SQUIRREL Developer’s Guide

Programming Reference

Version 5.3
March 11, 2001

Kirilla http://lwww.kirilla.com

)

SQUIRREL Developer’s Guide
Copyright (©1999-2001 Kirilla. All Rights Reserved

No part of this manual may be reproduced or transmitted in any form, electronic or mechanical, for any purpose
without the prior written agreement of Kirilla .

The contents of this document are furnished for informational use only; they are subject to change without notice
and should not be understood as a commitment by Kirilla . Kirilla has tried to make the information in this
document as accurate and reliable as possible, but assume no liability for errors or omissions.

Kirilla will revise often the software described in this document and reserves the right to make such changes
without notification.

Author: Jean-Louis Villecroze
Email: jlv@kirilla.com
Web site: http://www.kirilla.com

This document was prepared with IATEX 2¢.
TeXis a trademark of the American Mathematical Society

Contents

About this Developer’s Guide 1
1 Getting Started 3
1.1 WhatisS SQUIRREL ? v i e e e e e e e e e e 3
1.2 Requirements for SQUIRREL o 0 o i it e e e e e 4
1.3 Installation L e 4
2 SQUIRREL Basics 5
2.1 Console 5
211 Themenus o e 6
212 Activity Status 7

2.2 Programming fundamentals. 7
2.2.1 Commands-anintroduction 7

2.2.2 Moreaboutwordsandvariables 10

2.2.3 Commands as input to anothercommand 11

2.2.4 Mathematical eXpressions 12
225 Boolean expressions 13

2.3 Stringsand words 14
24 LIStS . . . 15
2.5 Control Structures 17
251 DeCISIONSITUCIUIES o o e 18
252 LOOPS . . . o 21
253 Errorhandling 24

2.6 Procedures. 25
2.7 Localand global variables 27
2.8 Using objects 28
29 \VariableBinding 29
291 Getevent. 30
292 eraseevent 31
293 setevent. e 31

2.10 Adding commentSto SCriptS 32
211 Including sCript 33
2.12 Systemglobal variables 34
213 Using Add-ONS o o 34

3 Standard Objects

3.1 Application Messaging e e
3.2 Imageobject.

Primitives
4.1 Add-onsmanagement e e e e e
4.2 Communication
4.3 Control . . . e
44 DataproCessing o e
45 DatasStructures
46 EXEC
4.7 Filelnput/Ouput.
4.8 IMage proCessiNg v v v i e e e e e e
4.9 INSPECIOr
410 LiStProcessing o o v o
411 Mail . . e
4111 PrimitiveS o e
411.2 Mail Object e e e
412 MathematiCs e
413 String ProCessing o o e
414 SEOrage . . .
415 Threading
416 TIME . . . e
4.7 WOIKSPaCe . . .« . o e e e

Release notes

5.1 Release 5.3 e
511 Changes. . . . o o v i
5.1.2 Additions e e e
51.3 Bugsfixed

5.2 Release 5.2b e
521 Changes. o o
5.22 AddItioNs e
523 Bugsfixed

5.3 Release 5.2 e e
531 Changes. o i i
5.3.2 AddItions e
53.3 Bugsfixed

54 Release 5.1band 5.1C e
541 NOEES e e
542 Changes. o o i i i
5,43 Additions e e
544 Bugsfixed

5,5 Release 5.1 e
551 NOtES e e e
552 Changes. o i i
5,53 AddItions e
554 Bugsfixed

5.6

5.7

5.8

5.9

5.10

511

5.12

5.13

5.14

Index

Developer Release 5.0 e 120

56.1 NOtES 120
56.2 Changes. i i i 120
5.6.3 AdItionNs 120
56.4 Bugsfixed 120
Developer Release 4.9 120
571 NOtES . . . o 120
5.7.2 Changes. o o i i i 121
573 AdItions 121
574 Bugsfixed 121
Developer Release 4.8 121
581 NOtES 121
58.2 Changes. i i i 121
5.83 AdItions 121
5.8.4 Bugsfixed 121
Developer Release 4.7 122
591 NOtES 122
592 Changes. i i 122
5.9.3 AdItions 122
59.4 Bugsfixed 122
Developer Release 4.5 122
5.10.1 NOES . . o o 122
510.2 Changes o v o i i 122
5.10.3 AItions 122
5.10.4 Bugsfixed 123
Developer Release 4 123
B.AL1 NOES . . o o 123
5112 Changes v v v o i e e e 123
5113 AItions 123
5114 Bugsfixed 123
Developer Release 3 123
5121 NOES . . o o o e 123
5122 Changes v v v o i e e 124
5.12.3 AdItions 124
5.12.4 Bugsfixed 124
Developer Release 2 125
5131 NOES . . o o e 125
5132 Changes. o o o 125
5133 AdItions 125
5.13.4 Bugsfixed 126
Developer Release 1 126

127

About this document

Squirrel is a programming language in the Logo family. There are some distinct differences between
SQUIRREL and Logo, some stemming from SQUIRREL taking advantage of advanced features of the
Be operating system (BeOS).

At this time, neither SQUIRREL nor this document is perfect. We would appreciate notification of any
errors found.

This guide is divided into four parts:

Getting started introduces SQUIRREL and describes how to install it

Squirrel basics shows, mostly by examples, how to use the SQUIRREL language
Primitives lists and describes all the primitives

Release notes contains pertinent information on the releases

It should be understood that several additional features will be included in upcoming releases. These
features include advanced scripting capabilities and other additions for the Add-ons. Some Add-ons
will be complete while others will not. An Add-on API in the near future will allow third party addi-
tions, which will enhance SQUIRREL ’s usefulness.

We have included several documentation conventions in this document. These are:

e All code elements are presented in a distinct font like print *"foo

e Primitive syntax is often a combination of code element and italic font. The part in italic is
always the input to the primitive.

e Primitive inputs use special kind of symbols :

— (word) indicate that the input is optional
— word | number indicate that the input can be either a word or a number

— (word)+ indicate that the primitive can take on several words as input, but at least one is
required.

— (word)* indicate that the primitive can take on several words as input, but one is optional.

A bar in the right or left margin helps to locate an update or addition (from the previous revision) in
this document.

A big Mahalo? to (in chronological order) :

Henry van Eyken
Susan Banh?

Ulrich ”scholly” Scholz
Guido Soranzio

e Jonas Sundstrom

for their much appreciated contributions towards rewriting and editing this document !
Please enjoy reading this manual and have fun with SQUIRREL !

Jean-Louis, March 11, 2001

1" Thank you” in Hawaiian
2and all my love

About this document

Chapter 1

Getting Started

1.1 What is SQUIRREL ?

The initial intention of the author of SQUIRREL was to design a programming language simple, yet
powerful as a scripting language. While contemplating this idea, it dawned on the author to build
a language based on an existing one with a track record of being easy to learn. He then thought of
Logo. Logo itself is a descendant of LISP, a List Processing language designed to be a tool for the
development of artificial intelligence.

Incorporated in SQUIRREL is Turtle Graphics. Turtle Graphics is perhaps Logo’s most well known
feature. It allows children to explore geometry by issuing commands to a little device called turtle. In
SQUIRREL , it is Skippy, the squirrel, who takes on turtle’s role.

Those who are familiar with Logo are aware of the two things it offers: a philosophy of education
and a computer language designed to realize that philosophy. It provides children, as well as adults,
control over computers. Unlike developer programming languages like C++, Logo permits immediate
visualization and exploration. Although it was designed to be a tool for the mental development of
children, people of all ages can doodle with it in a way people have made preliminary sketches for
envisaging ideas they intend to embody for centuries now. Some of the works may have included
scripts for controlling a computer and for giving better insights through a learning process called con-
cretization.

A script is a series of instructions written to direct the computer to accomplish one or more task. Unlike
an application, a script is not compiled; that is to say, it is not converted by a compiler into executable
code which can then be run and is understood by the computer hardware. Instead, when a script runs,
a program called an interpreter translates each command line it encounters into machine code and im-
mediately executes it. Hence, scripts are easier to write than applications, but they do execute slower.
Writing programs for compilation requires detail and painstaking preparation in designing. Scripts,
on the other hand, are easily written and modified. This distinguishes compiled languages from inter-
preted ones. The source coding of a compiled language must begin with a complete understanding of
the problem, followed by a detailed solution. The source coding of an interpreted language permits

1.2. REQUIREMENTS FOR SQUIRREL

trial and error, allowing one to explore better ideas along the way.

Scripting languages differ in detailed objectives and in readability from compiled languages. SQUIR-
REL combines the simplicity and power of Logo with convenient scripting for work such as file ma-
nipulation or GUI design. Written for BeOS, SQUIRREL provides easy access to key features such as
multi-threading. Furthermore, SQUIRREL is readily extensible by third party add-ons. SQUIRREL has
been designed to be a perfect tool for beginners, as well as for experienced programmers. It is fun to
learn and use!

1.2 Requirementsfor SQUIRREL

SQUIRREL can be installed and run on a PC clone, also referred to as an Intel system even though the
main processing chip is not necessarily of Intel manufacture. The required operating system is BeOS
R5.x. At least 4 Mb of RAM and 7 Mb of hard-drive space is needed.

1.3 Installation

This release is distributed as a zip file. Unzip the file and execute the Squirrel installer to install
SQUIRREL . This places all of SQUIRREL ’s decompressed files, except the Add-ons, in a directory
Squirrel you will have chose, the most common place is in /boot/apps. The Add-ons are
placed in /boot/home/config/add-ons/Squirrel.

There are two executables in SQUIRREL :

Squirrel 5.3 used primarily as the Preferred Application
Squirrel’s Console.5.3 to interact with the interpreter

CHAPTER 1. GETTING STARTED

Chapter 2

SQUIRREL Basics

This guide concentrates on showing how to program in SQUIRREL . Demonstrations of the capabilities
of SQUIRREL are not provided here. However, the user may find some demo files that may be run by
opening them from SQUIRREL .

2.1 Console

When SQUIRREL is running on its console version, the first thing one notices is the main window or
console. The BeOS Terminal may also be used; details will be given at the end of this section.

Squirrel
Seript Consale

R

Console and BeOS Terminal are used in the same way. Prompts like @>, invite the user to enter their
statements containing SQUIRREL commands. These statements are also known as command lines.

2.1. CONSOLE

Once an entry has been made, pressing the <entry> key causes SQUIRREL ’s interpreter to examine
(or parse) the command line for immediate execution. The interpreter will print out a warning in red
lettering if it does not understand the request. This will occur if the user made an improper entry or if
an error occurred during execution.

The keyboard’s left and right arrow keys permit one to move the cursor along a command line. Pressing
the up arrow copies the previous entry. Entered text may be copied and pasted using the Al't-C and
Alt-V key combinations. The keyboard’s function keys may be configured to handle a sequence of
tasks. This will be described in the chapter Squirrel menu under Preferences.

Experienced users wishing to perform computation-intensive work may wish to use the BeOS Terminal
program rather than SQUIRREL ’s console. To start, they should enter the following line to the first
line of their script file:

#1/boot/apps/Squirrel/Squirrel .5.3

Adapt this line to wherever you have installed SQUIRREL .
An alternative approach is to set Squirrel .53 as the preferred application of their script file.
This is treated like the console, except that this does not accept interactive commands.

2.1.1 The menus

e SQUIRREL menu
The SQUIRREL menu provides a number of options related to SQUIRREL itself.

About displays a window with information about the current version of SQUIRREL
Help starts your favorite browser and loads the HTML version of this document.

Preferences SQUIRREL behaves according to a number of default settings that may be altered
by the user.
The Preferences window has three tabs:

Start-up lets the user enter the name of the folder containing the SQUIRREL script files (ex-
tension .sqi), which will be loaded at start-up. This option works for the SQUIRREL
console, and not the BeOS Terminal.

Console shows three panels. One panel lets the user select the type and size of font used
in the console. Another permits the user to save a record entered in the console. Size is
the number of most recent lines saved. A third panel serves to bound macros to each of
the keyboard’s twelve function keys.

Interpreter gives the user control over certain behavior of the interpreter, such as automatic
garbage collection and thread priority. (Refer to the release notes for more detail.)

Quit closes Squirrel.
e Script menu

Open a script file loads the code into the interpreter from one or more SQUIRREL script file.
e Console menu

Clear clears the console of all text and displays a new prompt.
Save text as ... This option permits one to save the console’s content as a text file.

CHAPTER 2. SQUIRREL BASICS

2.2. PROGRAMMING FUNDAMENTALS

2.1.2 Activity status

Below the menu bar is a bar with two widgets showing the activity status of the interpreter. The left
widget is a LED-style widget which shows the elapsed time of the last command executed (in seconds).
The right widget indicates whether or not the interpreter is active.

2.2 Programming fundamentals

The following pages cover SQUIRREL ’s syntax, by providing lots of simple examples. Users with
Logo experience are also encouraged to pursue this material since the syntax in SQUIRREL is not
entirely identical to that of Logo!

2.2.1 Commands - an introduction

In Logo, acommand is either a primitive or a procedure. Primitives are predefined and are immediately
available to SQUIRREL ’s interpreter. We demonstrate this with some following examples. Chapter
3, Primitives lists and describes these commands. Procedures are created by combining commands
and using parameters. Thus, they become commands for SQUIRREL to do more complicated things.
Procedures may call on already existing procedures. Typically, procedures are created by the user
themselves. Users may store them in a library? for future use.

Users may give procedures any name they wish, provided that name has not already been assigned to
an existing primitive or procedure?. The name can take on any length, but it must be an uninterrupted
string of characters. Characters which are permitted include dots (.), underscores (_), and question
marks (?). SQUIRREL is case-sensitive, hence My func and myfunc identify different procedures..

Here are some examples of SQUIRREL statements that show how primitives and data are combined
into instructions. The reader is encouraged to enter these examples in the console. People familiar
with Logo will notice some of SQUIRREL ’s departures from Logo. These have been deliberately
incorporated by SQUIRREL ’s author.

The syntax of a SQUIRREL ’s command is:

order inputl input2 input3

Example 1

@> print 6+4
10

Note. — The interpreter also accepts spaces between numbers and mathematical symbols,
eg. :

Example 2

1SQuIRREL script files
2|f the procedure already exists, the new procedure will replace the old one

CHAPTER 2. SQUIRREL BASICS

2.2. PROGRAMMING FUNDAMENTALS

@> print 6 + 4
10

Example 3

@> print sum 6 4
10

Two primitives are invoked in Example 3, printand sum. This is an instance in which the argument
to print is a command itself. The section Commands as input to another command discusses this kind
of situation. Observe that it is obviously necessary here to put spaces between the numbers entered.
Rule: All data on a statement line must be separated from each other by spaces.

Example 4

@> print "Hello "world
Hello world

SQUIRREL and Logo attaches a special meaning to word. That special meaning is brought out by
using a double-quote as shown here. Typically, a word may store a variable. Variables may be other
words and numbers. In SQUIRREL , a variable may also be a string, which is defined as anything that
is enclosed between single quotes. This will be shown in the following examples.

Example 5

@> make "a "Hello
@> make "b "world
@> print :a :b
Hello world

Here the words "a and "*b are made to store values. In this case, these values are words. The colons
in the print statement causes the interpreter to print what has been stored.

Example 6

@> make ""a “Hello world!”

@> print :a

Hello world!

This example shows an important difference between how SQUIRREL and Logo handles their strings.

Example 7

@> make "a 12

@> make "b 4
@> print :a*:b
48

CHAPTER 2. SQUIRREL BASICS

2.2. PROGRAMMING FUNDAMENTALS

Here the labels ""a and "'b are made to store or assign numerical values. The print command
displays the product of these values. A double quote defines a container created to hold a variable. A
colon points to the content of that container.

If we had used double quotes instead of colons in the print command, would have obtained the names
of the containers, a b:

Example 8

@> make "'a
Wrong number of arguments made

When one runs the last line in SQUIRREL ’s console, the result appears in red.

Example 9

@> print :a
Unknown variable [] a

In other words, the container is empty.

Example 10

@> make "a "'Squirrel
@> print slength :a
8

The interpreter printed out the number of characters stored in a. In this example, the double quote
identified a word; it was not counted as part of that word. We emphasize this point because we have
found literature on Logo which erroneously states that the double quote is part of the word. This may
cause mental confusion. The double quote merely states that what is attached is to be treated as a
word, or a container that holds a value.

Example 11

@> make b *Skippy~
@> print slength :b
6

The interpreter printed out the number of characters transferred to it, and then stored in the word **b.
This example shows how single quotes are used to identify a string; they are not part of that string.
The term slength is a primitive.

The small set examples just given, was to simply get the user’s feet wet. The following pages go into
more detail.

CHAPTER 2. SQUIRREL BASICS

2.2. PROGRAMMING FUNDAMENTALS 10

2.2.2 More about words and variables
The primitive make is used to:

a. create a word if it does not already exist and then
b. assign a value to it

That value may be a number, a word (a string of characters preceded by a double quote), a string
(anything contained between two single quotes) or a list. A string may be empty, but there does not
exist an empty word.

Example 12

@> make "word "apples, make "string We have’, make "number 12
@> print :string :number :word
We have 12 apples

There may be more than one command on a command line, but these must be separated by commas.
Clearly, the value stored by a word may be a number, a word, or a string.

Example 13

@> make "my_list ["man "wife ""son "daughter]
@> show :my list
['man "wife "son "daughter]

Logo works with lists of data. These lists are recognized by placing them within square brackets.
SQUIRREL ’s string allows a list to be stored in a word.

Example 14

@> make "'print ’letters’
@> print :print
letters

This example merely demonstrates how words may have the same name as primitives — or procedures,
for that matter.

Example 15

@> make "number 12~

@> print -number * 3

Invalid operation [String * Object]

Reason: The interpreter did not recognize 12 to be a number. Multiplication was impossible since
it was perceived as a string.

Example 16

CHAPTER 2. SQUIRREL BASICS

2.2. PROGRAMMING FUNDAMENTALS

@> make "‘empty
@> make "fruit "oranges
@> print -empty :fruit
oranges

zempty had nothing to offer, so only the contents of - fruit was printed.

Note. — Programmers with experience in Pascal, C, or C++ will recognize that data typing is not
required here. Data typing is a procedure which specifies the particular kind of variable that is set
aside in the computer’s memory, e.g. strings, integers or floating point numbers. A lot of hassle is
avoided when this is not required. This permits users to explore ideas without the constraint of data

typing.
2.2.3 Commands as input to another command
When SQUIRREL ’s interpreter parses a command line, it analyzes the line from left to right and then

attempts to execute the given instructions in that order.

Example 17

@> print sum 4 5 3
12

The interpreter first sees the command, "print”. It expects that something is to be printed. That
something is called the input to the command print. In this instance, the input is another command,
the primitive sum. Because sum is another command, the interpreter expects sum’s inputs to follow.
The inputs to sum are 4, 5 and 3. Another way of putting it is that the entire command:

sum 4 5 3
is seen as the input to print.

If the sum of the numbers in the previous example were followed by something else to be printed, it
becomes necessary to separate the sum from that something else. We use parentheses to do this:

Example 18

@> print (sum 4 5) “is the value of 4 + 5~
9 is the value of 4 + 5

Without the parentheses, the command sum would attempt to add the string but, of course, it cannot!
If this seems a little tricky, remember that parentheses are always needed on a command line where
there is more than one command with inputs.

What will happen if we do not use parentheses ? Let’s see:

Example 19

CHAPTER 2. SQUIRREL BASICS

2.2. PROGRAMMING FUNDAMENTALS

@> print sum 4 5 ”is the value of 4+5”
9

In this instance, the interpreter attempts to evaluate the sum of three entities, the last of which has no
numerical value. Hence, the primitive sum will ignore the third input.

Note. — The reader may wish to compare this result with that in Example 15 of the previous section,
More about words and variables:

Example 20

make '‘number ’12~
print :number * 3
Invalid operation [String * Object]

Why did it not print O ? This is because :number has no numerical value whereas 0 is a numerical
value. Thus, all the interpreter interprets is the instruction:

* 3

The interpreter then asks the question, "how much times three?” Since there is no answer to the
conundrum, it prints a warning in red.

2.2.4 Mathematical expressions

SQUIRREL evaluates mathematical expressions perfectly e.g. 2.34567 * 10**3 = 2345.67. It also
accepts scientific notation. Here, SQUIRREL surpasses ordinary Logo written for children.

SQUIRREL recognizes the following operators:

** Power IX**4
* / // % | Multiply, divide, integer division, reminder | -x*4
+ - Add, substract :x-4

Table 2.1: Arithmetic operators from highest to lowest precedence

Example 21

@> print “solutions:” 10+4 3-2 ’and” 12+5*2
14 1 and 22

Here, the numbers 10 and 4 are related by an operator. 3-2 and 12+5*2 are also related by an
operator. The mathematical operations are therefore executed. The three mathematical expressions
are independent from one another; hence, the interpreter’s response is a list of data separated by
spaces.

In the third expression of this example, multiplication takes precedence over addition. Commonly
accepted rules for operator precedence are adhered to — see Table 2.1.

Example 22

CHAPTER 2. SQUIRREL BASICS

2.2. PROGRAMMING FUNDAMENTALS

@> print ((2.3+ 3.7) * 2%*3)**2
2304

This example contains no curly brackets nor square brackets. SQUIRREL requires these brackets
for other computing tasks which will be discussed later. Only parentheses are used in mathematical
operations.

Example 23

@> print (sum 12 8) / 5
4

This example demonstrates that primitives may be placed within a mathematical expression. For
assurance, parentheses should be used to clarify the command line for the interpreter. The same
applies to procedures.

Example 24

@> print 12.3 * -.5
-6.150

This demonstrates that the absence of a leading zero presents no problem. The interpreter will correct
for that in the calculation.

Example 25

@> print (rsin .2345)**2
0.054

This example corresponds to what is traditionally written as: sin(0.2345)"2. The r in rsin refers to
an angle expressed in radians.

Further examples of mathematical functions are given in Chapter 3. Primitives.

2.2.5 Boolean expressions

Boolean expressions are used mostly for testing how values compare. We will encounter them in
the chapter on control structures. The following table summarizes the operators now available in
SQUIRREL .

The boolean value true and False are part of Squirrel grammar and are recognized as such. For
example :

@> do_something 45.5 true "hello false

CHAPTER 2. SQUIRREL BASICS

2.3. STRINGSAND WORDS

= | equality test X =5
<> | non-equality test X <>5
< less than test X < 3
<= | less than or equal test x <=3
> | greater than test X > 3
>= | greater than orequal test | :x >= 3
not | negation test not :x<3

Table 2.2: Booleans Operators

2.3 Stringsand words

Let’s recapitulate. SQUIRREL ’s syntax distinguishes between words and strings. Words are strings of
characters whereas strings may be composed of more than one word.

Like Logo, SQUIRREL identifies a word with a leading double quote. For those unfamiliar with Logo,
the term word is likely to be synonymous with the term identifier. A string is identified by two single
quotes, marking the beginning and end of the string. SQUIRREL ’s strings serve to store text which
may be manipulated. Here are some examples of words:

"‘computer
"this_is_a word
<< >>

Most commands that accept a string will also accept a word, but the inverse is not true. Commands
designed to accept a word will not accept a string.

Example 26

@> print slength “this is a test’
14

The string may contain any number of words. The answer is the string’s character count.
Example 27

@> make "a "horse

@> make "'b ”feathers”

@> print ta + :b

horsefeathers

This is an example of concatenation. Concatenation is one way of manipulating text.

Why does Squirrel have strings if words themselves are enough? To answer this question, consider
this example:

Example 28

CHAPTER 2. SQUIRREL BASICS

24. LISTS

@> print "this "is "my "long "'string
this is my long string

To provide that answer, the machine had to operate on five distinct words. By joining all these words
into a single string, the computer’s work is reduced to a single operation. Thus, working with strings
tends to be faster.

Some special characters are required to initiate important computer operations that cannot otherwise
be taken care of. Backslashes in a string serve to identify those special characters that control aspect
of the computer’s behavior. Here is a list of them and their actions:

\n | line feed (newline)
\t | horizontal tabulation
\v | vertical tabulation
\b | backspace

\r | carriage return

\Ff | form feed

\~ | single quote

\\ | backslash

Table 2.3: Backslashed characters

Here’s how they are used:

@> make 'a ’this is a test\n’
@> make "b ”\t Squirrel is cool 111I\n”

It is best to copy and paste these lines into the console to observe the effects.

— Note: Logo is not familiar with strings which are made up of separate words. When the word string
is used in Logo, it is interpreted as the string of characters that make a word. A word is one or more
characters, usually offset by blank spaces or by a bracket before or after it.

24 Ligts

The basic list elements in SQUIRREL are: numbers, strings, words, and other lists. It is possible? to
create list with references to variables or primitive/function calls. In this case, when the list is evalu-
ated, all such elements will be processed and a new list is created.

To introduce lists, we again present Example 28 from the page headed Strings and Words:

@> print "this "is "my "long "'string

3since release 5.1

CHAPTER 2. SQUIRREL BASICS

24. LISTS 16

The interpreter is instructed to print out a list of words that are separated by spaces. Alternately, the
list might have been prepared before hand, like in this sequence of statements:

Example 29

@> make "a [""this "is "my "long "'string]
@> print :a
this is my long string

The first statement contains a list with five elements, all of them being words. That list is stored in the
variable a. The name of the variable is given as a word. As shown on the second statement, accessing
the variable value is done by using the semicolon. Typically, a list is enclosed by square brackets.

Example 30

@> make "mylist [“this is a list” 3.45 ’with’ 56.6
["various "things "inside]]

@> print -mylist

this is a list 3.45 with 56.6 various things inside

Example 31

@> make "element_a [10]

@> make "element_b "element_a
@> print :element_b

element_a

One element has been substituted by another.

Example 32

@> make "element_a [10]
@> make "element_b :element_a
@> show :element_ b

[10]

Here, one element has been given the value of another.

The next example show how to use variable and function call in a list:

Example 33

@> make "a 34
@> make b 45
@> make "lIst [:a :b :a+:b (max :a :b)]
@> show :Ist
[34 45 79 45]

CHAPTER 2. SQUIRREL BASICS

2.5. CONTROL STRUCTURES

A concluding note of some historical interest. — As mentioned before, LISP is a language of artificial
intelligence on which Logo is based on. In LISP, individual units are atoms. Atoms are letters,
numbers, or any string composed of alphanumeric characters. Both atoms and lists are referred to as s-
expressions (symbolic expressions). Logo’s list elements are similar. A big difference is that the atoms
of LISP cannot be decomposed (the word atom comes from classical Greek meaning indivisible).
Atoms are no longer atoms in Logo. Here, they can be broken down. The string "horsefeathers’
may be split into "horse’ and ’feathers’. However, the meaning of a list is no different in the Logo
family of languages from that of LISP. There is a difference in notation. LISP uses parentheses to
identify lists, whereas Logo and Squirrel uses square brackets. Lists are used for building elements
for programming.

2.5 Control structures

A control structure determines the order in which the interpreter does its work. Programmers recognize
sequence structures, decision structures, and iteration structures.

A sequence of commands is called a sequence structure. Example:
@> make "a 2 + 3

@> make "b “apples’

@> print :a :b

A structure that lets the interpreter decide which action to take is called a decision structure. A decision
involves a criterion, or a basis for deciding whether to do this or that. Example:

@> if za > 10 {print “ok’}

Here, if the value of za <= 10, nothing will be printed.

A structure that causes the interpreter to go through a repeated cycle of instructions is called an iter-
ation structure. This structure is commonly referred to as a loop. Typically, a loop involves decision
making with a base case for ending the iteration. Example:

@> for ['i O 10] {print :i}
The result will print the numbers from O to 10. Once 10 has been printed, the interpreter terminates

the iteration since decision has been made to stop printing. The interpreter will then act on the next
statement.

In SQUIRREL , for various reasons, lists containing primitives or procedures are enclosed within curly
braces { }. These lists are referred to as blocks. The block notation also improves the readability of
a program as well as the efficiency of execution.

One may endow variables with the value of a block, e.g.

@> make ablock {print “hello world’}
@> run zablock

CHAPTER 2. SQUIRREL BASICS

2.5. CONTROL STRUCTURES

The answer supplied is: hello world

Sadly, a block may be empty. It will then be denoted by {}.

Commands for decision structures:

if
ifelse
test
iftrue
iffalse

Commands for iteration structures (loops):

for
repeat
do.while
while
do.until
until
foreach

2.5.1 Decision structures

if

An i T statement tests whether an expression meets a criteria and if so, executes a command. There
are, therefore, two parts to the statement: the test and the command. What follows the word "if” is a
Boolean expression. The Boolean expression can either return TRUE or FALSE. The command to be
executed is held between curly brackets. The curly brackets identify a block.

i T expression block

Example 34

@> make "a 78
@> if -a>10 {print “ok!!’}
ok!!

i T supports a third input which must be a block. If this input is specified, the 1 ¥ will act like an
ifelse

CHAPTER 2. SQUIRREL BASICS

19

2.5. CONTROL STRUCTURES

ifelse

An ifelse statement contains two blocks. If the Boolean expression returns TRUE, then the first
block is executed. If it returns FALSE, then the second block is executed.

i felse expression block block

Example 35
@> make "a 3

@> ifelse :a>10 {print ok’} {print “not ok’}
not ok

test

Execution of this test will assign a value that is either TRUE or FALSE to test. Typically, such a
test statement is followed by an i Ftrue or an 1 Ffalse statement. The syntax is:

test expression

A call to this command will always replace the previous value, so only the last test is valid.

iftrue

i Ftrue will execute the associated block if test returned a Boolean TRUE. The syntax is:

i Ftrue block
Example 36

@> make "a 10

@> make "'b random 10

@> test :a<:b

@> type ’here”’

@> iftrue {print *my random number was bigger than 107}

In this example, the output could either be here or here my random number was greater
than 10.

iffalse

i FFalse will execute the associated block if test returned a Boolean FALSE. The syntax is:

i ffalse block

Example 37

CHAPTER 2. SQUIRREL BASICS

2.5. CONTROL STRUCTURES 20

@> make "a 10

@> make "'b random 10

@> test :a<:b

@> type ’here’

@> iffalse {print *my random number was smaller than 107}

In this example, the output could either be here or here my random number was smaller
than 10

switch

Occasionally, a script may contain a serie of decisions in which the same variable or expression is
tested. SQUIRREL provides the switch multiple-selection structure for this special purpose.

A switch is composed of a serie of case and range labels, and an optional other label. The
variable or expression to be tested could be of any basic type (number, string, word, list).

The following example tests the value of the variable var:

Example 38

switch :var {

}

case 2 {

print ’var is 2~
}
case 45 {

print ’var is 45’
}

case 46 50 55 {
print 46 50 or 55”
}

range 60 100 {
print “between 60 and 100~
}

other {
print ’var is something else”
}

The label case test the value for equality with at least one of the input of the case. The range
label, tests if the value is between the 2 inputs. other will be executed only if all the test have failed.

CHAPTER 2. SQUIRREL BASICS

21

2.5. CONTROL STRUCTURES

2.5.2 Loops

There are several ways of looping in SQUIRREL :

for

This command will execute a block repeatedly in accordance with the contents of a settings list. The
first element of the list is a word that is assigned values from a range of numbers. The fourth element
is optional. Any fourth element indicates a step, as shown in Example 40. The syntax is:

For [word number number (number)] block

Example 39

@> for ["i1 1 100] {print :i}
1

2

3

4

99

100

Example 40

@> for ["i 50 1 -10] {print :i}
50

40

30

20
10

Here, the fourth element in the list specifies a step. The step is negative because the loop runs from an
initial value of 50 to a lower value.

When a loop has run its course, the first element, the i in this instance, is destroyed.

repeat

The statement repeat executes a block a specified number of times. The syntax is:
repeat number block

The first input will be the number of times we want to execute the block.

Example 41

CHAPTER 2. SQUIRREL BASICS

2.5. CONTROL STRUCTURES

@> repeat 5 {print “Hello John 1’}
Hello John
Hello John
Hello John
Hello John
Hello John

do.while

This command will cause repeated execution of the block as long as the Boolean expression returns
the value TRUE. The syntax is:

do.whi le block expression

Example 42

@> make 'j 10
@> do.while {print :j,make "j :j-1} :j>0
10

P NWAOUITO N 0O

while

The difference between while and do.whi le is that with whi le, a Boolean expression is evalu-
ated before a block is executed. If the Boolean expression returns FALSE the first time, the block will
never be executed. The syntax is:

whi Ie expression block

Example 43

@> make 'j 10

@> while :j>0 {print :j,make "j :j - 1}
10

9

8

e

CHAPTER 2. SQUIRREL BASICS

2.5. CONTROL STRUCTURES

PNWAOOTO

do.until

With do.unti I, looping continues until the Boolean expression returns TRUE. Notice that the block
will always be executed at least once. The syntax is:

do.until block expression

Example 44

@> make "j 10
@> do.until {print :j,make "j :j-1} :j<O
10

OFRPNWRARIION®CO©

until
The difference between unti l and do.unti I is that with unti I a Boolean expression is evaluated

before a block is executed. If the Boolean expression returns TRUE the first time, the block will never
be executed. The syntax is:

unti I expression block

Example 45
@> make 'j 10

@> until :j<10 {print :j,make "j :j-1}
10

CHAPTER 2. SQUIRREL BASICS

2.5. CONTROL STRUCTURES 24

for.each

The command For . each considers consecutive values found in a list. The syntax is:

For _each word list block
The word used will be the variable containing the value from the list. The block will be executed as
long as there is still an element in the list.

Example 46

@> make "1 O

@> for.each "e [5 2 6 7 8 1 5] {make "i :i+:e**2,print :i}
25

29

65

114

178

179

204

2.5.3 Error handling

SQUIRREL will abort the execution of a script when an error occurs. Hopefully, it’s possible to catch
an unexpected error or even throw your own error using a catch and then a .

The syntax for catching an error is:

catch word block (block)

The syntax for throwing an error is:

throw word thing

Example 47

catch "divbyzero {

it a=0 {
throw ""divbyzero *The value of a is zero !!”
}
make "j :b/:a
A
print “an error has occured’
}

CHAPTER 2. SQUIRREL BASICS

25

2.6. PROCEDURES

In this example, we caught an error thrown by our self when the value of a was zero. The throw order
accepts two inputs: the name of the error and the return value, which could be anything. The error’s
name must match the word specified in the catch order, otherwise the error will not be caught.

In the case of an unknown error, one that did not come from a throw order, you may specify the word
“'error to catch it. An example of such an error would be a bad number of arguments.

An optional second block will be executed when an error occurs only.

Example 48
catch "error {
print “we generate an error bellow’
print gseq 23
print “this line will never been executed if we have an error’

}

The order gseq is a primitive requiring at least two inputs. Using it alone will generate an error and
we will need to catch it. The execution of the script will resume from the order after the catch.

Whenever an error is raised, the global variable _error will contains the error message.

2.6 Procedures

Procedures encapsulate a set of orders (a block of orders) and parameterize them.
The syntax to define a function is:

to word rel ref2 ref3

end

There is no need to use the {} to mark a block as to and end to perform this task. For examples, to
define a function which subtracts four from a value and then prints the result, we write in a script file:

to sub4 :a
print :a-4
end
Calling it is the same as calling any primitive:

@> sub4 6

When defining a procedure, you may want to return a value*. For examples, if we want to return the
result of a-4 and not print it, we would use the output primitive which returns this input as the

4A procedure which returns a value is called a function

CHAPTER 2. SQUIRREL BASICS

2.6. PROCEDURES 26

result of the function and then stops the function. If you just wanted to stop the function, you may use
the order stop.

When a script need to return an error code, the output primitive can be used to return a value (must
be an integer). The script will then be ended and this value returned to the caller of the script.

We now modify our function to reflect what we want:
to sub4 :a

output :-a-4
end

Calling is similar, except that we could take the output as the input of another order:

@> print sub4 6
@> make ""a sub4 6

It’s possible to define default values for the inputs. To do this, we use a list instead of a variable
reference. The syntax of the list is:

[ref value]

For example:

to sub :a [:b 4]
print :a-:b

end

If we call it:

@> print sub 6

We will get 2, but calling it:

@> print sub 6 2

will give us 4.

Using default values is very powerful, but there’s an obvious limitation. This is demonstrated in the
next example:

to sub :a [:b 4] :c

print ta-:b+:c
end

CHAPTER 2. SQUIRREL BASICS

27

2.7. LOCAL AND GLOBAL VARIABLES

This function is syntaxically correct and will not generate any errors during parsing. The execution
will also work if you always specify three inputs. But if you specify only two, like:

@> print sub 6 2

An error will be reported during execution because an input is missing. Here, the value for :c is not
known.

One of the advantages of using default values is the ability to use a previous argument. e.g.:

to foo :a [:b :a+4] [:c (random 40)]
print tat+:b+:c
end

Calling it:
@> print foo 10

Will change the value 10 to :a, the value 14 to :b and a random number between 0 and 40 to - c.

This is done just before calling the function. Notice that only the global variable and the previous
input are known at this time.

Once defined, a function is used like any other SQUIRREL primitive. When called, each input is
assigned to a variable specified in the corresponding function.

2.7 Local and global variables

A function is executed by SQUIRREL in a scope, created specially for the function. It is still possible
to access global variables you want to set, get or modify, but creating a local variable using the order
local will require a step more than what is required for creating a global variable.

When a function ends, all the local variables and values created within the function will be destroyed

(except the one still in use, e.g. a value returned by the function using output or the value set in
global variables).

Creating a local variable using 1ocal follows the syntax:
local word word word word

You may use as many calls to local as you want and specify as many variable names (words) as you
need each time. Setting the value to a local variable is the same as setting one for a global variable.
For examples:

Example 49

to foo :a :b
local "c "d
make ""c :a-5
make "'d :c//2
output :d*2
end

CHAPTER 2. SQUIRREL BASICS

2.8. USING OBJECTS

28

Using the primitive make . Focal simplifies the process of creating and initializing a new local vari-
able in a single call. The previous example becomes:

Example 50

to foo :a :b
make.local 'c :a-5
make.local "'d :c//2
output :d*2

end

If you wish to modify the value of your local variable later in your function, you will use make.

When defining a local variable, you may shadow a global variable. Your function will not have access
to the global variable and you will use its own local variable. For examples:

Example 51

make "'c 10

to foo :a
local ''c
make ''c :a
end
foo 4

This will not change the value of the global variable c.

A function can create a global variable using the order make if the variable hasn’t already been
specified using local. You have to make sure when you’re using variables inside your function that
you define them as local variables. Otherwise the program will create global variables which will stay
long after your function is over.

2.8 Using objects

Since Developer Release 3, SQUIRREL has been featuring a new type of data called an object. The
use of an object is not really different from that of a simple data, e.g. a number or a string.

The Add-on Data Structures for examples, add to SQUIRREL ’s various data structures other than the
list: Vector and Dictionary.

Objects in SQUIRREL have the peculiarity of possessing certain primitives (called methods) which
only apply to an object.

Using a method is different from using a primitive :

Example 52

CHAPTER 2. SQUIRREL BASICS

29

2.9. VARIABLE BINDING

@> make "myarray Vector 10
@> $myarray~set 1 45

In this example, we are creating a Vector object, which is a simple array of 10 elements. We set the
element 1 to the value 45. You will notice the use of $ instead of : and the presence of ~. The syntax
to call a method on an object is :

$(variable name)™(method name) arguments of the method

Passing an object to a command or a function is the same as that for any standard data, using :.
Example :

Example 53

@> make "myarray Vector 10
@> print :-myarray
0Ooo0O0OO0OO0OO0OO

Otherwise objects are manipulated in the same way numbers are. For examples:

Example 54

@> make "a Vector [3 2 4 1 5 6]
@> make "b :a+l
435267

Example 55

@> make "a Vector [3 2 4 1 5 6]
@> make "b 2.5*:a
7.55 10 2.5 12.5 15

Example 56
@> make "a Vector [3 2 4 1 5 6]
@> make "b Vector [1 2 3 4 5 6]

@> print -ta+:b
4 475 10 12

2.9 VariableBinding

In the lifetime of a variable, the variable could have its contents changed, accessed, or the variable
could be erased. The primitibes bind and unbind offers the possibility to bind a variable to these
events and execute a block or a function each time an event occurs.

A variable accepts only one binding for each event. If we set two binding sequentially on a variable,
only the last one will be executed.

CHAPTER 2. SQUIRREL BASICS

2.9. VARIABLE BINDING 30

2.9.1 GCet event

Each time the variable is read (or fetched), this event is generated. This kind of event occurs anywhere
where the variable is used like in a print or in a math operation. For examples:

Example 57

@> make b 4

@> bind "b "get {print b has been read’}
@> make "a :b+5

b has been read

When executed, the example will access the variable b and then execute the block set for the binding.
We could have also used a function instead of a block. In this case we would have defined a function
with one input since SQUIRREL would fill the first input of the command with the value of the variable

Example 58

to vget :val
print b read with value :” :val
end

@> make "b 4

@> bind "b "get "vget

@> make "a :b+5

b has been read with value : 4

Using a function instead of a block will allow us to make changes to the variable’s value. The variable’s
value is not changed, but accessing the variable will return another value other than the real one. To
do this, we just change our function to return the value we want :

Example 59

to vget :val
print b read with value :” :val
output 5

end

@> make b 4
@> bind b "get "vget

@> make "a :b+5
b has been read with value : 4

If we print the variable a after executing this example, we will get 10 and not 9.

CHAPTER 2. SQUIRREL BASICS

31

2.9. VARIABLE BINDING

2.9.2 erase event

When a variable is deleted (using the primitive erase for example), an event is sent to the variable
and the binding is executed. Consider the following example :

Example 60

to erase :val
print b erased”
end

@> make "b 4

@> bind "b "erase 'erase

@> make "a :b+5

@> print :a

@> erase "'b

b has been read with value : 4
b erased

When the last line is executed, the function erase is executed and b erased will be print to the
console. The function could have returned a value which will be then a Boolean value. If this value
is true, the variable will be erased, if false is returned, the variable will not be erased, as you can
see in the next example :

Example 61

to verase :val
print b erased”
return false
end

@> make "b 4

@> bind "b "erase "verase

@> make "a :b+5

@> print :a

@> erase "'b

b erased

@> print :b

b has been read with value : 4
4

2.9.3 set event

When the variable is set to a new value, the event set is sent to the variable. It’s also possible to
define a block or a function to execute when this is happening. The function must have two inputs.

Example 62

CHAPTER 2. SQUIRREL BASICS

2.10. ADDING COMMENTS TO SCRIPTS 32

to vset :old :new
print ’value changed to” :new *from” :old
end

@> make b 4

@> bind "b "set "vset

@> make "b :b+5

value changed to 9 from 4

If the function used for the binding returns a value, this value will be set to the variable. Otherwise the
variable will have its value changed. The next example shows this:

Example 63

to vset :old :new
print “value changed to” :new “from” :old
output :-old

end

@> make b 4
@> bind "b '"'set "'vset
@> make "b :b+5

@> print :b
value changed to 9 from 4
4

2.10 Adding commentsto scripts

It’s often the case that a programmer wishes to include comments to parts of their code. Comments are
meant for humans only. SQUIRREL features two variants for this procedure, known as commenting.
When code is parsed into instructions to the hardware for translation, comments tell the interpreter to
ignore what’s written. We identify them as Logo-style commenting and C-style commenting. Users
familiar with these programming languages will immediately recognize the styles used.

Logo-style commenting Any line intended to be ignored by the interpreter must begin with a semi-
colon (;)

C-style commenting Any line or succession of lines to be ignored by the interpreter must be enclosed
by /* and */

Example 64

make "'e 2.718
; e is the base for natural logarithms
print :e

CHAPTER 2. SQUIRREL BASICS

33

2.11. INCLUDING SCRIPT

One line comments are easiest to handle in this way.

Example 65

/* we prefer to comment out a big chunk of code
by using the C style method of commenting.
print “here’

print 4 56 7 8

*/

print “and we execute again’

2.11 Including script
Using the keyword #include in a script file allow to include a file during the parsing.

If we have in a script file a function called Iibfunc and that we wish to use this function in our
script, we will use #include to access this function:

Example 66
#include “mylib.sqi’

libfunc 34

#include is somehow equivalent to the primitive load except that incuding a file is done during
the parsing and not during the execution of the script as it’s done by the primitive load. For example,
if we wish to load a script file only in certain condition:

Example 67

if (need “mylib.sqi”) {
#include “mylib.sqgi’
3

Will not work the way we want as it will always include the file. We must use the primitive load:

Example 68

if (need “mylib.sqi’) {
load "mylib.sqi”’
3

Unless you are in the above situation, using #include instead of load is more efficient.

CHAPTER 2. SQUIRREL BASICS

2.12. SYSTEM GLOBAL VARIABLES 34

2.12 System global variables

When a script is run by SQUIRREL , it is possible to get the list of command-line arguments that were
given using the global variable Args. This variable has a list for value. It is also possible to know the
name and complete path of the script file executed by using the global variable _file. The variable
__path will give the path.

For example, let’s have the following script file:

it (llength :Args)>1 {

make "dir lindex :Args 2

make "myfile FilePanel "open "dir ["file] "single "allow [”image/*’] []
print :dir

}

When run with the command : @@> myscript.sqi ”/home” the Args global variable will
contains [* - /myscript.sqi” >/home”] and the _Fi le variable will have:
”/boot/home/scripts/myscript.sqi’.

The variable _install will give the path of the directory where SQUIRREL is installed on the user
computer. As well, _version will give (as a string) the release number of SQUIRREL .

To know from where a SQUIRREL script has been launched, you can check the global variable _from.
When the script is runned from a terminal, this variable will hold the word "*terminal, and when
the user have double-clicked on the script icon, and that the Preferred Application is SQUIRREL , the
variable will have for value ""tracker. If the script is running from the SQUIRREL Console, the
value will be "*console.

2.13 Using Add-Ons

Prior to the release 5.0, all the Add-Ons providing the primitives were loaded automaticaly by SQUIR-
REL . From release 5.0 on, SQUIRREL loads on start-up (except for the console version of SQUIRREL
, which load them all) only the following Add-Ons :

e Communication
e Control
e Data Processing
e Workspace
To get access to the other Add-Ons, you need to specify in your script which ones to load, using the

primitive use. For example, if we need to use the timing primitive from the Time Add-on, we will
add this to our script:

use ‘Time’

CHAPTER 2. SQUIRREL BASICS

35

2.13. USING ADD-ONS

to test :nb
for ["1 1 :nb] {
; do something
}

end

print “time : ” (timing "test 1000) “microseconds’

use accepts as many inputs as needed to load all the Add-Ons you need. The name of the Add-Ons
need to be given with correct spelling and it’s case sensitive.

The benefit is a real gain in starting time (specialy if you don’t need the GUI Add-On) for your script
and also lower use of the memory.

If you happend to load twice (or more) the same Add-On, SQUIRREL will simply replace all the
primitives definied in that Add-On by what it will suppose is a new version of them.

CHAPTER 2. SQUIRREL BASICS

Chapter 3

Standard Objects

This chapter describes the various Objects than SQUIRREL handle.

3.1 Application Messaging

Using the object Message, it is possible with SQUIRREL to send or receive messages from/to another
application or to receive a drag and drop notication on a widget.

The primitive Message is used to create a message object. The primitive accept as only input a num-
ber (integer or exadecimal) which is a value that captures what the message is about.

A message could store pretty mutch any basics SQUIRREL object like : word, number or list. When a
list is given, the list elements will be added with the same data name. They must be of the exact same
object type, else the method add will fail.

A SQUIRREL script accept to receive message by using a hook function that the script must define :
_MessageReceived. This function has only one input which is the received message:

Example 1
to MessageReceived :msg
switch ($msg~what) {
case 0x80 {

print “Received :” $msg~find "test
$msg~reply Message OxFF

end

36

3.1. APPLICATION MESSAGING

"int8 an int8 or uint8
"Intl6 | anintl6 or uintl6
"int32 | anint32 or uint32
"int64 | anint64 or uint64
"Ffloat | afloat

"double | adouble

""string | astring
"point | aBPoint
"rect a BRect

Table 3.1: Message datatype

When adding data in a message, it is possible to specify the exact datatype. The following table list
them all:

A message object has severals methods that allow to get/set the datas stored into it, as well as sending
it to an application:

Message add

Tadd (word | string) thing (word)

Put data in the message. The first input is the name of the data to add, the second is the value to
store. If a third input is given it must be a word that describe the exact datatype to use. The method
will output true if no error occurs, False else.

@> $msg~add "length 56.78

Message delivered

“delivered

Output true if the message has been delivered and so that it is possible to send a reply to that
message.

@> print $msg-delivered

true

Message empty

“empty

Remove all data from a message. Output true if no error is encounter.
@> $msg~add 'test “hello there’

@> $msg~empty

@> print $msg has ""test
false

CHAPTER 3. STANDARD OBJECTS

3.1. APPLICATION MESSAGING

Message~find

~find word | string

Output a new object created from the data(s) read in the message for the name given as input of
the method. An error is raised if the name is not found.

@> $msg~add '"test “hello there’
@> print $msg~find ""test
hello there

Message~has

“has (word | string) (word)

Output true if a data is found for the name given as first input. If a second input is given, it should
match the datatype of the data found.

@> $msg~add "test “hello there~
@> print $msg has "test

true

@> print $msgThas "test "int32
false

Message~is.empty
Tis.empty

Output true if a the message is empty of any data.

@> $msg~add 'test “hello there’
@> print $msgTis.empty

false

Message~is.remote

~is.remote

Output true if a the message has been sended by another application.

@> print $msgTis.remote
true

CHAPTER 3. STANDARD OBJECTS

39

3.1. APPLICATION MESSAGING

MessageTis.reply

“is.reply

Output true if a the message is a reply to another message.
@> $msg~add ""test “hello there’

@> print $msg”is.reply
false

Message~is.waiting

“is.waiting

Output true if a the sender of the message is waiting for a reply.

@> print $msg”is.waiting
false

Message names

“names
Output a list of all the data names in the message.

@> $msg~add ‘num 23.56

@> $msg~add "'str *what can 1 do ?~
@> $msg~add "foo [34 65 23 90]

@> show $msg~ names

[’num” “str> *foo’]

Message previous

“previous

Output the message to which the current message is a reply. false is outputted if the message is

not a reply.

@> make '‘org $rep~previous

Message rem
“rem word | string
Remove a data from the message. Output true if it succes.

@> $msg~rem ""test

CHAPTER 3. STANDARD OBJECTS

3.1. APPLICATION MESSAGING 40

Message replace

“replace (word | string) thing (word)

Replace data in the message. The first input is the name of the data to be replaced, the second if
the value to store. If a third input is given is must be a word that describe the exact datatype to use.

The method will output true if no error occurs, Fal se else. The datatype MUST be the same than
the data to replace.

@> $msg~add "length 56.78

@> $msg~replace "length 34

Messagereply

“reply message (word)

Send a message as the reply to the message given as first input. The message is NOT destroyed
by this method. A message could then be send several time. If a second input is given, it must be

the word "'reply. In this case, the method will block until it receives a reply from the target of the
message. The method outputs true if the reply has been send.

make '"'r Message 0x78

$r-add "data 45.8

$msg~reply :r

Message~send

“send string (word)

Send the message to an application whose signature is given as first input. The message is NOT
destroyed by this method. A message could then be send several time. If a second input is given, it

must be the word *"*reply. In this case, the method will block until it receives a reply from the target
of the message. The method output true if the message has been send.

@> $msg~send “application/x-vnd.Foo-Inc.MyApp’

Message timeout
“timeout word (number)
Set the timeout of the message when sending it, if the first input is "*send or output the current

timout if no second input is given. If the first inputs is ""reply the timout will be ON to wait for a
reply. A value of -1 sets an infinite timeout.

@> $msg~timeout "reply 50000

CHAPTER 3. STANDARD OBJECTS

3.2. IMAGE OBJECT

Message what
“what

Output the number that defines what the message is all about.

@> print $msg-what
128

3.2 |Image object

SQUIRREL 5.3 introduces a new kind of object that allow to handle images. This object can load and
manipulate any kind of images for which there is an installed translator.

The primitive Image is used to create an Image object. It accept either a filename or a given width
and height (in a list) in pixels. When no filename is given, the image will be created empty.

The primitive trans.mime outputs a list of all MIME type for which there is a Translator, whiles
the primitive trans.name outputs a list of the image format names.

An Image object had severals methods described bellow:

Image~height
“height

Output the height in pixel of the image.

@> $img~load ’ariane5.jpg’
@> print $img height

600

Image~length

“length

Output the memory used by the Image (in bytes).

@> $img~length
1228800

CHAPTER 3. STANDARD OBJECTS

3.2. IMAGE OBJECT

Image~load
“load string

Load an file into the image and discard any image already loaded. The method will select the cor-
rect Translator according to the file’s MIME type.

@> $img~load “myimage.gif”’

Image“mime
“mime word (string)

Set or get the MIME type of the image. If the MIME type is set it will be used when the image
is save.

@> $img~load “myimage.-jpg”’

@> print $img~mime '‘get

image/jpeg

Image”path

“path word (string)

Set or get the path of the image.

@> $img~load “myimage.jpg’

@> $img~path "set */this/place/this_name.gif’

@> $img~save

Image~save

“save (string word)

Save the image into a file. If no input is given, the method use the path and MIME type of the
image object. Otherwise, the input must be the path of the file to create and the name of the format to

store the image in.

@> $img~load “myimage.jpg’
@> $img~save “myimage.gif’ "GIF

Image~valid?
“valid?

Output true if the image is a correct image. When an image object is created from a file, the image
is only valid if the loading has been a sucess.

CHAPTER 3. STANDARD OBJECTS

43

3.2. IMAGE OBJECT

@> $img~load “myimage.cpp”
@ print $img~valid?
false

Image“width

“width

Output the width in pixel of the image.

@> $img~load ’ariane5.jpg’
@> print $img-width
800

CHAPTER 3. STANDARD OBJECTS

Chapter 4
Primitives

SQUIRREL is exploiting the system of Add-Ons from BeOS . All the primitives are actually in several
Add-Ons. A future release will include SQUIRREL ’s API, which will allow third parties to write
Add-Ons very easily.

This chapter describes all the primitives defined in each standard Add-on delivered with this release.

4.1 Add-ons management

This set of primitives allows you to seek details on the Add-on that is loaded. In the next release it
will be possible to load and unload Add-ons using primitives.

addon.list
addon.list

Output a list of all the Add-on loaded.

@> show addon.list
[AddOn” ”Communication” >Control” “Data Handling” ”Inspector’
List Handling” “Mathematics” >String” “Handling” *Time” ’Workspace~]

addon.info

addon. info string

Print information about an Add-on.

@> print addon.info ”Inspector”’

Purpose : Allow access to information on the interpreter
Author : [e-]
Version : 0.5

Last Update : 08/09/99

44

45

4.1. ADD-ONSMANAGEMENT

addon.func
addon . func string
Output a list of all the primitive defined in the Add-on given as input.

@> print addon.func “AddOn’
addon.func addon.info addon.list

CHAPTER 4. PRIMITIVES

4.2. COMMUNICATION 46

4.2 Communication

Output and input within your SQUIRREL scripts are made possible by the primitive implemented in
this Add-on.

This Add-On features two kinds of Message Boxes (which BeOS calls Alert). One is called Question
and the other is Info. The only difference between those two is their use. A Question message box
will block all activity and access to the application’s window since it’s a modal window. However, the
Info message box will not block the application’s window. An Info window will also not return the
button used by the user. Its purpose is to inform the user rather than ask him a question.

Both of the message boxes display an icon on the left of the message which could be specified when
creating the message box by including one of the following words :

‘'none no icon
"“info l
“idea Q
“'warning g
"'stop !
"bug 'ﬁf

Table 4.1: Type of message box

Both primitives will accept a 32x32 Image object instead of the previous words.

Info

Info word list word—string (thing)+

The primitive Info creates an Info message box. The first input must be one of the words representing
a certain type of icon, or an Image object. The second input is a list of strings or words, which will
be the label of the buttons. The third input is the title of the message box, and it can be a string or a
word. The primitive returns immediately.

@> Info "idea [""ok] °” ”An easier way to do that is to

CHAPTER 4. PRIMITIVES

47 4.2. COMMUNICATION
load
load stringl string2 ...
Load all the files (if they are valid SQUIRREL script file), whose filenames (and paths) were given
in inputs
@> load ~”../Scripts/constants.sqi’ ’../Script/math.sqi’
parse.anything
parse.anything string
Parse the string in input as anything and output a new object. The string must respect the correct
syntax.

@> make "'str “["this "is "a "list]’

@> make "val parse.anything :str

parse.block

parse.block string

Parse the string in input as a block and output a new block object.

@> make "'str “print \”hello there\”’
@> make "val parse.block :str

parse.float
parse.floatstring
Parse the string in input as a float and output a new float object.

@> make "'str 74.2345”
@> make "val parse.float :str

parse.integer

parse. integer string

Parse the string in input as an integer and output a new integer object.

@> make "'str ’748”
@> make "val parse.integer :str

CHAPTER 4. PRIMITIVES

4.2. COMMUNICATION

parse.list
parse. liststring
Parse the string in input as a list and output a new list object.

@> make "str 2 6 8 3 4 6~
@> make ''val parse.list :str

parse.number
parse.number string
Parse the string in input as a number and output a new number object.

@> make ''str *748”
@> make "'val parse.number :str

parse.string
parse.string string
Parse the string in input as a string and output a new string object.

@> make "'str “this is a string’
@> make "'s parse.string :str

parse.word

parse.word string

Parse the string in input as a word and output a new word object.

@> make ''str “this”’

@> make "w parse.word :str

Precision

Precision (number)

Set or get the floating point number precision (number of digits displayed after the decimal)
@> print Precision

3
@> Precision 4

CHAPTER 4. PRIMITIVES

4.2. COMMUNICATION

print
print thingl thing2 thing3 thing4 ...

Print all the inputs to the standard output. A floating point number is displayed with a precision
which is set in the Preferences. Lists are printed without the [], and each input is printed separated
by a space. A carriage return is added at the end.

@> print 4.56789 “hello” [2 3 4 5]
4.567 hello 2 3 4 5

Question

Question word list (thing)+

The primitive Question creates a Question message box. The first input must be one of the words
representing a certain type of icon or an Image object. The second input is a list of strings or words,
which are the buttons to display in the message box.The third input is the title of the message box.
All the other inputs will be concatenated in the message displayed. The primitive will output 1 if the
button used by the user is the first in the list, and 2 if it’s the second and so forth.

@> Question "stop ["Yes "No] ’Erasing all files” “Are your sure ?’

read.anything
read.anything

Read anything from the standard input and output a new object with the value. Correct syntax must
be applied

@> type ’Enter something : ”, make 'thing read.anything
Enter something - [1 2 3 4 5]

@> print is.list :thing

true

read.block

read.block

Read a block from the standard input and output a new object with the value. Only one line block
is valid.

@> type ’Enter your orders: ”, make "block read.block
Enter your orders: print "a, make "b 456, add :a :b
@> run :=block

4

460

CHAPTER 4. PRIMITIVES

4.2. COMMUNICATION

read.float
read.float

Read a float from the standard input and output a new object with the value.

@> type ’Enter the value of v: ”, make "v read.float
Enter the value of v: 4.67

@> print :v

4.67

read.integer
read. integer

Read an integer from the standard input and output a new object with the value.

@> type How old are you ? ”, make "old read.integer
How old are you ? 25

@> print :old

25

read.list
read.list

Read a list from the standard input and output a new object. The space between inputs will mark
each element of the list.

@> type ’Enter a list: ”, make "mylist read.list
Enter a list: 3 6 2 3.4 “this is a string” "myword
@> show :mylist

[3 6 2 3.4 ”this is a string” "myword]

read.number

read.number

Read a number (integer or float) from the standard input and output a new object with the value.

@> type ’Enter a number: ”, make "num read.number
Enter a number: 345

@> print :-num

345

CHAPTER 4. PRIMITIVES

51

4.2. COMMUNICATION

read.string
read.string
Read a string from the standard input and output a new object with the value.

@> type ’Enter your name: ’, make '"'name read.string
Enter your name: Joe

@>

read.word

read.word

Read a word from the standard input and output a new object with the value.

@> type ’Enter a function name: ”, make "func read.word
Enter a function name: thing

@>

show

show thing1 thing2 thing3 thing4 ...

Print all the inputs to the standard output. Floating point numbers are displayed with a precision
which is set in the Preferences. Lists are printed with the [], and each input is printed separated by
a space. A carriage return is added at the end.

@> show 4.56789 “hello’ [2 3 4 5]
4.567 “hello” [2 3 4 5]
type

type thingl thing2 thing3 thing4 ...

Print all the inputs to the standard output. Floating point numbers are displayed with a precision
which is set in the Preferences. Lists are printed without the [], but no space is added between
inputs. A carriage return is added at the end.

@> type 4.56789 “hello” [2 3 4 5]
4.567 hello 2345

CHAPTER 4. PRIMITIVES

4.3. CONTROL

4.3 Control

Most control structures are implemented deep inside the interpreter, but some of the simplest are in
this Add-on.

call

cal l word thingl thing2 thing3 ...

The command cal I executes commands (primitive or procedure) given as its first input. All the
other inputs will be treated as regular inputs to this command.

@> call "print “This is a test:” sum 4 5
This is a test: 9

break

break

This order only makes sense within a loop. It will stop the execution of the loop and return with-
out executing the remaining orders in the loop block.

for ["i 1 100] {
it (myfunc :i (random 45))<34 {break}

dosomething with :i

continue
continue

This order only makes sense within a loop. It will advance in the execution of the loop and not
execute the remaining orders in the loop block.

for ["i 1 100] {
it Zi%10 {continue}

print :i

}

Will produce:

CHAPTER 4. PRIMITIVES

53

4.3. CONTROL

10
20
30
40
50
60
70
80
90
100

stop

stop

Stop the execution of a function. Execute the next order after calling the function.

to foo :a
it a=0 {stop}
print :a

end

test

test expression

Evaluate the expression in input and remember the result. The result will be used by an iftrue

and i Ffalse.

@> test :a < 10

wait
wait number
Suspend the execution for a number seconds. The input must be an integer.

@> wait 2

CHAPTER 4. PRIMITIVES

4.4. DATA PROCESSING

54

4.4 Data processing

Several primitives are implemented in this Add-on to manipulate data.

butfirst

butfirst thing

Output all, but the first element of the input, if the input is a list. Otherwise if the input is a string or a
word, output all, but the first of its characters.

@> print butfirst [3 2 4 5]
245

@> print butfirst “hello’
ello

butlast

butlast thing

Output all, but the last element of the input, if the input is a list. Otherwise if the input is a string
or a word, output all, but the last of its characters.

@> print butlast [3 2 4 5]
324

@> print butlast “hello”
hell

clone
clone thing
Output a new object to be the exact copy of the input.

@> make "a [1 23 456 7 8 9 0]
@> make "'b clone :a

deepclone
deepclone thing

Output a new object to be the exact copy of the input. This order is different from clone when
used on a list as it clone as well all the elements of the list.

@> make "a [1 234567 89 0]
@> make "'b deepclone :a

CHAPTER 4. PRIMITIVES

55

4.4. DATA PROCESSING

first

Firstthing

If the input is a list, the primitive outputs it first element. Otherwise outputs the first character of

the string or word if the input states it.

@> print first [3 2 4 5]

3

@> print first “hello’
h

is.block

is.block thing

Output true if the input is a block.

@> print is.block “test”

false

@> print is.block {print “hello’}
true

is.bool

is.bool thing

Output true if the input is a Boolean value.

@> print is.bool 4
false

@> print is.bool true
true

is.float

is.float thing

Output true if the input is a floating point number.

@> print is.float 4.56
true

@> print is.float 23
false

CHAPTER 4. PRIMITIVES

4.4. DATA PROCESSING

is.integer
is. integer thing

Output true if the input is an integer number.

@> print is.integer 4.56
false

@> print is.integer 23
true

is.list

is. listthing

Output true if the input is a list.

@> print is.list [1 2 3 4]
true

@> print is.list 3

false

is.number

is.number thing

Output true if the input is a number (float or integer).

@> print is.number 4.56
true

@> print is.number 23
true

is.object
is.object thing
Output true if the input is an object (Array, File ...).

@> print is.object 4.56
false

@> make 'a Array 10

@> print is.Object :a
true

CHAPTER 4. PRIMITIVES

57

4.4. DATA PROCESSING

is.string
is.string thing
Output true if the input is a string

@> print is.string “hell there
true

@> print is.string '"test
false

is.word

is.word thing

Output true if the input is a word.

@> print is.word [1 2 3 4]
false

@> print is.word '"test
true

item

i tem number thing

Output the number at the position given from the second input if the second input is a list. Other-
wise if it’s a string or a word, output the corresponding character to the position given. The first

element is at position 1.

@> print item 1 [3 2 4 5]
3

@> print item 5 “hello”’

o}

last

last thing

Output the last element of the input if the input is a list. Otherwise if it’s a string or a word, out-

put its last character.

@> print last [3 2 4 5]
5

@> print last “hello’

o}

CHAPTER 4. PRIMITIVES

4.4. DATA PROCESSING

58

word

word wordl word2 word3 ..
Output the concatenation of the input as a word.

@> print word "a "b "c "'d "e "f "]
abcbebfbj

CHAPTER 4. PRIMITIVES

4.5. DATA STRUCTURES

45 Datastructures

Using a list in SQUIRREL is very simple and powerful. However, it is possible that a list may not
meet the requirements for more efficiency or simply that a list can not adapt to a particular task. This
Add-on gives SQUIRREL two data structures : Vector and Dictionary. Each of these data structures
are an object that has methods.

Dictionary
Dictionary

Create a new Dictionary. An object of this type has most of the functionalities of an array, but
the indexes are not limited to integers. An index could be a number, word, or string. The dictionary’s
index is referred to as the key.

The primitive Is.dictionary will return true only if the input is a Dictionary.

Several methods are available for a dictionary, for example, to get and set the value of the element or
to perform other operations :

Dictionary™av
Tav

Output the average value of all the numerical values in the dictionary. 0 will be the output if no
numerical value is found.

@> make ''v Dictionary
@> $v~set "jim 25

@> $v set ""tom 34

@> $v_set "eric 20

@> $v_set "jon 31

@> print $v av

27.5

Dictionary empty
“empty
Erase all the elements of the dictionary.

@> make ''v Dictionary
@> $v~set "jim 25

@> $v set ""tom 34

@> $v.set "eric 20

@> $v~set "jon 31

@> $v empty

CHAPTER 4. PRIMITIVES

4.5. DATA STRUCTURES

60

Dictionary“erase

“erase key

Erase the element with the key key in the dictionary.

@> make ''v Dictionary
@> $v set "jim 25

@> $v set ""tom 34

@> $v set "eric 20

@> $v~set "jon 31

@> $v_erase 'tom

Dictionary“exists

“exists key

Output true if the key key exists in the dictionary, False else.

@> make ''v Dictionary
@> $v set "jim 25

@> $v set ""tom 34

@> $v~set eric 20

@> $v~set "jon 31

@> print $v exists "kim
false

Dictionary™find
~find thing

Output the key of the first occurrence of the value thing in the dictionary. If the value is not found,
Talse will be the output.

@> make ''v Dictionary
@> $vTset "jim 25

@> $v~set "tom 34

@> $v~set eric 20

@> $v_set "jon 31

@> print $v~find 34
tom

@> print $v_find "Dave
false

CHAPTER 4. PRIMITIVES

61

4.5. DATA STRUCTURES

Dictionary~find.all
~find.all thing

Output a list of all the keys with the value thing in the dictionary. If the value is not found the
list will be empty.

@> make ''v Dictionary
@> $v set "jim 20

@> $v~set "tom 34

@> $v~set eric 20

@> $v~set "jon 31

@> print $v~find.all 20
[eric jim]

@> print $v~find.all 40
1

Dictionary™find.if
~find. i fword (thing ...)

Output the key of the first element in the dictionary, which when given as the first argument to the
function, word returns the value true. The other inputs thing, will be given to the function word. If
no element matches, false will be the output.

to lessthan :element :bound
output :element<:bound
end

@> make ''v Dictionary

@> $vTset "jim 20

@> $v_set "tom 34

@> $v set "eric 25

@> $v_set "jon 31

@> print $v~Ffind.if "lessthan 30
eric

@> print $v find.if "lessthan 20
false

Dictionary™find.if.all
~find.if.all word (thing ...)
Output a list of the key of the elements in the dictionary, which when given as the first argument

to the function, word returns the value true. The other inputs thing, will be given to the function
word. If no element matches, the list will be empty.

CHAPTER 4. PRIMITIVES

4.5. DATA STRUCTURES

to lessthan :element :bound
output :element<:bound
end

@> make ''v Dictionary

@> $v set "jim 20

@> $v~set tom 34

@> $v~set eric 25

@> $v_set "jon 31

@> print $v find.if.all "lessthan 30
[eric jim]

@> print $v find.if.all "lessthan 20
[1

Dictionary™find.if.last
~find.if.lastword (thing ...)

Output the key of the last element in the dictionary, which when given as the first argument to the
function, word returns the value true. The other inputs thing, will be given to the function word. If
no element matches, false will be the output.

to lessthan :element :bound
output :-element<:bound
end

@> make ''v Dictionary

@> $v set "jim 20

@> $v set ""tom 34

@> $v~set eric 25

@> $v~set "jon 31

@> print $v find.if_last "lessthan 30
jim

@> print $v~find .if.last "lessthan 20
false

Dictionary~get
~get key

Output the value for the key key in the dictionary. An error will be thrown if the key is not found
in the dictionary.

@> make ''v Dictionary
@> $v~set "jim 20
@> $v set ""tom 34
@> $v.set "eric 25

CHAPTER 4. PRIMITIVES

4.5. DATA STRUCTURES

@> $v set "jon 31
@ print $v get "tom
34

Dictionary”iterate
“iterate word (thing ...)

Execute the function word for each element of the dictionary. The function called will receive as
its input, the element and the other inputs of the method thing The method will return a Dictionary
containing what the function word returned for each element.

to add :a :b
output :a+:b
end

@> make ''v Dictionary

@> $v~set "jim 20

@> $v set ""tom 34

@> $v.set "eric 25

@> $v~set "jon 31

@> make "b $vTiterate "add 1

Dictionary~iterate.i
“iterate. i word (thing ...)

Execute the function word for each element of the dictionary. The function called will receive as
its input, the position and value of the element in the dictionary. The other inputs to the method thing
... will be added. The method will return a Dictionary containing what the function word returned for
each element.

to foo :key :value :coef
output :-value + :coef
end

@> make ''v Dictionary

@> $v~set "jim 20

@> $v set ""tom 34

@> $v set "eric 25

@> $v~set "jon 31

@> make "b $vTiterate.i "foo 3

Dictionary™max

max

CHAPTER 4. PRIMITIVES

4.5. DATA STRUCTURES

64

Output the maximum value of all the numerical values in the dictionary. 0 will be the output if no
numerical value is found.

@> make ''v Dictionary
@> $vTset "jim 20

@> $v set ""tom 34

@> $v set "eric 25

@> $v~set "jon 31

@> print $v max

34

Dictionary™min

miIn

Output the minimum value of all the numerical values in the dictionary. 0 will be the output if no
numerical value is found.

@> make ''v Dictionary
@> $v set "jim 20

@> $v set ""tom 34

@> $v set "eric 25

@> $v~set "jon 31

@> print $v min

20

Dictionary~set

“set key thing

Set the value for the key key in the dictionary with the value thing.
@> make ''v Dictionary

@> $v7set "jim 20

@> $v_set "tom 34

@> $v_set "eric 25
@> $v7set "jon 31

Dictionary~size

“size

Output the number of elements in the dictionary.
@> make ''v Dictionary

@> $v7set "jim 20
@> $v set "tom 34

CHAPTER 4. PRIMITIVES

65

4.5. DATA STRUCTURES

@> $v_set "eric 25
@> $v set "jon 31
@ print $vsize
4

Vector

Vector (size (initial_value))

Create a new Vector. If the size is specified, the vector will be of this size. If an initial_value is
given, the vector element will be set to this value. A vector in Squirrel doesn’t have a fixed capacity,
even when the size is specified.

Vector list If the first input is a list, the content of the list will be used as the content of the array,
and the its size will be set to the size of the list.

The index in a vector starts from 1. The primitive is.vector will return true only if the input is
a Vector.

Several methods are available on an vector:

Vector™append

Tappend thing

Add the input thing to the end of the vector. The size of the vector is increased.
@> make "'v Vector [1 2 3 4]

@> $vTappend 5

@> print :v
12345

Vector~av

av

Output the average value of all the numerical values in the array. 0 will be the output if no numerical
value is found.

@> make "'v Vector [1 2 3 4]

@> print $vav
2.5

Vector“erase

“erase index

CHAPTER 4. PRIMITIVES

4.5. DATA STRUCTURES 66

Erase the element at the position index in the vector. The size of the vector is reduced by one, and the
elements following the one just erased are shifted to the left.

@> make "'v Vector [6.4 2.4 2.1 8.34]
@> $v_erase 3

@> print :v

6.4 2.4 8.34

Vector~find
~find thing

Output the position of the first occurrence of the value thing in the vector. If the value is not found, O
will be the output.

@> make "v Vector [6.4 2.4 2.1 8.34]
@> print $v find 4.56

0

@> print $v find 2.4

2

Vector~find.all
~find.all thing

Output a list of all the positions of the occurrence of the value thing in the vector. If the value is
not found the list will be empty.

@> make ''v Vector [6.4 1 2.4 2.1 1 8.34 1]
@> print $v find.all 1

[2 5 7]

@> print $v_Ffind.all 4

1

Vector find.if
~find.ifword (thing ...)

Output the position of the first element in the vector, which when given as the first argument as the
function, word returns the value true. The other inputs thing, will be given to the function word. If
no element matches 0 will be the output.

to lessthan :element :bound
output :element<:bound
end
@> make "'v Vector [6.4 2.4 2.1 8.34]
@> print $v find.if "lessthan 3

CHAPTER 4. PRIMITIVES

4.5. DATA STRUCTURES

2
@> print $v find.if "lessthan 2
0

Vector~find.if.all

~find.if.all word (thing ...)

Output a list of the positions of the element in the vector, which when given as the first argument
as the function, word returns the value true. The other inputs thing, will be given to the function
word. If no element matches the list will be empty.

to lessthan :element :bound

output :-element<:bound
end
@> make "'v Vector [6.4 2.4 2.1 8.34]
@> print $v find.if.all "lessthan 3
[2 3]
@> print $v find.if.all "lessthan 2

01

Vector~find.if.last

~find.if.lastword (thing ...)

Output the position of the last element in the vector, which when given as the first argument to the
function, word returns the value true. The other inputs thing, will be given to the function word. If
no element matches 0 will be the output.

to lessthan :element :bound

output :element<:bound
end
@> make "v Vector [6.4 2.4 2.1 8.34]
@> print $v find.if.last "lessthan 3
3
@> print $v~find .if.last "lessthan 2
0

Vector~get
~get index

Output the value at the position index in the vector. index must be an integer between 1 and the
size of the vector, otherwise an error will be thrown.

@> make "'v Vector [6.4 2.4 2.1 2.4 8.34]

@> print $v get 3
2.1

CHAPTER 4. PRIMITIVES

4.5. DATA STRUCTURES 68

Vector“iterate
“iterate word (thing ...)

Execute the function word for each element of the array. The function called will receive as its input,
the element and the other inputs of the method thing The method will output a Vector containing
what the function word returned for each element.

@> make "'v Vector [6.4 2.4 2.1 2.4 8.34]
@> make b $vTiterate ''rsin

@> print :b

0.1165 0.6755 0.8632 0.6755 0.8842

Vector~iterate.i
Titerate. i word (thing ...)

Execute the function word for each element of the array. The function called will receive as its input,
the position and value of the element in the vector. The other inputs to the method thing ... will be
added. The method will output a Vector containing what the function word returned for each element.

to foo :position :value :coef

output :position * :value + :coef
end
@> make "'v Vector [6.4 2.4 2.1 2.4 8.34]
@> make "b $vTiterate.i "foo 3
@> print :b
9.4 7.8 9.3 12.6 44.7

Vector max
“max

Output the maximum value of all the numerical values in the array. 0 will be the output if no nu-
merical value is found.

@> make "'v Vector [6.4 2.4 2.1 2.4 8.34]
@> print $v max
8.34

Vector'min

min

Output the minimum value of all the numerical values in the array. 0 will be the output if no nu-
merical value is found.

CHAPTER 4. PRIMITIVES

4.5. DATA STRUCTURES

@> make "'v Vector [6.4 2.4 2.1 2.4 8.34]
@> print $v min
2.1

Vector~set

“set index thing

Set the value at the position index in the vector with the value thing. index must be an integer be-
tween 1 and the size of the vector, otherwise an error will be thrown.

@> make "'v Vector [6.4 2.4 2.1 2.4 8.34]
@> $v set 3 4.3

@> print :v

6.4 2.4 4.32.48.34

VectorTsize

size

Output the number of elements in the vector.

@> make "'v Vector [6.4 2.4 2.1 2.4 8.34]
@> print $v size
5

Vector~sort

“sort (word)

Sort the vector in ascending order if "*asc is specified (or if no input is given). Sort the vector in
descending order if "'des is given.

@> make "'v Vector [6.4 2.4 2.1 2.4 8.34]
@> $v sort

@> print :v

2.1 2.42.46.48.34

Vector~sort.new

“sort.new (word)

Output a new sorted clone of the vector in ascending order if ""asc is specified (or if no input is
given). Output a new sorted clone of the vector in descending order if **des is given.

@> make ''v Vector [6.4 2.4 2.1 2.4 8.34]
@> make "w $v sort.new 'des

@> print :w

8.34 6.4 2.42.42.1

CHAPTER 4. PRIMITIVES

4.5. DATA STRUCTURES

70

Vector~reverse

“reverse (word)

Reverse the element of the vector.

@> make "'v Vector [6.4 2.4 2.1 2.4 8.34]
@> $Vv reverse

@> print :v

8.34 2.4 2.12.46.4

Vector~reverse.new

“reverse.new (word)

Output a reversed clone of the vector.

@> make "'v Vector [6.4 2.4 2.1 2.4 8.34]
@> make "w $v reverse.new

@> print :w

8.34 2.4 2.1 2.46.4

CHAPTER 4. PRIMITIVES

71

4.6. EXEC

4.6 Exec

This Add-on allows us to execute external programs and to collect their output.

exec.bg
exec.bgword | [word things...] string (thing)*
Execute the program given as the second input. All the inputs to the primitive after the second, will
be given as arguments to the program. The first input is the name of a function to execute each time
the program outputs a line. The output will be given as the first input of the command. If a list is used
instead of a word, it will contain as its first element, the name and inputs of the function to call. The
primitive outputs the id of the thread.
to process :line

print :line
end

@> exec.bg "process ’/bin/ls’

exec.wait

exec .wait word string (thing)*

Execute a program given as the second input. All the inputs to the primitive after the second, will
be given as arguments to the program. The first input is a variable name. This variable will contain
a list of all the outputs from the program. The primitive returns when the program has finished and
output the error code returned by the programmed executed.

@> exec.wait "term */bin/sh” ”-c” “exec echo $TERM~’

@> print :-term

dumb

launch

launch string

Launch the preferred application of the file given as input (complete path).

@> launch “mydoc.html”

CHAPTER 4. PRIMITIVES

4.7. FILE INPUT/OUPUT 72

4.7 Filelnput/Ouput

Using SQUIRREL to read and write to a text file is possible with the use of the following primitives:

fclose
fclose file
Close an opened text file.

@> fclose :myfile

feof
Feoffile
Output true if there are no more lines to read from the text file. The End of File has been reached.

@> it not (feof :myfile) {make "line fgets :myfile}

fgets
fgetsfile

Read a line from the text file file and output it into a string. Throw an error if the end of the file
has been reached.

@> make "line fgets :myfile

fopen
fopen mode path
Open a text file path in a certain mode (*"in "out "append) and output a file object.

@> make "myfile fopen "in “test.txt’

fputs
fputs file thingl thing2 thing3 ...
Write a line in the text file file composed of the concatenation of the inputs thing1 thing?2 ...

@> fputs :myfile 12 * ” 56.56

CHAPTER 4. PRIMITIVES

73

4.7. FILEINPUT/OUPUT

is.file
is.Filething
Output true if the input thing is a file and Fal se otherwise.

@> print is.file 4
false

CHAPTER 4. PRIMITIVES

4.8. IMAGE PROCESSING

74

4.8 |mage processing

This Add-on contains several image processing primitives.

img.crop
img.crop image width height

Crop the first input to the size given as second and third input. The primitive output a new image
object.

@> make *img2 img.crop :-img 100 100

img.scale

img.scale image word [number number — list]

Scale the image given as first input. The second input is either ""factor or ""'size. The next
inputs shall be a list of two numbers, or two numbers. When the second input is **factor the two
numbers give a fcator by with the image shall be scaled (the value shall be between 0 and 1). When the
second input is size, the two numbers are width and height of the destination image. The primitive
output a new image object.

@> make "img2 img.scale :img "factor 0.4 0.4

CHAPTER 4. PRIMITIVES

4.9. INSPECTOR

4.9 |nspector

Used mostly for debugging, the Add-on Inspector provides various information on SQUIRREL . For
examples, the heap content, or the current memory usage.

deth
deth

Print a dump of all the objects in the eternal heap

@> deth

BOL[1][1]1[0] - true
BOL[2][2][0] - false
DBL[4]1[0][0] - 23.6
INT[71[O]1[0] - 12

STR[11][0][0] - hello there
KWO[16][1]1[0] - abc
INT[18][1]1[0] - 2345
LST[20][1][0] - 12 3 4 5
INT[21][1]1][0] -
INT[22][1]1[0] -
INT[23]1[1]1[0] -
INT[24][1]1][0] -
INT[25][1]1][0] -

G WNPF

dgloh
dgloh

Print a dump of all the objects in the global heap

@> dgloh
BOL[1]1[1][O] - true
BOL[2]1[2][0] - false
DBL[4]1[1][0] - 23.6
INT[71[1][0] - 12

STR[11][1]1[0] - hello there

dloh
dloh

Print a dump of all the objects in the local heap (useful when used within a function)

CHAPTER 4. PRIMITIVES

4.9. INSPECTOR

@> dloh

BOL[1][1][0] - true
BOL[2][2]1[0] - false
DBL[4]1[1][0] - 23.6
INT[71[1][0] - 12

STR[11][11[0] - hello there

dump
dump thing1 thing2 thing3 ...
Print internal information about the inputs in the format:

type[id][ref][status] - value

@> make "a 23.56
@> dump :a
DBL[4][1]1[0] - 23.6

dtreeh

dtreeh

Print a dump of all the objects in the tree heap
@> dtreeh

BLK[46][1]1[0] -

{block}[

{builtin}[]

BUIT47]1[1]1[0] - {builtin}[]

mem.usage?
mem.usage?
Output the current memory usage in bytes.

@> print mem.usage?
4284416

pglov
pglov

Print all the global variables and their values.

CHAPTER 4. PRIMITIVES

77

4.9. INSPECTOR

@> pglov
abc
2345
12345

a
b
c
d false

plov
plov

Print all the local variables and their values.

(]
\%
O
N =m
w Qo
<

hello there
false

xhl -
I

sgloh
sgloh

Print information about the global heap e.g. number of objects present and total current number
of objects created.

@> sgloh
Size =0 Last ID =0

sloh
sloh

Print information about the local heap e.g. number of objects present and total current number of
objects created.

@> sloh
Size =0 Last ID =0

CHAPTER 4. PRIMITIVES

4.10. LIST PROCESSING

4.10 List processing

This Add-on contains several primitives which operate on Lists.

fput

Tput thing list

Output a list formed by the concatenation of the first input and the second input.
@> show fput 34.56 [*foo” 345]

[34.56 *foo” 345]

gseq

gseq from to (count)

Output a list of the numbers from from to to. If count is specified, numbers will be equally spaced and
the size of the list will be count.

@> print gseq 5 10

567 89 10

@> print gseq 1 10 20

11.47 1.95 2.42 2.89 3.37 3.84 4.32 4.79 5.26
5.74 6.21 6.68 7.16 7.63 8.11 8.58 9.05 9.53 10
lappend

lappend list thingl thing2 thing3 ...

Append the inputs to the list specified as the first input. This primitive mutates the list.
@> make "a [1 2 3 4]

@> lappend za 5 6 7 8 [9]

@> show :a

[12345678[9]]

lempty

lempty list

Output true if the list is empty, and false otherwise.

@> print lempty [1 2 3 4]
false

CHAPTER 4. PRIMITIVES

4.10. LIST PROCESSING

Ifind
I1Find list thing

Output the position in the list given as first input, of the first occurrence of the second input. Out-
put O if not found

@> make "1 [23 56 "hello this is it !”]
@> print Ifind :1 "hello

3

lindex

1 index list index (thing)

Output the value at the position index in the list, or change the value at this position if a third
input is specified. This primitive mutates the list.

@> print lindex [1 2 3 4 5] 3
3

@> make "a [1 2 3 4 5]

@> make b :a

@> lindex :a 5 99

@> show :b

[1 2 3 4 99]

list

i st thingl thing2 thing3 ...

Output a list whose members are in the inputs.

@> make "mylist list 2 5.6 “hello” "foo
@> show :mylist

[2 5.6 “hello” "foo]

ljoin

1join list (thing)

Output the concatenation of all the elements of the list list separated by thing if specified in a string.

@> print ljoin [1 2 3 4 5] ”;”
1;2;3;4;5

CHAPTER 4. PRIMITIVES

4.10. LIST PROCESSING

llength

11ength list

Output the length of the list.

@> print llength [2 5 1 76 8]

5

Iput

Iput thing list

Output a list formed by the concatenation of the second input and the first input.
@> show Iput “end” [*foo” 345]

[>foo” 345 ’end’]

Iremove

Iremove list thing

Remove the first occurence of the second input from the first input.

@> Iremove :list 4

Iscan

Iscan list varl ”var2 "var3 ...

Store the element of the list starting from the first one into each given variable name, and output
the rest of the list. If there are less elements than variables in the list, the variable values will be set to
an empty list.

@> make "rest Iscan [1 2 3 45 6] "a "b 'c
@> show :rest

[4 5 6]

@> show :a :b :c

123

Isub

Isub list from (to)

Ouput a sublist of the list given as first input, from the index from to the index to if given, else to
the end of the list.

CHAPTER 4. PRIMITIVES

81

4.10. LIST PROCESSING

@> show Isub ["a "b "c "d "e "f] 3 5
[c "d "e]

reverse

reverse list

Output a list in the reverse order from that given as input.

@> show reverse [1 2 3 4 5]
[54 32 1]

sentence

sentence thingl thing2 thing3 ...

Output a list whose members are in the inputs. Lists in the inputs are flattened.

@> make "mylist sentence 2 5.6 [1 2 3 4]
@> show :mylist
[2 5.6 1 2 3 4]

CHAPTER 4. PRIMITIVES

4.11. MAIL

82

411 Mail

This Add-On give to SQUIRREL script to build and send emails throught a new Mail object.

A Mail object is not automaticaly destroyed when sended, it’s to the developer to do it, if we want.

4.11.1 Primitives

The following primitives are available:

is.mail

is.mail thing

Output true if the input is a Mail object
@> make "'msg Mail

@> print is.mail 5

false

@> print is.mail :msg
true

Mail
Mail
Output a new mail object.

@> make "‘msg Mail
@>

Send
Send (mail (word))

Send an email if the email is given as first input. If no input given, all the pending emails in the
Out folder will be send. If a second input is given, it must be the word "*now or ""later. ""now will
send the message now.

@> Send :msg "later

4.11.2 Mail Object

To fill a mail, we use the severals methods available :

CHAPTER 4. PRIMITIVES

83

4.11. MAIL

Mail attachment

Tattachment word (string)

The method acts on the files attached to the email. If the first input is *'set the second input is
added to the list of attachments. If the first input is **chg, the second input will replace the current

list. If the first input is ""del (no second input needed), the list will be deleted. If it’s ""get, the
method will output the current attached files.

@> $msgTattachment "set “myfile.zip’

Mail"bcc

“bce word (string)

The method acts on the blind carbon-copy recipients of the mail. If the first input is ""set the second
input is added to the list of recipient. If the first input is "*chg, the second input will replace the

current list of recipients. If the first input is "*del (no second input needed), all the recipients will be
removed from the list. If it’s "*get, the method will output the current list of recipients.

@> $msg~bcc "set *joe@cool.net”

Mail cc

~cc word (string)

The method acts on the carbon-copy recipients of the mail. If the first input is ""set the second
input is added to the list of recipient. If the first input is *"'chg, the second input will replace the

current list of recipients. If the first input is "*del (no second input needed), all the recipients will be
removed from the list. If it’s "*get, the method will output the current list of recipients.

@> $msg~cc "set “bill@cool.net”

Mail content
~content word (string)

The method acts on the content of the mail. If the first input is ""set the second input is added a
new line in the content. If the first input is **chg, the second input will replace the current content. If
the first input is "*del (no second input needed), the content will be deleted. If it’s **get, the method
will output the current content.

@> $msg~content "'set “Hello Bob,\n’
@> $msg~content "set “Can you tell me where you are ?\n”
@> $msg~content set *Thanks\n~

CHAPTER 4. PRIMITIVES

4.11. MAIL

Mail™from
~fromword (string)

Set or get the sender email of the message. By default, the sender email is set at sending time from the
BeOS settings.

@> $msg~from "set “jlv@bemail.org’

Mail"to

~to word (string)

The method acts on the recipient of the mail. If the first input is "'set the second input is added
to the list of recipient. If the first input is **chg, the second input will replace the current list of recip-
ients. If the first input is **del (no second input needed), all the recipients will be removed from the

list. If it’s ""get, the method will output the current list of recipients.

@> $msg~to "set “bob@cool.net”

Mail"reply
“reply word (string)

Set or get the reply field of the message. By default, the reply is set at sending time from the BeOS
settings.

@> $msg~reply ''set me@me.org’

Mail subject

“subject word (string)

Set or get the subject of the email.

@> $msg~subject "set “Business Plan Rev0.8”

@> print $msg~subject "get
Business Plan Rev0.8

CHAPTER 4. PRIMITIVES

4.12. MATHEMATICS

412 Mathematics

To perform mathematical operations such as max, and rsin, you may use this Add-on. It provides
random number generations and contains a large amount of Mathematical primitives.

abs

abs number

Output the absolute value of the input

@> print abs -4.78
4.78

av

av thing1l thing2 thing3 thing4 ...

Output the average value of the input. The input may be a number or a list. Any input of other
types will be ignored.

@ print av 3 6 2 9.6 [3 2 4 0.5]
3.762

ceil
ceil number

Output the smallest integer that is not less than the input.

@> print ceil 4.576
5

deg2rad

deg2rad number

Output the equivalent angle in radians for the degree given (converting degrees to radians)

@> print deg2rad 120
2.094

CHAPTER 4. PRIMITIVES

4.12. MATHEMATICS

difference
difference numberl number2

Output the difference between numberl and number2.

@> print difference 4 5
1

dacos
dacos number

Output the arccosine of the input given in degrees

@> print dacos 45
0.9033

dasin
dasin number

Output the arcsine of the input given in degrees

@> print dasin 180
nan

datan
datan number

Output the arctangent of the input given in degrees

@> print datan 45
0.6658

dcos
dcos number

Output the cosine of the input given in degrees

@> print dcos 180
-1

CHAPTER 4. PRIMITIVES

87

4.12. MATHEMATICS

dcosh
rcosh number

Output the hyperbolic cosine of the input given in degrees

@> print dcosh 180
11.59

dsin
dsin number

Output the sine of the input given in degrees

@> print dsin 60
0.866

dsinh
dsinh number

Output the hyperbolic sine of the input given in degrees

@> print dsinh 180
11.55

dtan

dtan number

Output the tangent of the input given in degrees
@> print dtan 140

-0.8391

dtanh

dtanh number

Output the hyperbolic-tangent of the input given in degrees

@> print dtanh 78
0.8767

CHAPTER 4. PRIMITIVES

4.12. MATHEMATICS

erf
erf number

Output the error function of the input.

@> print erf 4.5
1

erfc
erfc number

Output the complementary error function of the input.

@ print erfc 4.5
1.96616e-10

exp
exp number

Output the exponential value of the input.
@> print exp 4.7

109.95

floor

Tloor number

Output the largest integer that is not greater than the input.

@> print floor 4.576
4

gamma
gamma number

Output the log gamma function of the input.

@> print gamma 4.5
2.45374

CHAPTER 4. PRIMITIVES

4.12. MATHEMATICS

hypot

hypot numberl number2

Output the Euclidean distance function of the input
@> print hypot 2.5 6.8

7.245

incr

incr word (number)

Increment the value stored in a variable by 1 or by the number specified as the second input. The
first input must be a known variable name.

@> make "a 1

@> incr "a -1

@> print :a

0

int

int number

Output a cast of the input into an integer.
@> print int 4.576

4

log10

10g10 number

Output the logarithm (base 10) of the input.
@> print logl0 5000

3.699

In

In number

Output the natural logarithm of the input.

@> print In 5000
8.517

CHAPTER 4. PRIMITIVES

4.12. MATHEMATICS

90

max

max thingl thing2 thing3 thing4 ...

Output the maximum value of the inputs. The inputs may be numbers or lists. Any input of other
types will be ignored.

@> print max 3 6 2 9.6 [3 2 4 0.5]
9.6

min

min thingl thing2 thing3 thing4 ...

Output the minimum value of the inputs. The inputs may be numbers or lists. Any input of other
types will be ignored.

@> print min 3 6 2 9.6 [3 2 4 0.5]
0.5

minus

minus number

Output the negative value of the input.

@> print minus -5

5

@> print minus 45.78
-45.78

product

product thingl thing2 thing3 thing4 ...

Output the product of all the inputs. The inputs may be numbers or lists. Any input of other types will
be ignored.

@> print product 3 6 2 9.6 [3 2 4 0.5]
4147 .2

guotient

quotient numberl number2

Output the quotient of numberl over number2.

@> print quotient 5 7
0.714

CHAPTER 4. PRIMITIVES

91

4.12. MATHEMATICS

modulo
modu l o numberl number2

Output the remainder from performing the integer quotient of numberl over number2. Both num-
bers must be integers.

@> print modulo 10 2
0

power
power numberl number2
Output the power of numberl by number2

@> print power 3.4 5
454 354

racos
racos number
Output the arccosine of the input given in radians

@> print racos 0.4
1.159

rad2deg

rad2deg number

Output the corresponding angle in degrees, given the angle in radians (converting from radians into
degrees)

@> print rad2deg 2.094
120

random
random (min) max

Output a random number between the given min and max. If only one input is given, it will be
interpreted as the max and the output will be a number between 0 and max.

@> print random 40
15

CHAPTER 4. PRIMITIVES

4.12. MATHEMATICS

I'COS
rcos number

Output the cosine of the input given in radians

@> print rcos 60
-0.952

rcosh
rcosh number

Output the hyperbolic cosine of the input given in radians

@> print rcosh 0.56
1.160

rasin
rasin number

Output the arcsine of the input given in radians

@> print rasin 0.4
0.411

rsin
rsin number

Output the sine of the input given in radians

@> print rsin 60
-0.304

rsinh
rsinh number

Output the hyperbolic sine of the input given in radians

@> print rsinh 0.56
0.589

CHAPTER 4. PRIMITIVES

93

4.12. MATHEMATICS

ratan
ratan number
Output the arctangent of the input given in radians

@> print ratan 0.6
0.540

rtan
rtan number
Output the tangent of the input given in radians

@ print rtan 60
0.32

rtanh
rtanh number
Output the hyperbolic tangent of the input given in radians

@> print rtanh 0.7
0.604

sqrt

sqgrt number

Output the square root of the input.
@> print sqrt 25

5

sum

sum thingl thing2 thing3 thing4 ...

Output the sum of the all the inputs. The inputs may be numbers or lists. Any input of other types will
be ignored.

@> print sum 3 6 2 9.6 [3 2 4 0.5]
30.01

CHAPTER 4. PRIMITIVES

4.13. STRING PROCESSING 94

4.13 String processing

This Add-on offers some string processing primitives for strings as well as words.

safter
safter stringl string2

Output the part of the first input which is after the last occurence of the second input in the first.
@> print safter “image/jpeg’ ’image/’

Jpeg

sbefore

sbefore stringl string2

Output the part of the first input which is before the first occurence of the second input in the first.

@> print sbefore ’image/jpeg’ °/’
image

scmp
scmp stringl string2

Compare two strings (return O if they are equal, a positive value if s1>s2, and a negative value other-
wise).

@> print scmp “this is my string” “and another’
1

serase
serase string number (number)

Output the string given as first input where a part of it has been erased from the position given as
second input to the end of the string if no third input is given, or for the given number of characters.

@> print serase “the weather is great’ 12
the weather

CHAPTER 4. PRIMITIVES

95

4.13. STRING PROCESSING

sfind

sfind string string

Output the position of the first occurence of the second input in the first input. False is outputted of
the string has not been found.

@> print sfind “hello there !!” “there’
b
sfind.all

sfind string string

Output a list of the position of all the occurence of the second input in the first input. The list will be
empty if no occurence has been found.

@> print sfind.all *1 disagree. 1 think 1t\’s good” I’
[1 13]
sfind.last

sfind. laststring string

Output the position of the last occurence of the second input in the first input. false is outputted of
the string has not been found.

@> print sfind.last “hello there 11” ~1~”
14

sfirst.not.of

sTirst._not.of string string

Output the position fo the first character from the first string that is not present in the second string.
false is outputted if they are all found.

@> print sfirst.not.of “hello there 11” ~1?2__~
1

sfirst.of

sTirst.of string string

Output the position of the first occurence of any characters of the second input in the first input.
false is outputted if none found.

@> print sfirst.of “hello there 11~ *1?2 _~
13

CHAPTER 4. PRIMITIVES

4.13. STRING PROCESSING 96

sinsert
sinsert string number (thing)+

Output the string given as first input where the third (and the others) inputs has been inserted at the
position given as second input.

@> print sinsert “the weather is great” 16 “not

the weather is not great

slast.not.of
slast.not.of string string

Output the position of the last occurence of any characters not of the second input in the first input.
false is outputted if none found.

@> print slast_not.of “hello there 11~ ”1?72_ _~
12

slast.of
slast. of string string

Output the position of the last occurence of any characters of the second input in the first input.
false is outputted if none found.

@> print slast.of “hello there 11~ 712 _~
14

sleft
sleft string number
Output the first n characters of the string.

@> print sleft The weather is great” 5
The w

slength
slength string
Output the size of the string given as input

@> print slength “this is a test’
14

CHAPTER 4. PRIMITIVES

97

4.13. STRING PROCESSING

smatch
smatch string string

Output true if the pattern given as second input match the first input. False else. Use a * in
the patterm string to match any kind of characters.

@> print smatch ”joe@foo.zorg” ”*zorg’
true

split
splitstring separator
Split the string string into list elements using the string separator. Each element will be parsed.

@> show split *34;45;23;56;78” ~;~
[34 45 23 56 78]

split.as.string
split.as.stringstring separator
Split the string string into list elements using the string separator. Each element will be a string.

@> show split “fo0;34;45;23;56;78” ~;”
[*foo” 34 45 23 56 78]

sreplace
sreplace string number thing

Output the string given as first input where the third input has replaced the part of the string at the
position given by the second input.

@> print sreplace The weather is fine” 16 “bad ~
The weather is bad

sright
sright string number
Output the last n characters of the string.

@> print sright *The weather is great’ 5
great

CHAPTER 4. PRIMITIVES

4.13. STRING PROCESSING

98

stolower
stolower string
Output a string which is a lower case version of the input.

@> print stolower ’This IS A STring”
this is a string

stoupper
stoupper string

Output a string which is an upper case version of the input.

@> print stoupper ’this is a test’
THIS 1S A TEST

strim
strimstring character

Output the first input trimmed (both left and right) off the second input.

@> show strim ~ hello there ! 7z
hello there !’

strim.|
strim. I string character

Output the first input trimmed left off the second input.

@> show strim.l ~ hello there ! 7
>hello there ! z

strim.r
strim.r string character

Output the first input trimmed right off the second input.

@> show strim.r ~ hello there ! >z
z hello there !’

CHAPTER 4. PRIMITIVES

99

4.13. STRING PROCESSING

string
string thingl thing2 thing3
Output a string which is the concatenation of the inputs

@> print string “this is a test” 56 3.6 "hello
this is a test563.6hello

substr

substr string number (number)

Output a part of the string given as first input. The second input is the index of the first character
of the string to extract. The second input is the number of characters to extract. If this input is not

given, the primitive will extract all the characters up to the end of the string.

@> print substr “this is a test” 6 2
is

CHAPTER 4. PRIMITIVES

4.14. STORAGE 100

414 Storage

This Add-on contains various primitives which offer access to the BeOS file-system. The BeOS file-
system features file attribute handling, mime type and directory browsing.

attr.del

attr .del file_path attribute_name

Delete the attribute specified by the string attribute_name in the file file_path.

@> attr.del ’/boot/home/myfile.txt” “myattribute’

attr.exists

attr .exists file_path attribute_name

Output true if the attribute attribute_name exists in the file file_path, and output fal se otherwise.

@> print attr.exists */boot/home/myfile.txt’ “myattribute’
true

attr.get

attr .get file_path attribute_name

Output the value of an attribute specified by the string attribute_name in the file file_path.

@> print attr.get */boot/home/myfile.txt” ’myattribute’
12.45

attr.list

attr. listfile_path

Output a list of all the attributes in the file file_path.

@> show attr.list */boot/home/myfile.txt’
["wrap "alignment "'styles "myattribute "BEOS:TYPE]

attr.set

attr .set file_path attribute_name thing

Set the value of the attribute attribute_name in the file file_path to thing. Only strings and numbers are
accepted as valid values to be stored in an attribute.

@> attr.set ’/boot/home/myfile.txt” “myattribute’ 56.89

CHAPTER 4. PRIMITIVES

101 4.14. STORAGE

dir.current

dir.current (string)

If the primitive has an input, the current directory will be changed to this input. Otherwise the primitive
will output the path of the current directory.

@> print dir.current
/boot/home/e-/New Squirrel/Tests

dir.exists

dir.existsstring

Test if the directory given as the first input exists. The primitive outputs true if the directory ex-
ists, and False otherwise.

@> print dir_exists /boot/home/foo
false

dir.list

dir. liststring — ((string) word string)

Output a list of all the entries in a directory. If the first input is not a string, the current directory
is used, else the first input is the path of the directory to list the contents. If more than one input is
given, the primitive will only output the directory entries which meet specific criteria. The first criteria
is a word that specifies the type of entry to select : " file directory "link or any. The next
input must be a string that allows us to select entries by name.

@> print dir.list "any "t*.sqi"
thread.sqi test hello.sqi test.sqi

dir.contains

dir.contains (string) word string

Output true if the current directory (or the directory specified as the first input) contains an entry
that matches the type. The name of the entry is given as the last input.

@> print dir.contains ’/boot/apps
true

directory “Squirrel”’

CHAPTER 4. PRIMITIVES

4.14. STORAGE 102

entry.delete

entry.delete string

Output true if the entry given as input has been deleted or fal se if not.

@> print entry.delete "myfile.txt’
true

entry.exists

entry.exists string

Output true if the entry given as input exists. Talse else.

@> print entry.exists ’/boot/apps”’
true
@> print entry.exists ’/biit/apps’
false

entry.icon

entry.get file_name word word (image)

Set or get the icon for a given file as an Image object. The first input is the file path, the second
input is the word "*get or *'set. The third input indicates wether we want the **smal I icon or the
""large one. If we set the icon, an Image as fourth input is requiered.

@> make 'icn entry.icon “myfile.txt” "'get "small
entry.isdir
entry. isdir string

Output true if the input is a directory, and output Fal se otherwise.

@> print entry.isdir ”/boot/apps’
true

@> print entry.isdir “foo.txt’
false

CHAPTER 4. PRIMITIVES

103

4.14. STORAGE

entry.isfile
entry.isfilestring

Output true if the input is a standard file, and output fal se otherwise.

@> print entry.isfile ”/boot/apps’
false

@> print entry.isfile “foo.txt’
true

entry.islink

entry. islinkstring

Output true if the input is a symbolic link to a file, and output fal se otherwise.

@> print entry.islink ’/boot/apps’
false

@> print entry.islink ”foo2.txt’
true

entry.match

entry.match string string

Output true if the second input matches the regular expression given as the first input.

@> print entry.match >foo*45*h.dat” “hello45rgh.dat”
false

entry.move

entry.move string string

Move the entry as first input to the path given as second input. The primitive output False if it
fails.

@> entry.move “myfile.txt” ”../../"

entry.rename

entry . rename string string

Rename the entry as first input to the name given as second input. The primitive output false if
it fails.

@> entry.rename “myfile.txt’ ’data.txt’

CHAPTER 4. PRIMITIVES

4.14. STORAGE 104

entry.reveal

entry.reveal string
Output the path of the original file if the input is a link.

@> print entry.reveal *foo2.txt’
foo.txt

CHAPTER 4. PRIMITIVES

105 4.14. STORAGE

entry.stats

entry.stats entry.stats string word word (thing)

Set or Get statistical information of the entry given as first input. The second input is the word
“'get or "'set that indicates if we want to set or to get an information. The third input indicates the
information to access :

Name information

""faccess | Time at which the entry was last accessed (open)
‘'creation Time at which the entry was created

""group Group ID of the entry owner
"owner User ID of the entry owner
"rights Access rights of the entry

"size Size in bits of the entry
"update Time at which the entry was last updated

Table 4.2: Entry’s stats

Size of an entry can NOT be set. Reading the entry rights return a list that contains strings. Each
strings describes the rights for the user, group and other : [urx” ~grwx” “owx”]. The first
character of each string indicates if it is the rights for the user, group, other or for all. The rest of
the string describes the right read write execute. To add or remove right, a + or a — can be added to
the right string as the second character: >g-r~ will make the entry unreadable for the group. When
setting the rights, the fourth input can be a list of strings or a string.

@> print ctime entry.stats :_file "get "access
Sun Nov 19 10:30:20 2000
@> entry.stats “myfile.txt” "set "rights [“o-rwx” “g-wx”]

FilePanel

FilePanel mode dir flavor selection filter mimes names

Provide an "Open File” or "Save File” window and provides the user to select one or more file(s).
Output the user’s selection.

The primitives inputs are :

1. mode is a word "*open or *'save that indicate if we want to open a file or to save it.
2. dir is a a variable name when we want to know the last directory visited by the user. Else, it’s a
string that give the directory from where the user must start.

3. flavor is a list (must contain at least one element) that indicates what flavor of node the user can
select from : "File "directory "link (It is possible to combine them , eg. [""File
"1ink]).

4. selection describes if the user can selects more than a file or only one. It must be the word :
"singleor "multiple. When the user select more than one file, the output of the primitive
is a list.

CHAPTER 4. PRIMITIVES

4.14. STORAGE 106

5. filter is the word ""al low or ""disal low. It indicates if the selection given as inputs 6 and 7
must be shown or not shown.

6. mimes is the list of mime types allowed or diallowed, eg. [* image/*” ’video/*”].
7. names is the list of filenames allowed or diallowed, eg. [**.zip~ **.tgz’].

If the user cancels the panel, the primitive output the boolean value False.

@> make "dir ’/boot/home’

@> make "myfile FilePanel "open "dir ["file] "single "allow [“image/*’] []1
@> print :dir

/boot/home/ Images

mime.delete

mime.delete mime_type

Delete a mime-type from the BeOS mime database.

@> mime.delete “text/jlv-text’

mime.desc

mime . desc word mime_type word (string)

Set or get the description of a mime type. The first input is the word *"short or ""long that in-
dicate if we are working on the long or short description. The second input is the mime-type. The
third input is the word ""get or set that indicates if we want to set or get the decription. If we want
to set it, we need to give as 4th input a string that will be the description.

@> mime.desc "short “text/jlv-text’ "set *JLV\’s special format’

mime.exists

mime .exists mime_type

Output true if the mime-type given as input exists in the BeOS mime database.

@> print mime.exists “text/plain’
true

mime.get
mime . get file_path

Output the MIME type of the file file_path as a string.

@> print mime.get /boot/home/myfile.txt’
text/plain

CHAPTER 4. PRIMITIVES

107

4.14. STORAGE

mime.icon
mime . get mime_type word word (image)
Set or get the icon for the MIME type as an Image object. The first input is the MIME type, the

second input is the word ""get or "'set. The third input indicates wether we want the "*smal I icon
or the ""large one. If we set the icon, an Image as fourth input is requiered.

@> make "icn mime.icon ’image/jpeg’ "get "large

mime.install
mime. instal l mime_type
Install a mime type in the BeOS Mime database.

@> mime.install “text/jlv-text’

mime.set
mime . set file_path mime_type

Set the MIME type of the file file_path to the string mime_type. The MIME type must be valid,
otherwise an error will be issued.

@> mime.set /boot/home/myfile.txt’ ’text/mydata’

CHAPTER 4. PRIMITIVES

4.15. THREADING 108

4.15 Threading

SQUIRREL supports multi-threading with this Add-on. A thread could be either a function or a block
and will run concurrently and asynchronously to any other SQUIRREL thread. A thread has an ID
which is unique. Using this ID as its reference, it’s possible to kill, suspend, or wait for the end of
thread. Each thread has a priority. Higher priority threads will run more often and will terminate faster
than a lower priority thread. The following table contains all the priorities supported by SQUIRREL :

Name

"low
"normal

"display
"urgent_display
“"realtime_display
"urgent
"realtime

Table 4.3: Thread priority (from low to high)

When the thread is a function, the function can output a value. In case another thread is waiting, the
output of the function will be returned to the Thread .waitfor primitive.

It may be necessary in a threading script to use a locker (or several lockers) to insure that a critical
section of the script will be protected from concurrent threads. For example, the modification of the
value of a global variable shared between several threads.

Locker

Locker

Output a new locker object. This object has a two member functions that locks it “lock or unlocks it
“unlock

make "mylock Locker
make ''sum O

to thread_1
mylock™lock
incr "sum 10
mylock™unlock
end

make '"thl Thread "normal "thread_1

make "th2 Thread "normal "thread 1
Thread.hop :thl :th2

CHAPTER 4. PRIMITIVES

109 4.15. THREADING

Priority
Priority (word)

Output or set the priority of the calling thread. If an input is given, it should be a valid word.

@> Priority "low

snooze

shooze integer

Pause the calling thread for a given number of microseconds.

@> snooze 10000

Thread

Thread word block | (word (thing)*)
Create a new thread. The first input is the priority of the thread. The second input could either be
a block or a word. When the name of a function is given, the restart inputs of the primitives will be

fed to the function when it is executed. The primitive outputs the thread id of the thread. The thread
does not start at the end of this primitive.

to thread_1 :iter
make.local s O
for ["i 1 :iter] {
make "'s :i
}

output :s
end

@> make "thl Thread "low "thread 1 20

ThreadlD

ThreadlD

Output the thread id of the calling thread.

@> print ThreadlD
367

CHAPTER 4. PRIMITIVES

4.15. THREADING 110

Thread.hop
Thread.hop (number)+

Start or resume one or more thread(s). The input must be the thread ids of the threads to run.

@> Thread.hop :thl

Thread.hoping
Thread.hoping

Output a list of the thread ids of all the running threads.

@> show Thread.hoping
[453]

Thread.kill
Thread.kill (number)+

Kill one or more thread(s). The input must be the thread ids of the threads to kill.

@> Thread.kill :thl

Thread.priority
Thread.priority number (word)

Output or set the priority of a thread given as the first input. If a second input is given, it should
be a valid word.

@> print Thread.priority :thl
normal

Thread.suspend
Thread.suspend (number)+

Suspend one or more thread(s). The input must be the thread ids of the threads to suspend.

@> Thread.suspend :thl

CHAPTER 4. PRIMITIVES

111

4.15. THREADING

Thread.waitfor

Thread.waitfor number | (word (number)+)

Wait for the end of one or more thread(s). When the primitive should wait for several threads, the
first input must be the word : ""all or "First. When ""al l is used, the primitive will wait for the
end of all the threads before producing a list of the thread’s output values. When ""First is used, the
primitive will return when the first thread ends and then outputs the thread’s output values.

@> print Thread.waitfor :thl

Wait
Wait word

The calling thread waits for the variable given as input to be updated by another thread. The primitive
output true if the thread as wait, Fal se else.

@> Wait "mtvar

CHAPTER 4. PRIMITIVES

4.16. TIME 112

416 Time

This Add-on contains primitives to access time.

clock
clock

Output an approximation for the current processor time used by the program.

@> print clock
1

ctime
ctime long

Output the time in a string format from a time value given as the second input.

@> print ctime time

Thu Aug 19 14:30:06 1999
c2sec

c2sec long

Output the time in seconds from a clock value.

@> make "tO clock

@> do_something_rather_long

@> print “Time elapsed: * c2sec :t0-(clock)
0.34

Output the time elapsed in seconds since Epoch (00:00:00 UTC, January 1, 1970).

@> print time
935108764

CHAPTER 4. PRIMITIVES

113 4.16. TIME

timing
timing block | (word things ...)
Output the elapsed time in microseconds of the execution of the block or function.

@> print timing "foo 45 "hello
4234

CHAPTER 4. PRIMITIVES

4.17. WORKSPACE 114

4.17 Workspace

This Add-on contains most of the workspace management primitives.

bind
bind word word block | word things ...

Bind the variable given as the first input to the event given as the second input. The first and sec-
ond input must be one of the valid words : "'get "'set 'erase. The third input could either be a
block or a word defining a function (in this case, we could also add inputs to this function). Each time
an event occurs on the variable, the block or the function will be executed.

@> bind "myvar "get {
print ’Variable readed’
}

env.exists

env.exists word

Check if an environment variable exists. Output true or false .

@> print env.exists SHELL
true

env.get

env.get word

Output the value of an environment variable. If the variable doesn’t exists, an exception will be
raised.

@> print env.get "SHELL
/bin/sh

env.list

env.list

Output a list of all the environment variables.

@> print env.list

PWD BETOOLS BE_C_COMPILER HOSTNAME BE_DEFAULT_CPLUS_FLAGS
BEINCLUDES BELIBRARIES SAFEMODE TTY BE_LINKER ADDON_PATH
USER MACHTYPE BUILDHOME OLDPWD LIBRARY_PATH BE_HOST_ CPU
BE _DEFAULT_C_FLAGS SHLVL GROUP SHELL BE_CPLUS COMPILER
HOSTTYPE OSTYPE HOME TERM PATH _

CHAPTER 4. PRIMITIVES

115

4.17. WORKSPACE

env.set

env.set word thing

Set the value of an environment variable. The first input is the variable name, the second input is
the value. The variable is not exported.

@> env.set "FOO 34

erase
erase word1 word2 word3
Erase all the inputs from the workspace if they are variable or function names.

@> erase "myvar "myfunc

gc

gc

Performs a "garbage collection” and then outputs the number of objects destroyed.
@> print gc

2

help

help word

Prints an online help on the word given if it’s a primitive name.

@> help "is.var

AddOn : Workspace

Purpose : Return true if the argument is the name of a variable
Usage : is.var "name

is.pred

is.predword

Output true if word is the name of a function or primitive

@> print is.pred "list
true

@> print is.pred "myfunc
true

CHAPTER 4. PRIMITIVES

4.17. WORKSPACE 116

is.proc
is.proc word
Output true if word is the name of a function

@> print is.proc "list
false

is.prim
is.primword
Output true if word is the name of a primitive

@> print is.prim "list
true

name

name thing word

Makes the value thing a synonym for the variable word.
@> name 3.1416 "pi

@> print :pi

3.141

thing

thing word

Output the value of the variable word.

@> make "a ~hello”
@> make "b thing "a

unbind
unbind word word

Unbind the variable given as the first input for the event given as the second input. The first and
second input must be one of the valid words: "'get '‘set '‘erase.

@> unbind "myvar "get

CHAPTER 4. PRIMITIVES

Chapter 5

Release notes

51 Redeaseb.3

5.1.1 Changes

e Primitives Question and Info can accept an Image as first input. Both primitives request
now an extra input which is the title of the message box.

e Strings can be spread over several line. Tabulation within a string is no longer taken into account.
e Use \\ followed by a carriage return to spread an instruction over two lines.

e Renamed primitivesmime.exist dir.exist attr.existinmime.exists dir.exists
attr._exists.

e Renamed method exi st of the Dictionary object in exists.

5.1.2 Additions

e Added Image object.
o New Add-On Image Processing with two primitives : img.crop and img.scale.
o Added primitive mime . icon, entry. iconand entry.exists in the Storage Add-On.

e Added primitive Iremove in the List Processing Add-On.

5.1.3 Bugs fixed

e Severals issues in the way SQUIRREL was terminating have been solved.
o Fixed a bug in the Fi lePanel primitive (file selected but see as panel canceled).

o Fixed possible crash of SQUIRREL (in SQILib.a).

117

52. RELEASE5.2B 118

5.2 Reeaseb.2b

5.2.1 Changes

e Speed improvement of function’s execution time. Up to 3 times faster than for the previous
release.

5.2.2 Additions

o Added gobal variable _error that contains the error message when an error is throw.

5.2.3 Bugs fixed

None.

5.3 Release5.2

5.3.1 Changes

e Primitive di FFerence return always a positive number.
e Using output outside in function return the value as the error code of the script.
e Removed SQUIRREL banners displayed when running SQUIRREL from a Terminal.

5.3.2 Additions

e Global variable _from that indicates from where a script has been run (terminal, tracker or
SQUIRREL console).

e Primitives Info and Question that display a messagebox. Moved from the GUI Add-On in
the Communication Add-On.

e Primitivesenv.exists env.list env.get env.settoaccess Environmentvariables.

e Primitive entry.stats to the Storage Add-On that give access to the Statistical informations
on an entry.

5.3.3 Bugs fixed

None.

54 Redease5.1b and 5.1c

5.4.1 Notes

Those two upgrades has been applied to SQUIRREL 5.1 to mostly fix problems.

CHAPTER 5. RELEASE NOTES

119

55. RELEASES.1

5.4.2 Changes

None.

5.4.3 Additions

o Added primitive 1'find that output the position of something within a list.

5.4.4 Bugs fixed

e Crash caused by Fi lePanel when using a filter (Storage Add-On)
e Crash when killing a non existent thread (Thread Add-On)
o Impossibility to use list in expression such like za <> [3 4 5]

55 Rdeaseb.1

5.5.1 Notes

Starting from this release, SQUIRREL come in two release package, on for the developers and one for
the user.

This version had quiet some additions, thanks to all that gave me feedback at BeGeistert 5 in Duisseldorf
(7-8 October 2000).

5.5.2 Changes

o Name of the executables have change, loosing it .dr.
e The primitive with have been renamed use to be more clear.
e Lists can contains variable, function/primitive calls and block.

5.5.3 Additions

e Added primitives mime.desc, mime. install, mime.delete and mime.exist to the
Storage Add-On to give access to the BeOS Mime-database.

Added cc and bcc methods to the Mail object to set/get the carbon copy and blind carbon copy
fields.

Added primitives strim, strim.r,strim. I and smatch to the String Processing Add-On.

Added method exist to the Dictionary object of the Data Structures Add-On.

Added global system variables : _path, _install and -version.

CHAPTER 5. RELEASE NOTES

5.6. DEVELOPER RELEASE 5.0 120

5.5.4 Bugs fixed

e Crash when storing the output of a function in a list.
o Crash when not using the output of the last function/primitive called in a block
e Fixed some memory problems

5.6 Developer Release 5.0

5.6.1 Notes

Althougt this release is numbered 5.0 it’s mostly a maintenance release.

5.6.2 Changes

e Add-Ons are no longer all loaded when SQUIRREL start (except for the console version).
e true and False are no longer primitives but literal value.
o Definition of a list can be spraid over severals line

make "Ist [
34.78
23.67
12.90

5.6.3 Additions

e with primitive that allow to load one or more Add-On(s).
e timing primitive to the Time Add-On that output the elapsed time in microseconds.

5.6.4 Bugs fixed

e substr was crashing.

5.7 Developer Release 4.9

5.7.1 Notes

This release is the first version to be compiled for BeOS 5.0. Use with older version of BeOS is not
supported.

Check the GUI Add-On documentation for more details about this release.

CHAPTER 5. RELEASE NOTES

121 5.8. DEVELOPER RELEASE 4.8

5.7.2 Changes

none

5.7.3 Additions

e Mail Add-On, that give the ability to send email from SQUIRREL

e Primitive FilePanel in the Storage Add-On, that allow the user to select one or more files
from the disk(s).

o Global variable _Fi le that give the fill path of the current running script file.
e Primitive Isub in the List Processing Add-On, that return a part of a list.
¢ Methods empty to the Dictionary object (Data Structure Add-On), that empty the dictionary.

5.7.4 Bugs fixed

e Use of a string/word in a boolean expression

e Segmentation Fault when setting a file’s attribute using the primitive attr .set, with a word
value.

e SQUIRREL quitting before executing anything

5.8 Developer Release 4.8

5.8.1 Notes
This release enable the ability to send or receive message from another application. Sending a message

to a SQUIRREL script could be a problem when several script are running as the signature of the scripts
is always the signature of SQUIRREL . This problem will be fixed in the coming releases.

5.8.2 Changes

e The catch structure support now a second block to execute when an error is catched.

5.8.3 Additions

e Control Structure switch
e Hexadecimal number like 0x34 now supported
e Message object and Application messanging

5.8.4 Bugs fixed

o A little bug in thedisplay of float number fixed (another :)

CHAPTER 5. RELEASE NOTES

5.9. DEVELOPER RELEASE 4.7 122

5.9 Developer Release 4.7

5.9.1 Notes

This release introduce Skippy which replace the old 2D Drawing Board Add-on. This new add-on had
it own documentation file.

5.9.2 Changes

e More informations are provided when a parsing error occurs

5.9.3 Additions

e The directive #include allow to include a script file during the parsing.

e Severals new primitives to the Add-on String Processing have been added: substr, sin-
sert, sreplace, serase, sleft, sright, sfind, sfind.all,
sfind. last, sfirst.of, slast.of, sfirst.not.of, slast.not.of.

e Three new primitives have been added to the add-on Storage: entry.delete, entry.rename,
entry.move.

o New primitive Wai t to the Threading Add-on that wait for a variable to be updated by another
thread.

5.9.4 Bugs fixed

e Output of temporary object as input of a primitive/method/function was crashing in certain con-
figuration.

5.10 Developer Release 4.5

5.10.1 Notes

One of the main objectives of this release was to introduce the new Threading Add-on. The Threading
Add-on offers the possibility of performing multi-threading in SQUIRREL .

5.10.2 Changes

e There are now two executables in a SQUIRREL distribution

5.10.3 Additions

o New Add-on Exec allows one to execute external programs and to collect the output
o Several primitives have been added to the add-on for browsing directories e.g. Storage.
e Threading Add-on for multi-threading

CHAPTER 5. RELEASE NOTES

123

5.11. DEVELOPER RELEASE 4

5.10.4 Bugs fixed

e output in aloop within a function doesn’t stop the function.

5.11 Developer Release 4

5.11.1 Notes

The GUI Add-On on the previous versions has been replaced by a newer version. This Add-On is no
longer described in this manual but is described in a another manual.

5.11.2 Changes

e New version of the GUI Add-On has been totally recoded. This version makes obsolete all the
old GUI commands and features. Check the GUI Add-On manual for more details.

e The command gseq has been changed to create a list in reverse order when the first input is
greater than the second.

5.11.3 Additions

e New Variable Binding commands : bind and unbind

e New command Precision which changes the number of digits shown after the decimal point
of a float number.

5.11.4 Bugs fixed

A bug in for . each has been fixed

One flaw in the "garbage collection” has been corrected

Using a member call in a boolean expression

Float display problems fixed

Commands : is.float Is.objectand is.number weren’t correct.

5.12 Developer Release 3

5.12.1 Notes
About this release

This release introduces the way SQUIRREL handles and uses objects. Three new Add-ons are also
added, two of which directly exploits the new object ability.

CHAPTER 5. RELEASE NOTES

5.12. DEVEL OPER RELEASE 3 124

Data Structure Add-on

This Add-on offers two new data structures to be used in addition to the usual list: Vector and
Dictionary.

A Vector is a dynamic array which offers better performance and more capabilities than a list. On
the other hand, a Dictionary should be seen as a useful way to store information like in a C
structure. However, it offers good performance, though not as good as a Vector.

File Input/Ouput Add-on

Reading and writing from and to a text file is possible using the primitive defined in this Add-on.

Storage Add-on

This new Add-on contains a first set of File System related primitives. For this release only the file
attributes handling primitives are working. By using them, one is able to save numbers, strings, words,
lists, Vectors and Dictionaries in the attributes of the file. There are also two primitives of this Add-on
which manipulate MIME type.

5.12.2 Changes

e An error in the user manual has been fixed for the Foreach loop which is for .each
e Some optimizations of the interpreter has been performed.

5.12.3 Additions

o New Object handling ability
e New "File 1/0” Add-on

o New primitives splitand split.as.stringwhich splits astring in list elements added to
the "String processing” Add-on

o New primitive 1 Join added to "List processing”. This primitive creates a string from the con-
catenation of all the elements of a list

o New "Data Structures” Add-on with the object :Dictionary and Vector

e New primitive make . local added to "Workspace” which simplifies the creation and initial-
ization of a local variable

e New primitive is.object added to "Data processing”. This primitive returns true if the
input is an object (not a number, string, word or list)

o New ”"Storage” Add-on which offers file attributes and mime type manipulations

5.12.4 Bugs fixed

e Using make within a function when creating a variable (first use)
e Segmentation Fault when using the operator + - ... with a list
o Problem with the use of an object within a function

CHAPTER 5. RELEASE NOTES

125

5.13. DEVEL OPER RELEASE 2

5.13 Developer Release 2

5.13.1 Notes
About this release

Except for the GUI Add-on which is introduced in this release, there is no particular evolution of
SQUIRREL between DR2 and DR1. A few bugs have been fixed and some minor changes have been
applied. You may find more detail in this chapter about all that.

The GUI Add-on

The GUI Add-on shipped with this release is not yet complete. It’s a first version, almost an Alpha
version, which is subject to a lot of additions and changes in the coming releases.

Several features are missing in this release:

¢ No font handling
o No automatic placement tool (like the packer of Tcl/Tk)

Lots Views objects are missing

Drawing in a view is not implemented

Lack of a good Tutorial

But this version works well with the GUI objects already implemented.

5.13.2 Changes

e The operator power ~ has been changed to **, so for example:

@> print 5\72
25

is now:

@> print 5**2
25

e The Arithmetic Add-on has been renamed Mathematics.
e The primitive avg which computes the average value of the input has been renamed av

5.13.3 Additions
e SQUIRREL could be set to be the preferred application of a SQUIRREL script file, and the file
will be loaded and executed.
e New Add-on GUI

e The mathematical expression operators has been completed with & and |, which performs bit
wise operations.

CHAPTER 5. RELEASE NOTES

5.14. DEVEL OPER RELEASE 1 126

o New primitive cal I which calls a command specified by a word, in the Control Add-on

o New primitives in the Mathematics Add-on supporting angles in degree: deg2rad rad2deg
dsin dcos dtan dasin dacos datan dsinh dcosh dtanh

e New primitive string which creates a string from the concatenation of the inputs, to the String
Processing Add-on

5.13.4 Bugs fixed

Non quitting SQUIRREL when in noconsole mode

Exception handling of unknown variables

Wrong Precedence’s of the math operators

Segmentation fault when quitting SQUIRREL (both noconsole and console mode
Function calling

5.14 Developer Release 1

Please consider this release as a first iteration of SQUIRREL and will therefore, be far from being
perfect. Although the interpreter is working well, several things are missing and will be added in the
coming releases. In addition, the various Add-ons will be completed and some new ones will be added.

The availability of the SQUIRREL Add-ons API in the near future will allow third parties to write
Add-ons, and will therefore, increase the versatility of SQUIRREL .

e Although recursive algorithms are working fine, a non-recursive approach is somewhat better
when performance is an issue

e The Automatic Garbage collection is a prototype. The performance optimization is not yet per-
fect but is fully working.

o If you don’t wish to use the Automatic Garbage collection, we recommend that you use the gc
order to perform Garbage collection when performing heavy tasks. As well, using the erase
order to destroy unused variables is recommended. But you’re encouraged to use the Automatic
Garbage collection.

CHAPTER 5. RELEASE NOTES

| ndex

*, 12

+, 12

-, 12

/, 12

#include, 33

**, 12

<, 14

<=, 14

<>, 14

=, 14

>, 14

>=, 14

Args, 34

Dictionary, 59
~av, 59
“empty, 59
“erase, 60
“exists, 60
~find, 60
~find.all, 61
“find.if, 61
~find.if.all, 61
“find.if.last, 62
“get, 62
“iterate, 63
“iterate.i, 63
“max, 63
“min, 64
“set, 64
“size, 64

FilePanel, 105

Image
“height, 41
“length, 41
“load, 42
“mime, 42
“path, 42
“save, 42
“valid?, 42

127

“width, 43
Info, 46
Locker, 108
Mail, 82
Tattachment, 83
“bcc, 83
“cc, 83
~content, 83
“from, 84
“reply, 84
“subject, 84
“to, 84
Message
Tadd, 37
“delivered, 37
“empty, 37
~find, 38
“has, 38
~“is.empty, 38
~is.remote, 38
~is.reply, 39
“is.waiting, 39
“names, 39
“previous, 39
“rem, 39
“replace, 40
“reply, 40
“send, 40
“timeout, 40
“what, 41
Precision, 48
Priority, 109
Question, 49
Send, 82
Thread, 109
Thread.hop, 110
Thread.hoping, 110
Thread.kill, 110
Thread.priority, 110

INDEX

128

Thread.suspend, 110

Thread.waitfor, 111

ThreadlD, 109

Vector, 65
Tappend, 65
Tav, 65
“erase, 65
~find, 66
“find.all, 66
~find.if, 66
“find.if.all, 67
“find.if.last, 67
“get, 67
“iterate, 68
“iterate.i, 68
“max, 68
“min, 68
“reverse, 70
“reverse.new, 70
“set, 69
“size, 69
“sort, 69
“sort.new, 69

Wait, 111

\”, 15

\\, 15

\b, 15

\f, 15

\n, 15

\r, 15

\t, 15

\v, 15

_error, 25

_file, 34

_from, 34

_install, 34

_path, 34

_version, 34

abs, 85

addon.func, 45

addon.info, 44

addon.list, 44

attr.del, 100

attr.exists, 100

attr.get, 100

attr.list, 100

attr.set, 100

av, 85

INDEX

bind, 29, 114
break, 52
butfirst, 54
butlast, 54
c2sec, 112

call, 52

catch, 24

ceil, 85

clock, 112

clone, 54
continue, 52
ctime, 112

dacos, 86

dasin, 86

datan, 86

dcos, 86

dcosh, 87
deepclone, 54
deg2rad, 85

deth, 75

dgloh, 75
difference, 86
dir.contains, 101
dir.current, 101
dir.exists, 101
dir.list, 101
dloh, 75
do.until, 23
do.while, 22
dsin, 87

dsinh, 87

dtan, 87

dtanh, 87

dtreeh, 76

dump, 76

end, 25
entry.delete, 102
entry.exists, 102
entry.icon, 102
entry.isdir, 102
entry.isfile, 103
entry.islink, 103
entry.match, 103
entry.move, 103
entry.rename, 103
entry.reveal, 104
entry.stats, 105
env.exists, 114

129

INDEX

env.get, 114
env.list, 114
env.set, 115
erase, 115
erf, 88

erfc, 88
exec.bg, 71
exec.wait, 71
exp, 88
fclose, 72
feof, 72
fgets, 72
first, 55
floor, 88
fopen, 72
for, 21
for._each, 24
fput, 78
fputs, 72
gamma, 88

gc, 115

gseq, 78
help, 115
hypot, 89

if, 18
ifelse, 19
iffalse, 19
iftrue, 19
img.crop, 74
img.scale, 74
incr, 89

int, 89
is.block, 55
is.bool, 55
is.dictionary, 59
is.file, 73
is.float, 55
is.integer, 56
is.list, 56
is.mail, 82
is.number, 56
is.object, 56
is.pred, 115
is.prim, 116
is.proc, 116
is.string, 57
is.vector, 65
is.word, 57

item, 57
lappend, 78
last, 57

launch, 71
lempty, 78
Ifind, 79
lindex, 79

list, 79

ljoin, 79
lIlength, 80

In, 89

load, 47

local, 27

logl0, 89

Iput, 80
Iremove, 80
Iscan, 80

Isub, 80

make, 28
make.local, 28
max, 90
mem.usage?, 76
mime.delete, 106
mime.desc, 106
mime.exists, 106
mime.get, 106
mime.icon, 107
mime.install, 107
mime.set, 107
min, 90

minus, 90
modulo, 91

name, 116

not, 14

output, 25
parse.anything, 47
parse.block, 47
parse.float, 47
parse.integer, 47
parse.list, 48
parse.number, 48
parse.string, 48
parse.word, 48
pglov, 76

plov, 77

power, 91

print, 49
product, 90

INDEX

INDEX

130

quotient, 90
racos, 91
rad2deg, 91
random, 91
rasin, 92
ratan, 93

rcos, 92

rcosh, 92
read.anything, 49
read.block, 49
read.float, 50
read. integer, 50
read.list, 50
read.number, 50
read.string, 51
read.word, 51
repeat, 21
reverse, 81
rsin, 92

rsinh, 92

rtan, 93

rtanh, 93
safter, 94
sbefore, 94
scmp, 94
sentence, 81
serase, 94
sfind, 95
sfind.all, 95
sfind.last, 95
sfirst.not.of, 95
sfirst.of, 95
sgloh, 77

show, 51
sinsert, 96
slast.not.of, 96
slast.of, 96
sleft, 96
slength, 96
sloh, 77
smatch, 97
snooze, 109
split, 97

split.as.string, 97

sqrt, 93
sreplace, 97
sright, 97
stolower, 98

INDEX

stop, 53
stoupper, 98
strim, 98
strim. 1, 98
strim.r, 98

string, 99
substr, 99
sum, 93
switch, 20
test, 19, 53
thing, 116
throw, 24
time, 112
timing, 113
to, 25

trans.mime, 41
trans.name, 41

type, 51
unbind, 29, 116
until, 23

use, 34

wait, 53

while, 22

word, 58

