a list describing a color
"‘cursor Cursor to use for the widget a word
"expand Widget will expand its size both | two booleans describing the hori-
vertically and horizontally zontal and vertical expanding. The
method will output a list of the ex-
pansion when it gets the configura-
tion
"expand.x | Widgetwill expand its size horizon- | a boolean
tally
"expand.y | Widget will expand its size verti- | a boolean
cally
Continue on next page

CHAPTER 3. THE WIDGETS

3.1. THEWIDGET

Configuration | Purpose | Value
Continuing ...
"font Font of the widget a font object
"low.color | Low color of the widget a list describing a color
"high.color | High color of the widget a list describing a color
"pad Horizontal and vertical padding of | two numbers describing the hori-
the widget zontal and vertical padding. The
method will output a list of padding
when it gets the configuration
"pad.x Horizontal padding of the widget a number
"pad.y Vertical padding of the widget a number

Table 3.1: Widget’s common configuration

The widget cursor can be any of the following :

Name Cursor
‘arrow
‘‘cross

‘cut

"downarrow
"hand
"hcross
"hourglass
"ibeam
"leftarrow
"linkhand
"macwatch
"pencil
"rightarrow
"timer
“uparrow
*'zoom

7|« XH”

pell G R I & kg

Table 3.2: Widget’s cursors

3.1.3 Hooks

All the widgets in SQUIRREL could be set to handle events by using the Hook primitive. The following
table summarizes all the common hooks :

Name Description Function prototype

"activated | The window containing the | to activate :src
widget has been activatedby | ; src is the widget object
the user end

Continue on next page

CHAPTER 3. THE WIDGETS

3.1. THEWIDGET

36

Name | Description | Function prototype
Continuing ...
"attached | The widget has been at- | to attached :src :win
tached to a window (glued) ; Src is the widget object
; win is the window to which the wid-
get is attached
end
"detached | The widget has been de- | to detached :src :win
tached from a window | ; src is the widget object
(unglued) ; win is the window to which the wid-
get was attached
end
"draw The widget is drawn on- | to draw :src :rect
screen ; src is the widget object
; rect is a list of 4 numbers which
define the updated rectangle of the
widget
end
"drop The widget is the target of a | to drop :src :type :msg
drag and drop action ; Ssrc is the widget object
; type is the type of data dropped in
the widget : ‘"'simple "mime "archive
; msg is the message that hold the
data end
"entered | The mouse cursor has en- | to entered :src :X -y
tered the widget ; src is the widget object
; X and y is the coordinate of the
position where the cursor has entered
(in the widget coordinate system)
end
"exited The mouse cursor has exited | to exited :src :x :y
the widget ; Src is the widget object
; X and y is the coordinate of the
position where the cursor has left
(in the widget coordinate system)
end
"focused | The widget has became the | to focus :src :focus
widget having the keyboard | ; src is the widget object
focus on the window, or lost | ; focus is true if the widget has the
this status focus, false if it has lost it
end
Continue on next page

CHAPTER 3. THE WIDGETS

3.1. THEWIDGET

Name
Continuing ...

Description | Function prototype

"keydown | A key of the keyboard has | to keydown :src :mod :key :code

been pushed ; Src is the widget object

; mod is a word (or a list) describ-
ing the modifiers used by the user

; key is a string version of the key
; code is a serial code number for
the pressed key

end

"keyup A key of the keyboard has | to keyup :src :mod :key :code

been released ; Src is the widget object

; mod is a word (or a list) describ-
ing the modifiers used by the user

; key is a string version of the key
; code is a serial code number for
the released key

end

""'mousedown | A button of the mouse has | to mousedown :src :-mod :x =y :b

been clicked over the wid- | ; src is the widget object

get. mod is a word (or a list) describ-
ing the modifiers used by the user

; X and y is the coordinate where the
mouse was when the button was hit

; b is the button number (left = 1
.

end

""mouseup | A button of the mouse has | to mouseup :src :-mod :x :y :b

been released over the wid- | ; src is the widget object

get. ; mod is a word (or a list) describ-
ing the modifiers used by the user

; X and y is the coordinate where
the mouse was when the button was re-

leased
; b is the button number (left = 1
.
end
"moved The widget has been moved | to moved :src :x :y
within its parent ; Ssrc is the widget object

; X and y is the new coordinate of
the left top corner of the widget

end
"pulse The widget received a pulse | to pulse :src
from the window ; src is the widget object
end

Continue on next page

CHAPTER 3. THE WIDGETS

3.1. THEWIDGET

38

Name | Description
Continuing ...

Function prototype

"resized | The widget has been resized

within its parent.

to resized :src :w :h

; Src is the widget object

; w is the new width of the widget
; h Is the new height of the widget
end

Table 3.3: Widget’s Hooks

For the hook keydown, keyup and mousedown, the modifers used when the event occurs are the
words :

"left_shift
"right_shift
"left_control
"right_control
"left_option
"right_option
"leftalt
"rightalt

Note than the following hooks:

"entered
"exited
""focused
""invoked
"selected
""*changed

runs on their own thread when executed.

3.1.4 Flags

All widgets accept as a last input several words which describe some behavior. The following table
lists them all :

CHAPTER 3. THE WIDGETS

39

3.1. THEWIDGET

Name

Purpose

"navigable

The widget can become the focus widget of its window for a
keyboard event. (already the default by some widget)

"navigable.jump

Pressing Control-Tab on the widget will jump the focus to
another group of widgets set with the same flags

"pulsed

The widget should receive the pulse event from its window

Table 3.4: Widget’s Flags

CHAPTER 3. THE WIDGETS

3.2. THE WIDGET BANNER 40

3.2 The widget Banner

A ”"Banner” is a simple widget displaying a text linked to a variable. Since all the widgets are linked
to a variable, the variable modification will update the widget.

3.2.1 Construction

The primitive Banner is used to build a new Banner widget. Its syntax is :
Banner word word (list (words))

The first input word is the variable name given to the widget. If the variable doesn’t already exist, it
will be created. The second word is the justification for the text within the widget. It must be the word
:""center "leftor "right. The third input, if specified, is a list which indicates the size of the
widget in characters. This list has two elements : width and height. An empty list will be the same as
no list and the size of the widget will adapt to fit the size of the displayed text. All the inputs left are
the flags which may be specified. The primitive outputs the widget object.

3.2.2 Methods

The Banner widget has a few methods uncommon to all the widgets :

justify

$banner~justify word (word)

Set or get (according to the value of the first input : ""set or ""get) the text justification in the wid-

get. When setting a value, the second input must be one of the valid words : "*left *‘center or
"right.

text
$banner~text word (string | word)
Set or get (according to the value of the first input : "*set or "'get) the text displayed by the widget.

The second input could be a string or a word. The linked variable to the widget will have its value
changed if we set a new text to be displayed.

3.2.3 Configuration

Only one configuration is added to the Banner widget :

3.2.4 Hooks

The Banner widget has no more hooks than the common widget.

CHAPTER 3. THE WIDGETS

41 3.2. THE WIDGET BANNER

Configuration | Purpose Value
"variable | Setor get the linked variable of the | the name of the variable (a word)
widget

Table 3.5: Banner’s configuration

3.25 Example

Example 1

make "win Window ""titled ’Banner” [100 100]
make "'msg *Click on the button!”
make "widget Banner ''msg '‘center
make "‘button Button *The Button’
$button~config "expand.x "'set true
Hook :button "invoked {

make "'msg “You done it!”
}
Glue :win "top [] :widget :button
$win~show

© 00O N O Ol b WDN -

=
o

In this example, the linked variable is updated when the button is invoked. Lines 6 to 8 set the hook
for the button. Line 7 just sets a new value to the variable. The widget is updated at this moment:

Ba.. Ba..
Click om the button! You done if
The Butten The Butten

Figure 3.1: Banner updated

CHAPTER 3. THE WIDGETS

3.3. THE WIDGET BARBERPOLE

42

3.3 The widget BarberPole

A BarberPole is a widget that display a barberpole that can be started to stoped. Usually this widget
is used to show activity without knowing how long it’s gonna take.

3.3.1 Construction

The primitive BarberPole is used to build a new widget. Its syntax is :
BarberPole list (word)

The first input is a list of two number that indicate the size of the widget in pixel (with height). If a
second input is given, it must be the word **Ieft or ""'right. It indicate the direction the BarberPole
must run. By default it is left to right.

3.3.2 Methods

A BarberPole widget has two methods :
start

$barber~start

The method start the widget spinning.

stop
$barber~stop

The method stop the widget from spinning.

3.3.3 Configuration

This widget have nothing particular. To control the color of the barberpole, use high.color and
low.color.

3.3.4 Hooks

This widget doesn’t have any particular hook.

CHAPTER 3. THE WIDGETS

43

3.3. THE WIDGET BARBERPOLE

© 00 N O O B~ WN -

[S =
w N PO

3.3.5 Example

Example 2

make "MyWin Window "titled “BarberPole” [100 100] "not.closable
make "‘pole BarberPole [30 10]

$pole~config "high.color "set :Blue

Glue :-MyWin "top [] :pole

$MyWin~show

$pole~start
for ["1 1 2] {
wait 1
}
$pole~stop
SMyWin~Tquit
In this example, we create a simple Window with only a BarberPole in it, then we set it spinning and

we execute a loop that will take 2 seconds to complete, then we stop the the BarberPole and we ask
the Window to quit. :

Y

Figure 3.2: Spining BarberPole

CHAPTER 3. THE WIDGETS

3.4. THE WIDGET BOX

3.4 The widget Box

A "Box” is a container widget which draws a labeled border around its children. A Box has three
styles of border (""plain "Ffancy or "'none). The label drawn by the widget is usually text, but it
could also be another widget.

3.4.1 Construction

The primitive Box is used to build a new Box widget. Its syntax is :
Box word | widget (list (words))

The first input is the label of the Box; it could be either a string or a widget. The primitive accepts a
second and third input if needed. They are the size of the widget in a list in pixels (width and height)
and a set of the usual widget flags.

3.4.2 Methods

A Box widget has three methods :

reglue
$box"reglue

This primitive asks the geometry manager to glue all the widgets within the Box a second time. This
primitive is useful when a child from the Box is removed and new gluing is needed.

style
$box"style word (word)

Set or get (according to the value of the first input : ""set or ""get) the style of the border. When
setting a value, the second input must be one of the valid words : "'plain *"fancy or "'none.

widgets
$box~wigets

Output all the widgets glued on the Box.

3.4.3 Configuration

Only one configuration is added to the Box widget :

CHAPTER 3. THE WIDGETS

45

3.4. THEWIDGET BOX

o OB wWwN

~N o Ol WDN -

Configuration | Purpose Value
"label Set or get the label of the widget could be a word, a string or another
widget.
Table 3.6: Box’s configuration
3.4.4 Hooks

This widget has nothing particular.

3.45 Example

Example 3

make "win Window ""titled *Box”> [100 100]
make '‘box Box A Box’

make "frame Frame "flattened [50 50]

Glue :box "top [] :frame
Glue :win "top [] :box

$win~show

On line 3, we create a 50x50 pixel Frame widget. 1t’s used in this example to fill the Box widget.

& Box

Figure 3.3: Box with a text label

In the next example, we use a button to label the Box :

Example 4

make "win Window ""titled ’Banner” [100 100]
make ""label Button *Click me”
make "box Box :label

make "frame Frame "flattened [50 50]

Glue :box "top [] :frame
Glue :win "top [] :box

$win~show

The primitive Box on line 3 calls the button object instead of a simple string for labeling the Box.

CHAPTER 3. THE WIDGETS

3.4. THE WIDGET BOX

46

CHAPTER 3. THE WIDGETS

Figure 3.4: Box with a widget label

47

3.5. THEWIDGET BUTTON

3.5 The widget Button

This widget is a labeled button which executes a function or a block when clicked or operated with
the keyboard.

3.5.1 Construction

The primitive Button is used to build a new Button widget. Its syntax is :
Button word | string (list (words))

The first input is the label of the button. The primitive accepts optional second and third inputs. The
second input must be two integers, specifying the width and height of the button in characters. The
last input is the flags.

3.5.2 Methods
invoke
$button~invoke

Execute the hook from the event invoked by the button.

default
$button~default boolean

Make the button the default button for the window if the input is true, else the widget has lost this
status.

is.default
$button~is.default

Output true if the widget is the default button for the window, false otherwise.

3.5.3 Configuration

Only one configuration is added to the Button widget :

Configuration | Purpose Value
"label Set or get the label of the widget could be a word or a string.

Table 3.7: Button’s configuration

CHAPTER 3. THE WIDGETS

3.5. THE WIDGET BUTTON 48

Name Description Function prototype
"invoked | The button has been clicked | to invoked :src

; src is the wid-
get object

end

Table 3.8: Button’s hooks

3.5.4 Hooks
3.5.5 Example
Example 5

make "win Window "titled ’Button” [100 100]
make *'bl Button “Doing something’

make "'b2 Button “Doing nothing’

Glue :win "top [] :bl :b2

$win~show

OB~ W N

When the button’s label is not the same size as that in the example 5, the result is not very nice.

Butt .

Liaing samething

|
Laing nothing |

Figure 3.5: Unsized buttons

One solution that has already been shown in the first chapter is to set up the buttons to expand their
size to fill the empty place on the window. This is shown in the next example :

Example 6

make "win Window "titled ’Button” [100 100]
make *"'bl Button “Doing something’

make ‘b2 Button “Doing nothing”

$bl1 config "expand.x "set true

$b27config "expand.x "set true

Glue :win "top [] :bl :b2

$win~show

~NOo OB~ WN -

Line 4 and 5 set the expand . x of the two buttons.
Another solution is to fix the character’s width in both buttons :

Example 7

CHAPTER 3. THE WIDGETS

3.5. THEWIDGET BUTTON

Butt .

Luirug something |

Lizing ruathing |

Figure 3.6: Expanded buttons

make "win Window "titled ’Button” [100 100]
make ""bl Button “Doing something” [14 0]
make ''b2 Button “Doing nothing” [14 O]

Glue :win "top [] :bl :b2

$win~show

g B~ W DN P

On line 2 and 3 you will notice the second input to the primitive Button. This two element list
gives the width and height of the button. Here, the height is O for both buttons. This is interpreted by
SQUIRREL as a free dimension and will therefore be set by the geometry manager.

Butten ?

Licimg some thing

Liirig mothing

Figure 3.7: Fixed buttons

One of the problems with this solution is the difficulty getting the size of the right widget (as we can
see from the previous figure). We set the size to 14 characters but both of the buttons are bigger. This is
due to the fact that the font used is a TrueType font. If the font was a fixed size font like Monospac821,
we would have achieved a correct size for the button. This can be seen in the next example:

Example 8

1 Font.init

2 make "font Font “Monospac821 BT~

3 make "win Window "titled ’Button” [100 100]
4 S$win~config "font "set :font

5 make "bl Button “Doing something” [14 O]

6 make "b2 Button *Doing nothing” [14 0]

7 Glue :win "top [] :bl :b2

8 $win“show

Line 1 and 2 create a font using one of the system’s font Monospac821 BT. On line 4, we set this
font to the default font for the window.

CHAPTER 3. THE WIDGETS

3.5. THE WIDGET BUTTON

50

Doing something

|| Doimg rethdmg

Figure 3.8: Fixed buttons with a fixed-size font

Now the sizes of the buttons match 14 characters.

CHAPTER 3. THE WIDGETS

51

3.6. THEWIDGET CHECKBOX

3.6 The widget CheckBox

This widget is a labeled check widget. This widget changes its state (true or false) according to the
user’s actions : mouse clicks or keyboard stroke. This widget is linked to a variable which will be
updated when the state of the widget changes. In addition, an update for the variable will change the
widget’s state.

3.6.1 Construction

The primitive CheckBox is used to build a new CheckBox widget. Its syntax is :
CheckBox word | string word (list (words))

The first input (either a word or a string) is the label displayed by the widget. The second input is the
linked variable name. If the variable doesn’t already exist, it will be created. If specified, the following
inputs will be the size of the characters (two integers) and some flags.

3.6.2 Methods

invoke
$checkbox~invoke

Invoke the widget as though the widget has been clicked.

3.6.3 Configuration

A CheckBox widget has three specific configuration items :

Configuration | Purpose Value
"label Set or get the label of the widget could be a word or a string.
"value Set or get the state of the widget true or False
"variable | Setor get the linked variable of the | a word
widget

Table 3.9: CheckBox’s configuration

3.6.4 Hooks

CHAPTER 3. THE WIDGETS

3.6. THE WIDGET CHECKBOX 52

Name Description Function prototype
"invoked | The widget has been | to invoked :src :state
clicked ; Src is the widget object
; state is the state of the widget (true
or false)
end

Table 3.10: CheckBox’s hooks

3.6.5 Example

Example 9 allows the user to select several systems to be checked. When the user clicks on a button,
the checking will begin.

Example 9
1 make "win Window "titled *CheckBox” [100 100]
2 make "box Box “Check systems~’
3 make "cl CheckBox *Power” '‘power
4 make "c2 CheckBox *A/C” "ac
5 make "c3 CheckBox ~Computers” "‘computers
6 make ""c4 CheckBox ’Life Systems” "life
7 make "'c5 CheckBox ’Cryogenic Systems” '‘cryo
8 make "do Button ’Check now”
9 $do~config "expand.x "set true
10 Hook :do "invoked {
11 if zpower {
12 Question "warning [''Proceed "Cancel] >’ “Please confirm the power test.’
13 }
14 3}
15 Glue :box "top [] :cl :c2 :c3 :c4 :c5
16 Glue :win "top [] :box :do
17 $win~show

Lines 3 to 7 create all the CheckBox widgets. For each widget, we give a variable name. The variables
will be created and their value will be set to False by default. On line 12, we use the primitive
Question that still needs to be described in the next chapter. This primitive simply creates a message
window.

The next example shows how we could change the state of a CheckBox by changing the linked variable
value :

CHAPTER 3. THE WIDGETS

53 3.6. THE WIDGET CHECKBOX
Check systems
(¥ Power
| AR
(X Computers
(X Life Systems
L | Cryegenic Jystems
Check now
Figure 3.9: Several CheckBox
Example 10
1 make "win Window "titled “CheckBox” [100 100]
2 make "box Box “Check systems~”
3 make "life true
4 make "cl CheckBox “Power” '‘power
5 make "c2 CheckBox *A/C” '"ac
6 make ""c3 CheckBox ~Computers” "‘computers
7 make "c4 CheckBox ’Life Systems” "life
8 make "c5 CheckBox “Cryogenic Systems” '‘cryo
9 make "do Button *Check now~”
10 $do"config "expand.x ''set true
11 Hook :do "invoked {
12 1F -power {
13 1F (Question "warning [""Proceed ""Cancel] ”” ’Please confirm the power test.”) {
14 make "‘power false
15 3}
16 3}
17 3}
18 Glue :box "top [] :cl :c2 :c3 :c4 :c5
19 Glue :win "top [] :box :do
20 $win~show

CHAPTER 3. THE WIDGETS

3.6. THE WIDGET CHECKBOX

|

|

|

|
[T Computers
i ¥ Life Systems

: [T Cryegenic Systems
I

I

U

Figure 3.10: CheckBox with a default state

On line 3, we have set the variable 1ife to true. The widget c4 will be checked. The button do
will be invoked, if the user cancels the Power Systems test. The variable power will then be set to
false, and the widget will be updated :

sy stems
X Power
U as

Please confirm the power test.

T

Figure 3.11: Button invoked

CHAPTER 3. THE WIDGETS

55

3.6. THEWIDGET CHECKBOX

. CheekB ..

- Check systems
I— Fower

[ak

i_ Computers
% Life Sy stems

I_ Cryogenic ystems

Check now

Figure 3.12: CheckBox’s state updated by the variable’s value change

CHAPTER 3. THE WIDGETS

3.7. THEWIDGET COLORCONTROL

56

3.7 The widget ColorControl

This widget permits the user to pick a color by choosing the RGB components of the color. The widget
is linked to a variable. The available colors in this widget are functions of the screen configuration.

3.7.1 Construction

The primitive ColorControl is used to build a new ColorControl widget. Its syntax is :
ColorControl number number word

The first input is the number of cells to displayed by row. It should be either 4, 8, 16, 32 or 64. The
second input is the size of the cell. Both inputs will set the size of the widget. The last input is the
name of the linked variable.

The value of the variable will be a color list. It’s a list of three (or four) integers which describe the
color in RGB. The first element is red, the second is green and the third is blue. A fourth element
could be specified, and it would be the Alpha component of the color.

3.7.2 Methods

invoke
$colorcontrol~invoke

Invoke the widget as though the selected color has been changed by the user

3.7.3 Configuration

A ColorControl widget has four specific configuration items :

Configuration | Purpose Value
"cellside | Setor getthe size of the cell side a number
"layout Set or get the number of cell by row | the number 4 8 16 32 or 64

"value Set or get the state of the widget a color list
"variable | Setor get the linked variable of the | a word
widget

Table 3.11: ColorControl’s configuration

CHAPTER 3. THE WIDGETS

57 3.7. THEWIDGET COLORCONTROL

3.7.4 Hooks

Name Description Function prototype

""invoked | The selected color | to invoked :src :color

end

has been changed ; src is the widget object
; color is the new color selected

Table 3.12: ColorControl’s hooks

3.7.5 Example

Example 11

1 make "win Window "titled “CheckBox” [100 100]

2 make "color ColorControl 32 5 "thecolor

3 make "get Button “Get the color’

4 $getTconfig "expand.x "'set true

5 Hook :get "invoked {

6 Info "info ["ok] ”” ”You have selected the color” string :thecolor
[

8 Glue :win "top [1 :color :get

9 $win“show

On line 2, we create the ColorControl widget. A layout and cell size of 32 and 5 is the most common.
The button get will display an information Message Box displaying the color selected by the user.

ch

Hed 12

Green: il"ﬁ'
Blue: |82

Fet the color

Figure 3.13: A ColorControl

|
‘ You have selected the color 129 147 88 0
. ok |
I = —
= o 1

In the next example, we are going to use the hook invoked by the ColorControl to change the

background color of a Frame widget.

Example 12

CHAPTER 3. THE WIDGETS

3.7. THEWIDGET COLORCONTROL 58

make "win Window ""titled ’CheckBox” [100 100]
make "‘color ColorControl 32 5 "thecolor
Hook :color "invoked {

$frame~config "bgcolor "set :thecolor
}

make 'frame Frame "flattened [0 20]
$Fframe~config "expand.x "'set true
Glue :win "top [] :color :frame
$win~show

© 0o N Ol WwWN B

The hook set on line 3 will modify the configuration of the Frame widget frame. On line 6, we have
created the Frame. We have set the size of this frame to be 20 pixels height. The width is set to 0 and
will adapt itself to whatever window size (with help of the expand . x configuration on line 7).

ColorControl I

Red |l2%
—

Green: (189

Blue: |226

Figure 3.14: A ColorControl

CHAPTER 3. THE WIDGETS

59

3.8. THE WIDGET DROPLIST

3.8 The widget DropL.ist

This widget is a labeled drop down list of items. When the user clicks on the drop down list, all the
possible items are displayed. The widget always displays the current selection. A variable is linked to
the widget.

3.8.1 Construction

The primitive DropList is used to build a new DropList widget. Its syntax is :
DropListstring | word word list (list (words))

The first input is the label of the widget. The second input is the name of the linked variable. The
third is the list of items. This could be any kind of data like a word, a string or a number. If specified,
a fourth input will be the size of the widget in characters and any other input would make up the flags.

3.8.2 Methods

This widget doesn’t have specific methods.

3.8.3 Configuration

A DropList widget has three specific configuration items :

Configuration | Purpose Value
"label Set or get the label of the widget a string or a word
"value Set or get the selected item a thing
"variable | Setor get the linked variable of the | a word
widget

Table 3.13: DropList’s configuration

3.8.4 Hooks

Name Description Function prototype

""selected | The user has selected | to selected :src :index :-value
another item ; Src is the widget object

; index is the index in the list of the
selected item
; value is the selected value end

Table 3.14: DropList’s hooks

CHAPTER 3. THE WIDGETS

3.8. THE WIDGET DROPLIST 60

3.8.5 Example
Example 13
1 make "win Window "titled “DropList” [100 100]
2 make "weather ""Rainy
3 make "list DropList “How\’s the weather ?” "weather ["Sunny "Rainy "Overcast]
4 make "button Button “Make it better’
5 $button~config "align.h "'set "center
6 Hook :button "invoked {
7 make "‘weather ''Sunny
8 3}
9 Glue :win "top [] :list :button
10 $win~show

When the user clicks on the button button, the linked variable is changed to the value Sunny and
the DropList widget will be updated.

Figure 3.15: A DropL.ist

CHAPTER 3. THE WIDGETS

3.9. THEWIDGET ENTRY

3.9 The widget Entry

This widget is a simple labeled text field. After modifying the text by pressing the Enter key or by
changing the focus, an event will be generated and the linked variable will be updated.

3.9.1 Construction

The primitive Entry is used to build a new Entry widget. Its syntax is :
Entry string | word word (list (words))

The first input is the label of the widget. The second input is the name of the linked variable. If
specified, a fourth input will be a list containing the size of the label in characters and the size of the
entry field in characters. All other inputs would make up the flags.

The widget adapt itself to the value of the linked variable. If the value is a number, only number will
be allowed in the Entry and once changed by the user, the new value set to the linked variable will be
a number.

3.9.2 Methods
invoke
$entry~invoke

Invoke the widget as though the text was modified by the user.

entry
$entryentry word word (string | word)

Set or get the configuration of the entry field. The first input must be the word ""al ign or ""expand.
When ""al ign is used, the method will get or set the alignment of the label within the widget. When
the first input is the word *"expand, the expand property of the field will be set or get, and a boolean
value will be required. When setting the value, the third input must be the word : *"left "right
or "‘center.

label
$entry~label word word (string | word)

Set or get the configuration of the label. The first input must be the word ""al ign or ""text. When
"align is used, the method will get or set the alignment of the entry field within the widget. If the
first input is the word ""text, the label string will be set or get. The third input when setting the value
must be the word : ""left ""rightor ""center when working on the alignment, otherwise it must
be a string.

CHAPTER 3. THE WIDGETS

3.9. THEWIDGET ENTRY

62

3.9.3 Configuration

Configuration | Purpose Value
"value Set or get the value of the entry field | a string or word
"variable | Setor get the linked variable of the | a word

widget

Table 3.15: Entry’s configuration

CHAPTER 3. THE WIDGETS

63 3.9. THEWIDGET ENTRY

3.9.4 Hooks

Name Description Function prototype

""changed | The string in the en- | to changed :src :old :new

try field have been | ; src is the widget object

modified ; old is the old string

; new is the new string entered by the
user

end

Table 3.16: Entry’s hooks

3.9.5 Example

Example 14

1 make "win Window "titled “Entry” [100 100]

2 make "f Frame

3 make "name Entry “What\”’s your name ?” "friend
4 Hook :name '"changed {

5 Info ""none ["Hello] *” “Hello” :friend ”1!”
6 1}

7 Glue :f "top [1 :name

8 Glue :win "top [] :f

9 $win~show

When the user hits the Enter key after an update in the entry field, the hook changed will be called.

Entry i
Wi'hat's your name @ | o i

Hello joe !

Hello

Figure 3.16: A Entry widget

The next example play with the linked variable :
Example 15

1 to IncrTime :src :s :t
2 it :s {

CHAPTER 3. THE WIDGETS

3.9. THEWIDGET ENTRY

64

© 00 N O Ol bW

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

make "Time string (parse.number :Time) + :t

A
}

make "Time string (parse.number :Time) - :t
end
make "win Window ""titled ’Entry” [100 100]

make "box Box ’Test to do’
$box~config "expand.x ''set true

make ''‘cl CheckBox >Computer” "‘computer
make ''c2 CheckBox *AC”> '"ac
make "'c3 CheckBox *Power” '‘power

Hook :cl "invoked "IncrTime 10

Hook :c2 ™"invoked "IncrTime 20

Hook :c3 "invoked "IncrTime 30

Glue :box "top [] :cl :c2 :c3

make "f Frame

make "Time 0~

make "'name Entry ’Time :” "Time [0 4]
Glue :-f "top [1 :name

Glue :win "top [] :box :Ff

$win~show

The function IncrTime is called each time one of the CheckBoxes is checked or unchecked. This
function modifies the variable which is always a string.

Test to da
(3¢ Computer
&

(X Power

Time : |40

Figure 3.17: A Entry widget updated by its linked variable

CHAPTER 3. THE WIDGETS

65

3.10. THEWIDGET FRAME

3.10 The widget Frame

A "Frame” is a container widget displaying a relief border. This border could be raised, lowered or
flattened.

3.10.1 Construction

The primitive Frame is used to build a new Frame widget. Its syntax is :
Entry word (list (words))

The first input is the relief style of the frame, and it must be a valid word : ""flattened "raised
""bordered or ""lowered. The second input, if specified, is the size of the widget, consisting of a
list of two elements (width height). Any other inputs make up the flags.

3.10.2 Methods

A Frame widget has three methods :

reglue
$frame~reglue

This primitive asks the geometry manager to glue all the widgets within the Frame a second time. This
primitive is useful when a child of the Frame has been removed and new gluing is required.

relief
$frame~relief word (word)
Set or get (according to the value of the first input : "'set or ""get) the relief of the border. When

setting a value, the second input must be one of the valid words : **lowered *flattened '‘bor-
deredor "'raised.

widgets
$frame~wigets

Output all the widgets glued on the Frame.

3.10.3 Configuration
3.10.4 Hooks

This widget doesn’t have any hooks.

CHAPTER 3. THE WIDGETS

3.10. THE WIDGET FRAME

66

Configuration | Purpose

Value

"level Set or get the level of the relief

a number

Table 3.17: Frame’s configuration

3.10.5 Example

Example 16

make "f Frame "bordered [70 70]
$f config "level "set 5

Glue :win "top [] :f

$win~show

g b~ W NP

On line 3, we set the level of relief of the border to 5.

Figure 3.18: A Frame widget with a bordered relief

make "win Window ""titled ’Frame” [100 100]

Example 17

1 make "win Window "titled “Frame” [100 100]
2 make "f Frame "raised [70 70]

3 $f config "level "set 2

4 Glue :win "top [] :f

5 $win~show

On line 3, we set the level of the relief of the border to 5.

Example 18

make "f Frame "lowered [70 70]
Glue :win "top [] :f
$win~show

B ow PN

A lower relief gives a nice sunken feature to the frame.

Example 19

CHAPTER 3. THE WIDGETS

make "win Window *""titled ’Frame” [100 100]

67

3.10. THEWIDGET FRAME

B~ oo DN -

Figure 3.19: A Frame widget with a raised relief

Figure 3.20: A Frame widget with a lowered relief

make "win Window ""titled ’Frame” [100 100]
make "f Frame "flattened [70 70]

Glue :win "top [] :Ff

$win~show

Figure 3.21: A Frame widget without a border

CHAPTER 3. THE WIDGETS

3.11. THEWIDGETSMENUBAR AND MENU

3.11 The widgets MenuBar and Menu

This widget displays a pull down list of menu items. Once filled with menu items, the menu could be
glued anywhere in a container (window or widget). The widget MenuBar is a container widget which
accepts only Menu widgets.

3.11.1 Construction

The primitive MenuBar is used to build a new MenuBar widget. Its syntax is :
MenuBar (word)

If specified, the first and only input of the primitive must be the word : **column or row. This is the
layout of the menu in the MenuBar. By default the layout is in columns.

The primitive Menu is used to create a new Menu widget. Its syntax is :
Menu word | string | image

The first input is the label of the menu. In an Image is specifed of it will be displayed instead of a text
label.

3.11.2 Methods
MenuBar

A MenuBar widget has three methods :

add
$menubar~add Menu (Menu)*

Add a menu (or several) on the MenuBar.

find
$menubar~find word | string

The Menu widget output has the label as input to the primitive. If no Menu matches, -1 is returned by
the method.

remove
$menubar~remove Menu

Remove from the MenuBar a Menu.

CHAPTER 3. THE WIDGETS

3.11. THEWIDGETS MENUBAR AND MENU

Menu

Like a MenuBar, a Menu had a few methods:

add
$menu~add menu | (list | word | string) ((word things...) | block)

Add an item to a menu. An item could be another Menu then when added, this Menu will be a
submenu. When using a string, word or a list, a second input could be specified. It could be either
the name of a function (and then some input to pass on to this function) or a block. This will be the
function or the block executed when the menu item is invoked by the user. The method output the
index of the new item in the menu. If the first input is a list, it can specify the label to display as first
element of the list, then the shortcut (as a string) and then if specified the modifiers to add to ALT
for the shortcut. Modifiers can be ""alt, "shift, "control and ""option. When the item is
invoked, the callback function will run on a separate thread.

find

$menu~find word | string

Find a menu item or submenu in the Menu. If the item is found, its position in the Menu is returned
by the method. If it’s a submenu, the Menu widget is returned. When nothing is found, the method
returns -1.

i.enable

$menu~i.enable number boolean

Enable or disable an item of the menu. The first input is the index of the item in the menu. The second
input is true or false.

i.font

$menu~i . Font number font

Set the font used by a menu item.

i.mark

$menu~i.mark number boolean

Mark or unmark an item of the menu. The first input is the index of the item in the menu. The second
input is true or false.

remove

$menu~remove string | word | Menu

Remove an item (simple or submenu) from the Menu.

CHAPTER 3. THE WIDGETS

3.11. THEWIDGETSMENUBAR AND MENU 70

3.11.3 Configuration

Although a MenuBar doesn’t have any specific configuration, a Menu widget has only one specific
configuration but it doesn’t support the usual widget configuration :

Configuration | Purpose Value
"radio Set or get the radio mode of the | a boolean
menu

Table 3.18: Menu’s configuration

3.11.4 Hooks

A MenuBar and a Menu widget don’t have any specific hooks. The Menu widget doesn’t even have
the standard widget hooks.

3.11.5 Example

Example 20
1 make "win Window "titled Menu” [100 100]
2 make "f Frame "flattened [100 100]
3 make "menu MenuBar
4 $menu~config "expand.x ''set true
5 make "file Menu "File
6 $FfileTadd "Load
7 $FfileTadd "Save
8 S$fileTadd "separator
9 $fileTadd "Quit {
10 $winTquit
1 3}
12 make "option Menu "Option
13 $option~config "radio "set true
14 $optionTadd ’BeOS style’
15 S$option~add “Dos style’
16 make '‘question Menu *?’
17 $questionTadd “Help”
18 $question~add "'separator
19 $questionTadd *About ...’
20 S$menu~add :Ffile :option :-question
21 Glue :win "top [] :menu :f
22 $win~show

At line 8 of this example, we are creating an item *"separator in the menu file. This word
"'separator is a reserved word which creates a separator item in the menu, like shown below :

In the next example, we will create a submenu :

CHAPTER 3. THE WIDGETS

71 3.11. THEWIDGETS MENUBAR AND MENU
Aenu |
£ Optien *
| e |
| e
| gu |
Figure 3.22: A simple MenuBar with Menu
Example 21
1 make "win Window "titled *Menu” [100 100]
2 make "f Frame "flattened [100 100]
3 make "menu MenuBar
4 $menu~config "expand.x '"'set true
5 make "file Menu "File
6 $FileTadd "Load
7 $fileTadd "Save
8 make "export Menu "Export
9 $exportTadd ’to dos’
10 $exportTadd *to mac’
11 $file"add :export
12 $file"add "separator
13 $fileTadd "Quit {
14 $winTquit
15 3}
16 make "option Menu "Option
17 $option~config "radio "set true
18 $optionTadd ’BeOS style’
19 S$option~add Dos style’
20 make 'question Menu *?”
21 $questionTadd “Help’
22 $questionTadd "separator
23 $questionTadd About ...~
24 $menu~add :Ffile :option :question
25 Glue :win "top [] :menu :f
26 $win~show

We create and set the submenu in lines 8 to 14.

CHAPTER 3. THE WIDGETS

3.11. THEWIDGETSMENUBAR AND MENU

72

Figure 3.23: Menu width submenu

CHAPTER 3. THE WIDGETS

73

3.12. THEWIDGET MEMO

3.12 The widget Memo

This widget is a multi-line entry widget that can display text.

3.12.1 Construction

The primitive Memo is used to build a new Memo widget. Its syntax is :
Memo list

The only input is the size of the widget specified in characters : [width height].

3.12.2 Methods
allow
$memo~allow (word | string)+

The user will be allowed to enter the characters given as inputs.

allow.all
$memo~allow.all

The user will be allowed to enter any characters.

delete
$memo~delete (integer integer | [integer integer])

If no input is given the method will delete the text currently selected by the user. If two integers are
given, or a list of two integers, they will be the offset of the text to delete.

disallow
$memo~disallow (word | string)+

The user will not be allowed to enter the characters given as inputs.

disallow.all
$memo~disallow.all

The user will not be allowed to enter any characters.
insert

CHAPTER 3. THE WIDGETS

3.12. THEWIDGET MEMO 74

$memo~insert (thing)*

Insert all the inputs as the current position in the widget.
line

$memo~insert (thing)*

Insert all the inputs as the current position in the widget.
load

$memo~load string

Load the text file which the path is given as input in the widget.

save
$memo~save string

Save in the text file which the path is given as input, the content of the widget.

selection

$memo~selection word ([integer integer] | integer integer)

Set or get the selection of part of the content of the widget. The first input is the word *'get or set.
When using "'set, the text selection is changed in the widget. The rest of the inputs, a list or 2 num-

bers specify the offsets of the selections to do. When *"get is used, the primitive output a list of the
offset of the current text selected.

text

$memo~text word ([integer integer] | integer integer | string)

Set or get the text in the widget. The first inputs is the word "*get or *'sett. When using *'set, the
second input must be a string. When using "*get, the primitive output the content of the widget, or a

part of the content when a third (and forth if any) input is given. The two integers are the offsets of
the part of the text we want to get.

3.12.3 Configuration

A Memo widget has four specific configuration items :

3.12.4 Hooks

This widget don’t have any added hooks.

CHAPTER 3. THE WIDGETS

75 3.12. THEWIDGET MEMO
Configuration | Purpose Value
"alignment | Set or get the alignment of content | ""left "‘center "right
of the widget
""bgcolor | Setor getthe color of content back- | a list describing a color
ground
*'color Set or get the color of the widget | a list describing a color
content
"indent Set or get the automatic indent of | true or false
the content
"warp Set or get if the content of the wid- | a word
get must be warped when the line
are too long
Table 3.19: Memo’s configuration
3.12.5 Example
Example 22
1 Font.init
2 make "font Font ’Squirrel”
3 S$font"size "set 15.4
4
5 make "MyWin Window "titled *Memo widget” [100 100]
6 make "text Memo [20 10]
7
8 S$text " text "set ’this is a text\nwith severals lines\nin it!”’
9 $text config "font "set :font
10 $text config "wrap ''set false
11 $text config "color "set :Red
12 $text config "expand ''set (true) (true)
13
14 Glue :MyWin "top [] :text
15 $MyWin~show

Lines 1 to 3 define a font (Family and size). We set the font as well as the text displayed by the widget
on lines 8 and 9.

CHAPTER 3. THE WIDGETS

3.12. THEWIDGET MEMO

76

CHAPTER 3. THE WIDGETS

WS 15 @ Hx
with STVEreLS Lok
o

Figure 3.24: Memo example

77

3.13. THE WIDGET ODOMETER

3.13 The widget Odometer

This widget is part of the Widgets Add-On and it display a number in a Odo-Meter kind of look.

3.13.1 Construction

The primitive Odometer is used to build a new Odometer widget. Its syntax is:

Odometer number
The only input is the number of digits the widget shall display at the maximum.

3.13.2 Methods

The Viewer widget has two specific methods:

display

$odometer~display number

Display the number given as input.If the number is a floting point value, a dot will be displayed as well.
precision

$odometer~precison(integer)

if no input is given, the method output the floating point precision used. If a number is given as input,
the method set the precision of the floating point value displayed.

3.13.3 Configuration

This widget don’t have any specific configuration.

3.13.4 Hooks

This widget don’t have specific hooks.

3.13.5 Example

Example 23

CHAPTER 3. THE WIDGETS

3.13. THE WIDGET ODOMETER

78

use “GUI” “Widgets’

make "win Window ""titled ’Odometer” [100 100]
make '‘odo Odometer 11

Glue :win "top [] :odo

$win~show

$odo~precision 3
$odo~display -551.6543

© 00 NO O &~ WN -

Odometer |
-551554|

Figure 3.25: The Odometer widget

CHAPTER 3. THE WIDGETS

79

3.14. THE WIDGET RADIOBUTTON

3.14 The widget RadioButton

This widget is a labeled two state button which is often used with several other similar widgets. Only
one of these widgets within the same container (same group) could be on at a time.

All the RadioButtons of the same group share the same linked variable.

3.14.1 Construction

The primitive RadioButton is used to build a new RadioButton widget. Its syntax is :
RadioButton word | string word thing (list (words))

The first input (either a word or a string) is the label to be displayed by the widget. The second input
is the name of the linked variable. If the variable doesn’t already exist, it will be created. The third
input is the value to be given to the variable when the widget is clicked by the user. The following
inputs, if specified, will be the size in characters (two integers) and the flags of the widget.

3.14.2 Methods
invoke
$radiobutton~invoke

Invoke the widget as though the widget has been clicked.

3.14.3 Configuration

A RadioButton widget has three specific configuration items :

Configuration | Purpose Value
"label Set or get the label of the widget could be a word or a string.
"value Set or get the state of the widget true or false
"variable | Setor get the linked variable of the | a word
widget

Table 3.20: RadioButton’s configuration

3.14.4 Hooks

CHAPTER 3. THE WIDGETS

3.14. THEWIDGET RADIOBUTTON

Name Description Function prototype
"invoked | The widget has been | to invoked :src :old :new
clicked ; Src is the widget object

; old is the previous value
; new is the new value
end

Table 3.21: RadioButton’s hooks

3.14.5 Example

Example 24
1 to linux
2 Info "warning [’ok”] ”” ’Rebooting under Linux now~”
3 end
4
5 to beos
6 Info "warning ["ok”] ”” ”Rebooting under BeOS now’
7 end
8
9 to os2
10 Info "warning ["ok”] ”” ”Rebooting under 0S/2 now’
11 end
12
13 to windows
14 Info "warning [’ok”] ”” “Rebooting under Windows now”
15 end
16
17 make "win Window "titled “RadioButton” [100 100]
18 make "os "beos
19 make "rl1 RadioButton “Linux” "os "linux
20 make '"'r2 RadioButton ’Be0OS’ "os "‘beos
21 make "r3 RadioButton *0S/2” '"o0s ''0s2
22 make '"r4 RadioButton *Windows” '"os "‘windows
23 $rl7config "expand.x '"'set true
24 $r27config "expand.x '"'set true
25 $r37config "expand.x ''set true
26 $rd~config "expand.x "set true
27 make "b Button “Reboot now”
28 Hook :b "invoked {
29 call :os
30 3}
31 Glue :win "top [] :rl1l :r2 :r3 :rd4 :b
32 $win~show

This example gives the user the possibility to reboot his system under the desired operating system.
On line 29, we use the primitive cal I to execute the function corresponding to the OS selected by
the user.

CHAPTER 3. THE WIDGETS

81

3.14. THE WIDGET RADIOBUTTON

a

Figure 3.26: RadioButton example

CHAPTER 3. THE WIDGETS

3.15. THEWIDGET SIMPLELIST 82

3.15 The widget SimpleL.ist

A SimpleList widget displays a list of simple items that the user can select and invoke. The items could
be any kind of simple object like : a word, a string or a number. The widget has a linked variable.

3.15.1 Construction

The primitive SimpleList is used to build a new SimpleList widget. Its syntax is :
SimpleListword word word list (list (words))

The first input is the type of the SimpleList : "*single or "multiple. When the list is of type
"multiple the user will be able to select several items and the linked variable will be set to a list of
items. The type ""single only allows one item to be selected. The second input is the layout of the
scrollbar in the widget : "*left or ""right. The third input is the name of the linked variable. The
fourth input is a list of items. If specified, a fifth input will be the size of the widget in characters and
any other inputs would make up the flags.

The size of the widget could be specified with two numbers. The first is always the width of the widget
(without the size of the scrollbar) and the second is the number of items displayed at one time by the
widget.

3.15.2 Methods

add

$simplelistTadd (thing | list)+

Add items to the end of the list.

add.at
$simplelist™add.at number (thing | list)+

Add items at a position in the list. The first input is the position. 0 is the first element of the list.

items
$simplelistTitems word (list)

If the first input is the word ""get the method will return the list of items. If the first input is "'set
the second input of the method must be a list of items. This list will replace the items.

3.15.3 Configuration

The widget doesn’t have any specific configuration.

CHAPTER 3. THE WIDGETS

83

3.15. THEWIDGET SIMPLELIST

© 00 N O Ol b WD -

[
- O

3.15.4 Hooks
Name Description Function prototype
invoked | The user has double | to invoked :src :index :value

clicked on an item

; src is the widget object

; index is the position of the invoked
item in the list ; value is the value of
the invoked item in the list end

selected

The user has selected
a new item

to Invoked :src :-index :value

; src is the widget object

; Index iIs the position of the selected
item(s) in the list (could be a list

ifT multiple selection) ; value is the
value of the selected item(s) in the
list (could be a list if multiple selec-
tion) end

Table 3.22: SimpleList’s hooks

3.15.5 Example

Example 25
make ''items gseq 1990 2000
make "year 1998
make "win Window ""titled ’SimpleList” [100 100]
make "list SimpleList "single "right "year :items [0 5]

$list config "expand.x "set true

make "‘button Button ’Process’
Hook :button "invoked {
Info "info ["ok] *” ’Processing data of” :-year >~
}
Glue :win "top [] :list :button
$win~show

This simple example shows how the linked variable is updated when the user changes the selection.
On line 4, we have set the height of the widget to 5, meaning that we want only 5 items to be displayed.

CHAPTER 3. THE WIDGETS

3.15. THEWIDGET SIMPLELIST

84

1995
weT

1999
2000

| Process |

Figure 3.27: Single selection in a SimpleList

The next example shows a multiple selection. Using the Shift key of the keyboard allows us to make a

multiple selection. The Option key terminates a selection.

Example 26

make "friends ["Fred ""Roger "Ben "Zack "Tom]
make "friend []
make "win Window ""titled ’SimpleList” [100 100]

$list config "expand.x "set true
make "‘button Button *Send’
Hook :button "invoked {
Info "info ["ok] *” *Sending data to :” :friend
}

Glue :win "top [] :list :button
$win~show

© 00 NOoO Ol b WD -

[
- O

Foger

et R lil— r

ll Sending dato to : Fred Ben

make "list SimpleList "multiple "right "friend :friends [0 5]

Figure 3.28: Multiple selection in a SimpleList

CHAPTER 3. THE WIDGETS

85

3.16. THEWIDGET STATUSBAR

3.16 The widget StatusBar

This widget displays a progress bar, that indicate the progression and pace of a certain task.

3.16.1 Construction

The primitive StatusBar is used to build a new StatusBar widget. Its syntax is :

StatusBar list integer (string (string))

The first input is a list that gives the width (in characters) that the widget must allocate for the text
and trailing text that will be later updated. The second input is the maximum value that the widget
can reach. If given, the third input will be a string to display as the label, and fourth input will be the
trailing label to display.

3.16.2 Methods

The StatusBar widget has two specific methods:

reset
$banner~reset (string (string))

Reset the status bar to 0. If given, the second input will be the text and a third input will be the trailing
text.

update
$banner~update integer (string (string))

Update the status bar by adding the first input to the current value. If given, the second input will be
the text and a third input will be the trailing text.

3.16.3 Configuration

CHAPTER 3. THE WIDGETS

3.16. THEWIDGET STATUSBAR 86

Configuration | Purpose Value
"bar.color | Set or get the color of the progress | a color list
bar
""max Set or get the maximum value of the | an integer
status bar
"text Set or Get the current text displayed | a string or word
"trailing | Set or Get the current trailing dis- | a string or word
played
"value Set or Get the current value an integer

Table 3.23: StatusBar’s configuration

3.16.4 Hooks

This widget don’t have specific hooks.

3.16.5 Example

Example 27
1 make "MyWin Window "titled >StatusBar” [100 100] "not.closable
2 make "frame Frame "flatened
3 make "'status StatusBar [0 2] 10 *Processing’ ’ items remaining’
4 $status~config "expand "set (true) (true)
5
6 Glue :frame "top [2 2] :status
7 Glue :MyWin "top []1 :frame
8 S$MyWin~show
9
10 for ["i 1 10] {
11 $status~update 1 *” string (10-:i)
12 wait 1
13 3}
14 $MyWinTquit

On line 13, we update the status bar in a loop. Each iteration we change the trailing text to display the
remaining items to process.

StatusBar |

Processing § items remaining

Figure 3.29: A StatusBar example

CHAPTER 3. THE WIDGETS

87

3.17. THEWIDGET TEXT

3.17 The widget Text

This widget displays a static string. It’s a simpler version of the widget Banner. There’s no linked
variable to this widget, but modification of the displayed string is always possible.

3.17.1 Construction

The primitive Text is used to build a new Text widget. Its syntax is :
Text word | string (list (words))

The first input (either a word or a string) is the text to be displayed. The second input, if specified,
is a list which indicates the size of the widget in characters. This list has two elements : width and
height. An empty list will be the same as no list. All the inputs to the left are the flags, which may be
specified. The primitive outputs the widget object.

3.17.2 Methods

The Text widget has a few methods uncommon to all the widgets :
justify
$banner~justify word (word)

Set or get (according to the value of the first input : "*set or ""get) the text justification in the wid-
get. When setting a value, the second input must be one of the valid words : "*left *‘center or
"right.

text

$banner~text word (string | word)

Set or get (according to the value of the first input : "*set or "'get) the text displayed by the widget.
The second input could be a string or a word.

3.17.3 Configuration

This widget doesn’t have any specific configuration.

3.17.4 Hooks

This widget has no more hooks than the common widget.

CHAPTER 3. THE WIDGETS

3.17. THEWIDGET TEXT

88

3.17.5 Example

Example 28

make "win Window ""titled *SimpleList” [100 100]
make ""label Text “Hello world!”

Glue :win "top [] :label

$win~show

B CS I\ R]

Hello world!

Figure 3.30: A simple Text example

CHAPTER 3. THE WIDGETS

89

3.18. THE WIDGET VIEWER

3.18 The widget Viewer

This widget is part of the Imaging Add-On and it displays an image.

3.18.1 Construction

The primitive Viewer is used to build a new Viewer widget. Its syntax is:

Viewer image | list

The only input can be either an Image object or a list. The list specify the size in pixel of the widget.
If an image is given, the widget will adapt it size to fit the full image.

3.18.2 Methods

The Viewer widget has two specific methods:

display

$viewer~display image (word)

Display the image given as first input. If a second input is specified, it must be one of the following

words : ""adapt "‘center ''scale "scroll. This second input give the way the widget shall
display the image. By default it is *"adapt. The following table explain the different style of display:

Style Purpose
"adapt | Adapt the size of the widget to fit the com-
plete image. Resize the window to fit.
""center | Display the image without resizing the
widget. The image is centered on the cen-
ter of the widget.
"'scale | Display the image scaled to fit in the wid-
get.
"scroll | Keep the current widget size, display
scrollbars for the user to see the image.

Table 3.24: Viewer’s display styles
resize.to
$viewer~resize.to list
Resize the widget to a given size. The method has for effect to ask the window where the widget is to

resize as well.

CHAPTER 3. THE WIDGETS

3.18. THEWIDGET VIEWER 90

3.18.3 Configuration

This widget don’t have any specific configuration.

3.18.4 Hooks

This widget don’t have specific hooks.

3.18.5 Example

Example 29
1 use ’List Processing’
2
3 if (llength :Args) = 2 {
4
5 use “GUI” ~Imaging’
6
7 make "my.image Image lindex :Args 2
8 ifT (is.image :my.image) {
9 make *"‘win Window "titled (lindex :Args 2) [100 100] 'not.resizable
10 make "the.viewer Viewer :my.image
11 Glue :win "top [] :the.viewer
12 $win~"show
13 F{
14 print “Image file not reconized ... maybe not an image~”
15 }
16 A
17 print “USAGE : image’
18 3}

Figure 3.31: The Viewer widget

CHAPTER 3. THE WIDGETS

Chapter 4

Supports

This Add-on give access to several other primitives as well as some new objects used by the widgets.

4.1 Fonts

Fonts management under SQUIRREL is done by using a set of primitive and a new object: Font.

41.1 Primitives
Font.init
Font.init

This primitive in mandatory in SQUIRREL to use with fonts. When fonts are used, the primitive should
always be one of the first things a script performs.

Font.families
Font.families

Output a list of all the font families installed on the computer.

Font.exists
Font.exists string

Output true if a font family given as input to the primitive is installed on the system.

Font.styles
Font.styles string

Output a list of all the styles available to a font family given as input to the primitive.

91

4.1. FONTS

4.1.2 Font object

The primitive Font creates a new font object for a specified font family. During its lifetime, a font
object can change family. The syntax of this primitive is :

Font string
A Font object has several methods:

aliasing
$fontTaliasing word (word)

Get or set whether the font is using anti-aliasing or not. The first input must be the word "'get or
"'set. The second input must be the word "*on or ""ofF.

direction
$font direction word (word)

Get or set if the font has direction. The first input must be the word "'get or "'set. The second input
must be the word ""left2rightor "right2left.

encoding
$font~encoding word (number)

Get or set if the font is encoding. The first input must be the word ""get or "'set. The second input
must be a number from the following table :

CHAPTER 4. SUPPORTS

4.1. FONTS

UNICODE_UTF8
1SO_8859_1
1SO_8859_2
1SO_8859_3
1SO_8859.4
1SO_8859.5
1SO_8859_6
1SO_8859_7
1SO_8859.8
1SO_8859.9

1ISO_8859_10
MACINTOSH_ROMAN

Tl
Rl B|lolo|~No|al s w| v k| o

Table 4.1: Font encoding
family
$font family word (string)

Get or set if it’s the family of the font object. The first input must be the word **get or "'set. The
second input (if any) is the name of the family.

rotation
$font"rotation word (number)

Get or set if there’s rotation to the font object. The first input must be the word "'get or "*set. The
second input (if any) is a number between 0 and 360.

shear
$font~shear word (number)

Get or set if there’s shear to the font object. The first input must be the word "'get or "'set. The
second input (if any) is a number between 45 and 135.

size
$font size word (number)

Get or set if there’s size to the font object. The first input must be the word *‘get or "*set. The
second input (if any) is a number.

spacing
$font~spacing word (word)

Get or set if there’s spacing to the font object. The first input must be the word "*get or "'set. The
second input (if any) must be one of the valid word : "'char *'string "bitmap "fixed.

style

CHAPTER 4. SUPPORTS

4.1. FONTS 94

$font style word (word)

Get or set if there’s style to the font object. The first input must be the word ""get or "'set.
Style varies from font but it’s usually the words or strings : ""Regular ""Roman "'‘Bold “Bold
Italic’ or"ltalic

4.1.3 A Little example

The next example shows how simple it is to build a Font browser. The window is composed of two
SimpleLists, one for the families and one for the style. A Text widget, whose font is changed each
time the user selects a font or a style, displays a string :

Example 1
1 Font.init
2
3 make "win Window "titled “Fonts” [100 100]
4 make "frame Frame
5 make "Families Font._families
6 make "Family lindex :Families 1
7
8 make "theFont Font :Family
9 $theFont style "set lindex (Font.styles :Family) 1
10 $theFont™size "set 15
11
12 make "fbox Box ’Family’
13 make "families SimpleList "single "right "Family :Families [0 6]
14 Hook :families "selected {
15 $stylesTitems "'set (Font.styles :Family)
16 make "'Style lindex (Font.styles :Family) 1
17 3}
18 Glue :fbox "top [] :families
19 make "'sbox Box “Styles’
20 make "'Style '""Roman
21 make "styles SimpleList "'single "right "Style (Font.styles :Family) [0 4]
22 Hook :styles "'selected {
23 $theFont family "set :Family
24 $theFont style "set :Style
25 $label config "font "set :theFont
26}
27 make "label Text ’Select a family and a stylel”
28 $label config "font "set :theFont
29 $label~config "bgcolor "set ($frame~config "bgcolor ''get)
30 S$label™config "expand.x ''set true
31 S$labelTjustify "set "center
32 Glue :sbox "top [] :styles
33 Glue :frame "left [] :fbox :sbox

CHAPTER 4. SUPPORTS

95

4.2. COLORLIST

34
35

Glue :win "top [] :frame :label

$win~show

4.2 Color List

4.3 Primitives

Busy

Busy boolean (word)

Fonts |

Family Styles
A R L Pl Ifu"c
Embassy

; ! wl
Fabe Pronunciation '“'
Srafithi | 41
Humrnst 77T BT
Jl.l.nl.n.:\..-n:-!rn".l.l D'I.:- v

Select a family and 2 siye!

Figure 4.1; Browsing the installed font

You will notice by looking at this file, that each color is stored in a variable :

make "LightBlue [64 162 255 255]

The file /boot/apps/Squirrel/Libraries/Colors.sqi list several useful colors. You
may load this file at the beginning of your script in order to use them. You will find several standard
colors like red, black etc ... as well as the standard colors of the BeOS interface.

A color is a well known mix of the three colors : red , blue and green. In the list, these are always
the first three elements. A fourth element is not mandatory. If specified, however, it’s the value of the

Alpha channel.

Several primitives are added to SQUIRREL by the GUI Add-on to test objects for membership to cer-
tain types or set the focus :

CHAPTER 4. SUPPORTS

4.3. PRIMITIVES

Set or unset the application cursor to an animated busy cursor. The first input indicate by true or
false if the cursor shall be animated or not. If a second input is given, it must be *"spinwheel or
""watch, it indicates the type if cursor to use. By default, *"spinwheel is used.

Focus
Focus widget

Set the keyboard focus on a widget.

is.banner
is.banner thing

Output true if the input is a Banner widget, otherwise output false.

is.barberpole
is.barberpole thing

Output true if the input is a BarberPole widget, otherwise output false.

is.box
is.box thing

Output true if the input is a Box widget, otherwise output false.

is.button
is.button thing

Output true if the input is a Button widget, otherwise output false.

is.checkbox
is.checkbox thing

Output true if the input is a CheckBox widget, otherwise output false.

is.colorcontrol
is.colorcontrol thing

Output true if the input is a ColorControl widget, otherwise output False.
is.container

CHAPTER 4. SUPPORTS

97

4.3. PRIMITIVES

is.container thing

Output true if the input is a container widget, otherwise output false.

is.droplist

is.droplist thing

Output true if the input is a DropList widget, otherwise output false.

is.entry
is.entry thing

Output true if the input is an Entry widget, otherwise output false.

is.font
is.font thing

Output true if the input is a Font object, otherwise output False.

is.frame
is.frame thing

Output true if the input is a Frame widget, otherwise output false.

is.font
is.font thing

Output true if the input is a Font object, otherwise output false.

is.memo
is.memo thing

Output true if the input is a Memo widget, otherwise output false.

is.menu
is.menubar thing

Output true if the input is a Menu widget, otherwise output false.

is.menubar

CHAPTER 4. SUPPORTS

4.3. PRIMITIVES

is.menubar thing

Output true if the input is a Menubar widget, otherwise output false.

is.menubar
is.menubar thing

Output true if the input is a Menubar widget, otherwise output False.

is.odometer
is.odometer thing

Output true if the input is an Odometer widget, otherwise output false.

is.radiobutton
is.radiobutton thing

Output true if the input is a Radiobutton widget, otherwise output false.

is.statusbar
is.statusbar thing

Output true if the input is a StatusBar widget, otherwise output false.

is.text
is.text thing

Output true if the input is a Text widget, otherwise output false.

is.viewer
is.viewer thing

Output true if the input is a Viewer widget, otherwise output false.
is.widget
is.widget thing

Output true if the input is a widget, otherwise output False.

is.window
is.window thing

Output true if the input is a Menubar widget, otherwise output false.

CHAPTER 4. SUPPORTS

Chapter 5

Release notes

5.1 Release 0.71

This release has been partialy rewrite to improve a bit the performance and lower the memory con-
sumption. The Add-On it-self is 1 Mb lighter than the previous version.

Two new Add-Ons has been added: Imaging and Widgets.

5.1.1 Changes

e The Memo widget has been modified.

e Menu callback now run on their own thread.

e Some Widget’s callback functions run on their own thread.
e Primitive font.existrenamed font_exists.

The demo EzCalc has been improved.

5.1.2 Additions

e New Add-Ons Imaging and Widgets.

e New widgets Viewer and Odometer.

¢ Added method inval idate to the widgets.

e Menu widget can display an image instead of text only.

¢ Added primitive Busy that set the application cursor to an animater cursor.

e Added cursor configuration to the widgets. It allow to affect a cursor to a widget.

e Added method i . Font to the Menu widget. This method set the font used by a menu item.
e Added configurations constraintand I imit to the Window .

99

5.2. RELEASE0.68 100

5.1.3 Bugs fixed

e Fixed a bug in the Banner widget (linked variable now created when non existent).
e Menu widget now use by default the same font than the MenuBar widget.

o Fixed a bug in the Memo widget (changing contents).

5.2 Release 0.68

5.2.1 Notes

Few evolutions in this release.

5.2.2 Changes

e The messagebox from Supports has been moved off this Add-On and are now accessible trought
the Communication Add-On.

5.2.3 Additions

e Widget’s Hooks drop that is called when the widget is the target of a drag and drop.

5.2.4 Bugs fixed

None.

5.3 Release 0.67

5.3.1 Notes

Maintenance release.

5.3.2 Changes

None.

5.3.3 Additions

None.

CHAPTER 5. RELEASE NOTES

101

5.4. RELEASE 0.64

5.3.4 Bugs fixed

Debug trace when using keydown in BarberPole widget (removed)

Crash on quitting window by erasing the variable holding the window object
Crash whena SimpleList is destroyed

Crash when the extra input of a hook function was created within a function

5.4 Release 0.64

5.4.1 Notes

One new widget in this release and some ehencement in the key hooks.

5.4.2 Changes

o Widget’s Hooks : keydown keyup and mousedown requiert a new input that give the key
modifiers used when the event occurs.

e Menu accept shortcut and modifiers.

5.4.3 Additions

o Widget BarberPole that display text and allow the user to enter text.

5.4.4 Bugs fixed

None.

5.5 Release 0.60

5.5.1 Notes

Two new widgets added in this release and severals bugs fixed.

5.5.2 Changes

e The widget Entry has been changed to respect the type of the value in it linked variable.

5.5.3 Additions

e Widget Memo that display text and allow the user to enter text.
e Widget StatusBar that display a progress bar that can be updated.
e Methods resize.to resize.by center added to the Window.

CHAPTER 5. RELEASE NOTES

5.6. RELEASE 0.54 102

5.5.4 Bugs fixed

e A possible problem with the widget’s hooks

e Crash of SQUIRREL when the value of the linked variable of a DropL i st widget is not found
in the list.

5.6 Release 0.54
5.6.1 Notes

This release is a maintenance release with few bugs fixed.

5.6.2 Changes

None.

5.6.3 Additions

None.

5.6.4 Bugs fixed

e Using the invoke method of a widget within a hook wasn’t working
e Using an unknow linked variable with a RadioButton was crashing SQUIRREL

5.7 Release 0.49
5.7.1 Notes

This release is a maintenance release has it fixe moslty a few bugs.

5.7.2 Changes

No changes.

5.7.3 Additions

e new method i . enable to the Menu widget to enable or disable a menu item.

e new method i .mark to the Menu widget to mark or unmark a menu item.

CHAPTER 5. RELEASE NOTES

103 5.8. RELEASE 0.46

5.7.4 Bugs fixed

e Mimimum size of a Box widget now set fit the label
e Updating the linked variable of a CheckBox is now working correctly

e Change inf the configuration of a widget glued is now working fine properly (Looper must be
looker error)

5.8 Release 0.46

5.8.1 Notes
About this release

This is the first release of the new GUI Add-on for SQUIRREL . This version has been completely
rewritten from the old versions of SQUIRREL DR2 and DR3.

The Add-on

Although the Add-on has been tested with several examples that one could find in the SQUIRREL
directory, it’s still an early and incomplete version :

Several features or widgets are missing in this release:

A canvas widget allowing to draw within a widget.

Access to the image files (BBitmap and BPicture)
Drag & Drop

More complete set of widgets (all kind)
BScrollView, BTextView, BStatusBar ...

Printing

5.8.2 Changes

No change.

5.8.3 Additions

No addition.

5.8.4 Bugs fixed

No bug fixed yet :(

CHAPTER 5. RELEASE NOTES

| ndex

Add-On
Primitives

Busy, 95
Focus, 96
is.banner, 96
is.barberpole, 96
is.box, 96
is.button, 96
is.checkbox, 96
is.colorcontrol, 96
is.container, 96
is.droplist, 97
is.entry, 97
is.font, 97
is.frame, 97
is.memo, 97
is.menu, 97
is.menubar, 97, 98
is.radiobutton, 98
is.statusbar, 98
is.text, 98
is.widget, 98
is.window, 98

Banner
Configuration
variable, 41
Methods
justify, 40
Text, 40
BarberPole
Methods
start, 42
stop, 42
Box
Configuration
label, 45
Methods
reglue, 44

style, 44
widgets, 44
Button
Configuration
label, 47
Hooks
invoked, 48
Methods
default, 47
invoke, 47
is.default, 47

CheckBox
Configuration
label, 51
value, 51
variable, 51
Hooks
invoked, 52
Methods
invoke, 51
ColorControl
Configuration
cellside, 56
layout, 56
value, 56
variable, 56
Hooks
invoked, 57
Methods
invoke, 56

DropList
Configuration
label, 59
value, 59
variable, 59
Hooks
selected, 59

104

105

INDEX

Entry

Configuration
value, 62
variable, 62

Hooks
changed, 63

Methods
entry, 61
invoke, 61
label, 61

Font
Methods
aliasing, 92
direction, 92
encoding, 92
family, 93
rotation, 93
shear, 93
size, 93
spacing, 93
style, 93
Fonts
Font.exists, 91
Font.families, 91
Font.init, 91
Font.styles, 91
Frame
Configuration
level, 66
Methods
reglue, 65
relief, 65
widgets, 65

Memo

Configuration
alignment, 75
bgcolor, 75
color, 75
indent, 75
warp, 75

Methods
allow, 73
allow.all, 73
delete, 73
disallow, 73
disallow.all, 73

insert, 73
line, 74
load, 74
save, 74
selection, 74
text, 74
Menu
Configuration
radio, 70
Methods
add, 69
find, 69
i.enable, 69
i.font, 69
i.mark, 69
remove, 69
MenuBar
Methods
add, 68
find, 68
remove, 68

Odometer
Methods
display, 77
precision, 77
Primitives
is.odometer, 98

RadioButton

Configuration
label, 79
value, 79
variable, 79

Hooks
invoked, 80

Methods
invoke, 79

SimpleList
Hooks
invoked, 83
Methods
add, 82
add.at, 82
items, 82
StatusBar
Configuration
bar.color, 86

INDEX

INDEX

106

Text

max, 86
text, 86
trailing, 86
value, 86
Methods
reset, 85
update, 85

Methods
justify, 87
Text, 87

Viewer

Methods
display, 89
resize.to, 89

Primitives
is.viewer, 98

Style
adapt, 89
center, 89
scale, 89
scroll, 89

Widget, 33

INDEX

Configuration
align, 34
align.h, 34
align.v, 34
bgcolor, 34
cursor, 34
expand, 34
expand.x, 34
expand.y, 34
font, 35

high.color, 35

low.color, 35
pad, 35
pad.x, 35
pad.y, 35
Cursor

arrow, 35
cross, 35
cut, 35

downarrow, 35

hand, 35
hcross, 35
hourglass, 35

ibeam, 35
leftarrow, 35
linkhand, 35
macwatch, 35
pencil, 35
rightarrow, 35
timer, 35
uparrow, 35
zoom, 35

Flags

navigable, 39

navigable.jump, 39

pulsed, 39

Hooks

activated, 35
attached, 36
detached, 36
draw, 36
drop, 36
entered, 36
exited, 36
focused, 36
keydown, 37
keyup, 37
mousedown, 37
mouseup, 37
moved, 37
pulse, 37
resized, 38

Methods, 33

config, 33
enable, 33
invalidate, 33
is.enable, 34
is.focus, 34

Window, 21
Hooks, 31

enter, 31
leave, 31
maximize, 31
minimize, 31
move, 32
quit, 32
resize, 32

workspaceactivate, 32
workspacechange, 32

zoom, 32

Methods, 26

107 INDEX

activate, 26
add.to.subset, 27
bounds, 27
center, 27
close, 27
deactivate, 27
enable, 28
frame, 28

hide, 28
is.active, 28
is.front, 28
is.hidden, 28
minimize, 28
move.by, 28
move.to, 29
quit, 29

reglue, 29
rem.from.subset, 29
resize.by, 29
resize.to, 29
show, 29
unminimize, 30
widgets, 30

INDEX

