
 The Input Server

The Device Kit − Table of Contents

 The Input Server ...1

 BInputDevice ...6

 BInputServerDevice ..9

 BInputServerFilter ..15

 BInputServerMethod ..17

 Input Server Messages ..20

 Input Functions ..23

 Input Server Structures and Constants ...31

The Input Server: Master Index...33

i

 The Input Server
The Input Server is a system service that accepts user events (on the mouse and keyboard, typically) at one end, and dispatches them to the App Server
at the other. In between, the Input Server runs the events through a series of filters that can inspect and modify them. The generation and filtering of
events is performed by the add−ons that the Input Server loads; the Server itself just provides the plumbing. Event−generating add−ons (called input
devices) typically correspond to one or more device drivers, although this isn't a requirement. An event−filtering add−on (input filter) processes the
events that are fed to it; input filters aren't intended to correspond to hardware. A third type of Input Server add−onan input methodis used to
implement input method mechanisms, which convert keyboard events into character sets that can't be easily represented on a standard keyboard, such
as Kanji.

Each of these add−on types (input devices, filters, and methods) is represented by a C++ class: BInputServerDevice, BInputServerFilter, and
BInputServerMethod. For each add−on you want to create, you subclass the appropriate class and override its hook functions. An additional
classBInputDevicelets a "normal" application send messages back through the Input Server to the input devices; a BInputDevice object can be useful if
you're creating a preference app for a custom Input Server add−on, for example.

A map of the Input Server world looks like this:

1

Note that the Input Server and its add−ons (and BInputDevice) all live in user space, so, in theory, there's nothing that a "normal" application can do
that an Input Server add−on can't do. However, Input Server add−ons are loaded early in the boot process, before some system services (such as the
Media and Network servers) have started. Attempting to use services from these servers before they've started is a good way to wedge the system.

The BeOS provides a few Input Server add−ons: It installs input devices that handle a variety of mice and keyboard drivers, and an input filter that the
Screen Saver engine uses to detect user activity (on the mouse and keyboard). BeOS's only built−in input method is installed when you choose the
Japanese language option during the installation process.

Currently, events that are generated by the BeOS joystick drivers do not go through the Input Server.

 The Input Server

2

 Drivers and Input Devices
As mentioned above, most input devices (i.e. input−generating add−ons) correspond to one or more device drivers. For example, the BeOS
mouse input device manages all the mouse drivers that the OS provides.

It's important to keep in mind that an input device is not the same as the device driver(s) it managesthey're separate pieces of code that execute in
separate address spaces: the drivers run in the kernel, the add−ons run in the Input Server. An input device can open() a driver, but it must not
explicitly load the driver. In other words, the add−on shouldn't re−invent or subvert the kernel's driver−loading mechanism.

Similar to drivers, Input Server add−ons must be scrupulous about managing their memory and threads:

• Memory that an add−on allocates must be freed when the add−on is unloaded, otherwise the add−on will leak.

• The hook functions that are invoked on your add−on are executed in threads that must stay as "live" as possible. If your add−on does a lot
of processing that can be performed asynchronouslyfor example, if it's an input device that's "watching" a piece of hardwarethe add−on
should spawn a thread.

 Building

Like all add−ons, Input Server add−ons are compiled as shared libraries. The add−ons must link against input_server, renamed (as a symbolic link) to
APP. In other words, you set up a symbolic link like this:

 $ cd <yourProjectDirectory>
 $ ln −s /boot/beos/system/servers/input_server _APP_

And then link against _APP_.

 Installing

The input server looks for add−ons in the "input_server" directory within B_BEOS_ADDONS_DIRECTORY,
B_COMMON_ADDONS_DIRECTORY, and B_USER_ADDONS_DIRECTORY. Where you install your add−ons depends on what type of add−on it is:

• input_server/devices is for input devices

• input_server/filters is for input filters

• input_server/methods is for input methods

• You can install your input devices in the latter two directoriesi.e. those under B_COMMON_ADDONS_DIRECTORY, and
B_USER_ADDONS_DIRECTORY.

• The B_BEOS_ADDONS_DIRECTORY is reserved for add−ons that are supplied by the BeOS.

 Loading

The Input Server automatically loads (or attempts to load) all add−ons at boot time.

Currently, the Input Server doesn't dynamically load add−ons. This is a particular annoyance if you're developing and testing an add−on. To work
around this lack, move your add−on into the appropriate directory, and then quit and restart the Input Server from a Terminal:

 /system/servers/input_server −q

This will gracefully shutdown the Input Server and then re−launch it. The first thing the Server does when it comes back up is re−load the add−ons
from its add−on directories.

Your mouse and keyboard (and other input devices) will go dead for a moment while this is happening. This is normal.

 Input Server and You
The Input Server gives applications a chance to take advantage of useful features present in input devices more interesting than your typical 101−key
keyboard and 3−button mouse.

 Mice and Tablets

The Input Server extends the plain B_MOUSE_MOVED message (which triggers a BView>s MouseMoved() function) beyond its ordinary existence
to let things like tablets pass along extra information about a user>s actions. For example, drawing tablets can track the user>s movement with greater
precision than a mouse, and can include drawing pressure and tilt information. Some also include an "eraser."

If an application can do something useful with this information (and let's face it; drawing applications that respond to pressure and tilt on a drawing

 The Input Server

3

#B_MOUSE_MOVED
#MouseMoved()

pad are useful as well as being cool), it>ll be present in the B_MOUSE_MOVED message:

 void MyView::MouseMoved(BPoint *where, uint32 transit, BMessage *drag_msg)
 {
 BMessage *moved_msg = Window()−>CurrentMessage();
 ...
 }

The extra information that a "mouse" input device could add to the B_MOUSE_MOVED messages includes:

• more precise position information

• drawing pressure

• pen tilt

• "eraser" mode

 Precision Position Information

Tablets store the absolute position of the pointer with as much precision as they can in the be:tablet_x and be:tablet_y fields:

 float x, y;
 x = moved_msg−FindFloat("be:tablet_x");
 y = moved_msg−>FindFloat("be:tablet_y");

These entries will be scaled to the range [0.0 to 1.0].

 Pressure

Tablet pressure is stored as a float in the range [0.0 to 1.0] (minimum to maximum), present in the be:tablet_pressure field:

 float pressure;
 pressure = moved_msg−>FindFloat("be:tablet_pressure");

 Tilt

Pen tilt is expressed as a pair of floats in the range [0.0 to 1.0], where (−1.0, −1.0) tilts to the left−top, (1.0, 1.0) tilts to the right−bottom, and (0.0, 0.0)
is no tilt. These floats are found in the be:tablet_tilt_x and be:tablet_tilt_y fields:

 float tilt_x, tilt_y;
 tilt_x = moved_msg−>FindFloat("be:tablet_tilt_x");
 tilt_y = moved_msg−>FindFloat("be:tablet_tilt_y");

 Eraser Mode

The pen>s eraser mode is expressed as an int32 in the be:tablet_eraser field:

 int32 erase_mode;
 erase_mode = moved_msg−>FindInt32("be:tablet_eraser");

A value of 1 means the pen is reversed (i.e. the eraser is on) and 0 means the pen is behaving normally. Other eraser modes may be defined in the
future.

 Supporting Input Methods in Views
When the user is entering text using an input method, such as the Japanese language input method that became an installation option in R4, there are
two ways that applications can handle their input:

• in−line: the text entry interface object lets them enter text directly

• bottom−line: the input method itself pops up a window to accept the user>s input, and then passes B_KEY_DOWN messages simulating the
characters to the application; the app doesn't have to do anything to support bottom−line input

If your application>s text−entry needs are met by the Interface Kit>s BTextControl and BTextView objects, it>ll automatically use the in−line mode,
which gives the user a much better experience. If you>re writing your own text widget, you>ll have to do a little work to let the user input text directly.

Doing this is a very good idea; making your application behave well when dealing with foreign (to you) languages will improve your application>s
acceptance around the world.

 Messages from Input Methods

When interacting with an input method, your view>s MessageReceived() function will receive B_INPUT_METHOD_EVENT messages; inside is
a be:opcode field (an int32 value) indicating the kind of event:

• B_INPUT_METHOD_STARTED

• B_INPUT_METHOD_STOPPED

• B_INPUT_METHOD_CHANGED

• B_INPUT_METHOD_LOCATION_REQUEST

B_INPUT_METHOD_STARTED tells your view that a new input transaction has begun. Inside the message is a BMessenger named be:reply_to; you
should store this because it>s your only way of talking to the input method while the transaction is going on.

 The Input Server

4

#B_MOUSE_MOVED
#B_MOUSE_MOVED
#B_KEY_DOWN
#BTextControl
#BTextView
#MessageReceived()
#B_INPUT_METHOD_EVENT
#BMessenger

B_INPUT_METHOD_STOPPED lets you know the transaction is over; you should discard the BMessenger at this point because it>s gone stale.

In between the B_INPUT_METHOD_STARTED and B_INPUT_METHOD_STOPPED messages, you>ll receive various
B_INPUT_METHOD_CHANGED and B_INPUT_METHOD_LOCATION_REQUEST messages as the transaction proceeds.

B_INPUT_METHOD_CHANGED does most of the work in an input transaction; its message contains the following important fields:

be:string B_STRING_TYPE The text the user is currently entering; display it at the insertion point. BTextView also highlights the
text in blue to show that it>s part of a transitory transaction.

be:selection B_INT32_TYPE A pair of B_INT32_TYPE offsets into the be:string if any of the text be:string is currently selected by
the user. BTextView highlights this selection in red instead of drawing it in blue.

be:clause_start B_INT32_TYPE

Zero or more offsets into the be:string for handling languages (such as Japanese) that separate a
sentence or phrase into numerous clauses. An equal number of be:clause_start and
be:clause_end pairs delimit these clauses; BTextView separates the blue/red highlighting wherever
there is a clause boundary.

be:clause_end B_INT32_TYPE Zero or more offsets into be:string; there will be as many be:clause_end entries as there are
be:clause_start.

be:confirmed B_BOOL_TYPE
True when the user has entered and "confirmed" the current string and wishes to end the transaction.
BTextView unhighlights the blue/red text and waits for a B_INPUT_METHOD_STOPPED (to close the
transaction) or another B_INPUT_METHOD_CHANGED (to start a new transaction immediately).

B_INPUT_METHOD_LOCATION_REQUEST is the input method>s way of asking you for the on−screen location of each character in your
representation of the be:string. This information can be used by the input method to pop up additional windows giving the user an opportunity to
select characters from a list or anything else that makes sense. When you get a B_INPUT_METHOD_LOCATION_REQUEST, reply to the
be:reply_to messenger (that you saved from the B_INPUT_METHOD_STARTED message) with a B_INPUT_METHOD_EVENT message, filling in
the following fields:

be:opcode B_INT32_TYPE Use B_INPUT_METHOD_LOCATION_REQUEST for the opcode.

be:location_reply B_POINT_TYPE The co−ordinates of each character (there should be one be:location_reply for every character in
be:string) in screen co−ordinates not view or window co−ordinates).

be:height_reply B_FLOAT_TYPE The height of each character in be:string.

 App and Input Events
If you're writing an application and want to record or react to input events without writing an Input Server add−on (which, of course, requires an Input
Server restart), you can:

1. Create a window off−screen, at a co−ordinate like (−10.0, −10.0).

2. Add a view to the window at (0.0, 0.0).

3. Show() and then Hide() the window; this is necessary or the App Server won't send you any messages.

4. Move the hidden window to (0.0, 0.0).

5. Implement the window's DispatchMessage() function to handle B_KEY_DOWN, B_MOUSE_UP, or whatever other input events you're
interested in observing.

Modifying these messages won't affect any other applications in the system; by the time they reach your application, they've already passed through
the Input Server.

You can see this trick in action in Doug Fulton's masterful Whistle application (found at ftp://ftp.be.com/pub/samples/midi_kit/Whistle.zip).

 The Input Server

5

#BMessenger
#B_STRING_TYPE
#BTextView
#B_INT32_TYPE
#B_INT32_TYPE
#BTextView
#B_INT32_TYPE
#BTextView
#B_INT32_TYPE
#B_BOOL_TYPE
#BTextView
#B_INPUT_METHOD_EVENT
#B_INT32_TYPE
#B_POINT_TYPE
#B_FLOAT_TYPE
#Show()
#Hide()
#DispatchMessage()
#B_KEY_DOWN
#B_MOUSE_UP

 BInputDevice
Derived from: none

Declared in: be/interface/InputDevice.h

Library: libbe.so

Allocation: By the system only. See

Summary

A BInputDevice object is a "downstream" representation of an Input Server device, such as a mouse or a keyboard, within a "regular" application. The
BInputDevice can Start() and Stop() the device it represents, and can send it input device control messages through its Control() function.

You never create BInputDevice objects yourself; instead, you ask the system to return one or more instances to you through the
find_input_device() or get_input_devices() functions. Alternatively, you can work without an object by invoking the static versions of
Start() , Stop() , and Control(). Note, however, that the static functions control all devices of a given type, whereas a BInputDevice instance
can talk to a specific device.

BInputDevice objects don't live in the Input Serverthey're used in "normal" applications as a means to control an Input Server device add−on.

The BInputDevice object is provided, primarily, to let an application talk to a custom input device.

You never subclass BInputDevice.

 Constructor and Destructor

 BInputDevice()

The constructor is private. Use find_input_device() or get_input_devices() to retrieve a BInputDevice instance.

 ~BInputDevice()

~BInputDevice()

Deletes the BInputDevice object. Deleting this object doesn't affect the device that it represents.

 Member Functions

 Control()

status_t Control(uint32 code , BMessage *message)

static status_t Control(input_device_type type,
 uint32 code,

BMessage *message)

Sends an input device control message to the object's input device or, in the static version, to all devices of the given type, where, type can be
B_POINTING_DEVICE, B_KEYBOARD_DEVICE, or B_UNDEFINED_DEVICE. Input devices receive these messages in their
Control() function.

The control message is described by the code value; it can be supplemented or refined by message. For example, code can indicate that a certain
parameter should be set, and message can supply the requested value.

In general, you only use this function to send custom messages to a (custom) device. You never use it to send messages
to a Be−defined input device since the messages that these devices respond to are covered by Be−defined functions.
See "Input Device Control Messages" for a list of the messages that the Be−defined devices respond to, the functions
that cover them, and the German women who love them.

6

InputDevice.h
InputDevice.summary.html
#BMessage
#BMessage

Start()

 Name() , Type()

const char *Name(void) const

input_device_type Type(void) const

Name()Start() returns a pointer to the input device's name. The name, which is set when the device is registered, is meant to be human−readable
and appropriate for use as the label of a UI element (such as a menu field). Device names are not unique.

Type() returns the input device's type, one of B_POINTING_DEVICE, B_KEYBOARD_DEVICE, and B_UNDEFINED_DEVICE.

 Start() , Stop() , IsRunning()

status_t Start(void)

status_t Start(void)

bool IsRunning(void) const

static status_t Start(input_device_type type)

static status_t Stop(input_device_type type)

Start() tells the object's input device to start generating events; Stop() tells it to stop generating events. IsRunning() returns true if the device
is currently generating events (i.e. if it has been started and hasn't been stopped).

The static versions of Start() and Stop() start and stop all devices of the given type.

RETURN CODES

B_OK. The device is now started (Start()) or stopped (Stop())even if the device was already started or stopped.

• B_ERROR. The device couldn't be found.

The Input Server tells a device to start and stop without asking the device if the operation was successful. This means, for
example, that Start() can return B_OK (and IsRunning() can return true) even if the device isn't really running. For
the Be−provided devices this isn't an issuestarting and stopping always succeeds (as long as the device exists).

Start()

Type() see Name()

 C Functions

 find_input_device() , get_input_devices()

BInputDevice* find_input_device(const char *name)

status_t get_input_devices(BList *list)

These functions get BInputDevice objects for you.

find_input_device() creates and hands you a BInputDevice object that represents the Input Server device registered as name. If name is
invalid, the function returns NULL. The caller is responsible for deleting the object. Note that find_input_device() returns a new BInputDevice
object for each (valid) call, even if you ask for the same device more than once.

 BInputDevice

7

#B_OK
#B_ERROR
#B_OK
#BInputDevice*
#BList

get_input_devices() creates a new BInputDevice object for each registered device, and puts the objects in your list argument. list must already
be allocated, and is automatically emptied by the function (even if the function fails). If the function succeeds, the caller owns the contents, and needs
to delete the items in the list:

 #include <interface/Input.h>
 #include <support/List.h>

 ...

 static bool del_InputDevice(void *ptr)
 {
 if(ptr) {
 BInputDevice *dev = (BInputDevice *)ptr;
 delete dev;

 return false;
 }

 return true;
 }

 ...

 void SomeFunc(void)
 {
 // Get a list of all input devices.
 BList list_o_devices;

 status_t retval = get_input_devices(&list_o_devices);
 if(retval != B_OK) return;

 // Do something with the input devices.
 ...

 // Dispose of the device list.
 list_o_devices.DoForEach(del_InputDevice);
 list_o_devices.MakeEmpty();
 }

RETURN CODES

get_input_devices() returns:

• B_OK. Success.

• B_ERROR. General failure.

• B_BAD_PORT_ID. Couldn't talk to the Input Server.

• B_TIMED_OUT. The Input Server is no longer on speaking terms with your application.

• B_WOULD_BLOCK. More trouble communicating with the Input Server.

 watch_input_devices()

status_t watch_input_devices(BMessenger target, bool start)

Tells the Input Server to start or stop watching (as start is true or false) for changes to the set of registered devices. Change notifications are sent
to target. The set of messages that the Server may send are listed in Input Server Messages.

watch_input_devices() is not currently implemented.

 BInputDevice

8

#B_OK
#B_ERROR
#B_BAD_PORT_ID
#B_TIMED_OUT
#B_WOULD_BLOCK
#BMessenger

 BInputServerDevice
Derived from: none

Declared in: be/add−ons/input_server/InputServerDevice.h

Library: The Input Server

Allocation: By the Input Server only

Summary

BInputServerDevice is a base class for input devices; these are instances of BInputServerDevice subclasses that generate input events. In most cases,
an input device corresponds to a device driver that handles a specific brand or model of hardware (mouse, keyboard, tablet, etc.), but it doesn't have to:
an input device can get events from the Net, or generate them algorithmically, for example. Also, a single BInputServerDevice can handle more than
one device driver.

BInputServerDevice objects are created and deleted by the Input Server onlyyou never create or delete these objects themselves.

 Starting and Sending Messages
For each device that your object registers, it gets a Start() function call. This is the Input Server's way of telling your object that it can begin
generating input events (for the designated device). So far, all of thisfrom the add−on load to the Start() callhappens within a single Input Server
thread (for all input devices). When your Start() function is called, you should spawn a thread so your object can generate events without blocking
the Server. Events are generated and sent through the EnqueueMessage() function.

 Device Types and Control Messages
The Input Server knows about two types of devices: keyboards, and pointing devices (mice, tablets, etc). When you register your object's devices
(through RegisterDevices()) you have to indicate the device type. The Input Server uses the device type to predicate the input device control
messages it sends to the devices. These messages, delivered in Control() calls, tell a device that there's been a change downstream that applies
specifically to that type of device. For example, when the user changes the mouse speed, each pointing device receives a
B_MOUSE_SPEED_CHANGED notification.

The Be−defined control messages are predicated on device type only.

If your BInputServerDevice object manages a device other than a pointer or a keyboard, you tell the Input Server that the device is undefined. In this
case, the Input Server won't send your device any device−specific messages; to send your device a message you (or an application that knows about
your device) have to use a BInputDevice object.

 Pointing Devices

Pointing devices such as mice, trackballs, drawing tablets, etc. generate B_MOUSE_MOVED messages (which trigger a BView>s
MouseMoved() function) featuring a where field representing the cursor>s location in view co−ordinates. Unfortunately, your BInputServerDevice
doesn>t know anything about views; that>s the App Server>s job. You'll still need to add this information to the B_MOUSE_MOVED messages
generated by your BInputServerDevice, and the App Server will adjust it to view co−ordinates for you.

When generating a B_MOUSE_MOVED message, you add x and y fields in one of two ways:

• an offset relative to the cursor>s previous position (B_INT32_TYPE values)

• an absolute position expressed in the range 0.0 to 1.0 (B_FLOAT_TYPE values)

Mice always use relative locations; tablets can use either (though they usually provide absolute values).

 Relative Locations

All mice (and some drawing tablets) express the pointer location relative to its previous position. If your pointing device is operating in relative
co−ordinate mode, you add x and y entries as B_INT32_TYPE values in device−defined units. The App Server interprets these units as pixels, so you
may need to scale your output:

 int32 xVal, yVal;
 ...
 event−>AddInt32("x", xVal);
 event−>AddInt32("y", yVal);

 Absolute Locations

Drawing tablets or other pointing devices that provide absolute locations add the x and y entries as B_FLOAT_TYPEs:

 float xVal, yVal;
 ...
 event−>AddFloat("x", xVal);
 event−>AddFloat("y", yVal);

These values must be in the range [0.0 to 1.0]. The app_server scales them to the screen>s co−ordinate system so (0.0, 0.0) is the left−top, and (1.0,
1.0) is the right−bottom of the screen. This lets the pointing device work with any screen resolution, automatically.

 Now where?

When the Application Server receives one of these B_MOUSE_MOVED messages, it converts the x and y values into absolute values in the target
view>s co−ordinate system, and then throws away the x and y entries in the message. Because of this, and the fact that some applications might want

9

InputServerDevice.h
InputServerDevice.summary.html
#B_MOUSE_MOVED
#MouseMoved()
#B_MOUSE_MOVED
#B_MOUSE_MOVED
#B_INT32_TYPE
#B_FLOAT_TYPE
#B_INT32_TYPE
#B_FLOAT_TYPE
#B_MOUSE_MOVED

more accurate positional information from tablets, fill in the be:tablet_x and be:tablet_y fields as well:

 float xVal, yVal;
 ...
 event−>AddFloat("x", xVal);
 event−>AddFloat("y", yVal);
 event−>AddFloat("be:tablet_x", xVal);
 event−>AddFloat("be:tablet_y", yVal);

 Other Useful Information

Pressure information is stored in the be:tablet_pressure field, as a float in the range [0.0 to 1.0] (minimum pressure to maximum pressure):

 float pressure;
 ...
 event−>AddFloat("be:tablet_pressure", pressure);

If the tablet supports tilt information, store it in be:tablet_tilt_x and be:tablet_tilt_y, scaling the information to the range [0.0 to 1.0]. A tilt of (−1.0,
−1.0) tilts to the left−top, (1.0, 1.0) tilts to the right−bottom, and (0.0, 0.0) is no tilt.

 float tilt_x, tilt_y;
 ...
 event−>AddFloat("be:tablet_tilt_x", tilt_x);
 event−>AddFloat("be:tablet_tilt_y", tilt_y);

Tablets with pens that support an eraser store the eraser>s state in the be:tablet_eraser field. A value of 1 means the pen is reversed (i.e. the eraser is
on), and 0 means it should behave normally.

 int32 erase_mode;
 ...
 event−>AddInt32("be:tablet_eraser", erase_mode);

 Device State
The Control() protocol is designed to accommodate queries (in addition to commands). Currently, however, the Input Server maintains the
keyboard and pointing device state and answers these queries itself; it doesn't forward any of the Be−defined query messages. For example, when an
application asks for the current mouse speed setting (through get_mouse_speed()), the query gets no further than the Input Server itselfit doesn't
get passed as a control message to a pointing device.

If you're designing a BInputServerDevice that manages a keyboard or pointing device, you must keep in mind that your device is not responsible for its
"Be−defined" state. The elements of the statemouse speed, key map, etc.correspond to the control messages listed in "Input Device Control Messages".

 Dynamic Devices
As hardware devices are attached and detached from the computer, you can add and remove items from your BInputServerDevice's list of registered
devices (by calling RegisterDevice()/UnregisterDevice()). But your object has to first notice that a physical device has been added or
removed. It does this by placing a node monitor on the device directory (/dev). As a convenienceand to help conserve resourcesthe
BInputServerDevice class provides the Start/StopMonitoringDevices() functions which install and remove node monitors for you.

 Creating and Registering
To create a new input device, you must:

• create a subclass of BInputServerDevice

• implement the instantiate_input_device() C function to create an instance of your BInputServerDevice subclass

• compile the class and the function as an add−on

• install the add−on in one of the input device directories

At boot time, the Input Server loads the add−ons it finds in the input device directories. For each add−on it loads, the Server invokes
instantiate_input_device() to get a pointer to the add−on's BInputServerDevice object. After constructing the object, the Server calls
InitCheck() to give the add−on a chance to bail out if the constructor failed. If the add−on wants to continue, it calls
RegisterDevices() (from within InitCheck()) to tell the Server which physical or virtual devices it handles.

 Installing an Input Device
The input server looks for input devices in the "input_server/devices" subdirectories of B_BEOS_ADDONS_DIRECTORY,
B_COMMON_ADDONS_DIRECTORY, and B_USER_ADDONS_DIRECTORY.

• You can install your input devices in the latter two directoriesi.e. those under B_COMMON_ADDONS_DIRECTORY, and
B_USER_ADDONS_DIRECTORY.

• The B_BEOS_ADDONS_DIRECTORY is reserved for add−ons that are supplied by the BeOS.

 Hook Functions
• Control()

 BInputServerDevice

10

• InitCheck()

• Start()

• Stop()

• SystemShuttingDown()

 Constructor and Destructor

 BInputServerDevice()

BInputServerDevice(void)

Creates a new BInputServerDevice object. You can initialize your objectset initial values, spawn (but not necessarily resume; do that in Start())
threads, open drivers, etc.either here or in the InitCheck() function, which is called immediately after the constructor.

 ~BInputServerDevice()

~BInputServerDevice()

Deletes the BInputServerDevice object. The destructor is invoked by the Input Server onlyyou never delete a BInputServerDevice object from your
own code. When the destructor is called, the object's devices will already be unregistered and Stop() will already have been called. If this object
spawned its own threads or allocated memory on the heap, it must clean up after itself here.

 Member Functions

 Control()

virtual status_t Control(const char *name,
 void *cookie,
 uint32 command,

BMessage *message)

The Control() hook function is invoked by the Input Server to send an input device control message or a Node Monitor message to this object.
name and cookie are the readable name and pointer−to−whatever−you−want that you used when registering the device (with the
RegisterDevices() function).

The function's return value is ignored.

 Input Device Control Messages

An input device control message is sent when a downstream change needs to be propagated to an input device. For example, when the user resets the
mouse speed (through the Mouse preference), a B_MOUSE_SPEED_CHANGED control message is sent to all objects that have registered a
B_POINTING_DEVICE device (see RegisterDevices()). name and cookie identify the device that this message applies to. The control
message itself is represented by the command constant, optionally supplemented by message.

See "Input Device Control Messages" for a list of the control messages that the BeOS defines, and instructions for how to respond to them. An
application can send a custom control message through a BInputDevice object; see BInputDevice::Control() for details.

 Node Monitor Messages

A Node Monitor message is sent if an entry is added to or removed from one of the device directories that the object is monitoring, as set through
StartMonitoringDevice(). In this case, name and cookie are NULL , command is B_NODE_MONITOR, and message describes the file that
was added or deleted. The message's opcode field will be B_ENTRY_CREATED or B_ENTRY_REMOVED (or, potentially but nonsensically,
B_ENTRY_MOVED). For instructions on how to read these messages, see "The Node Monitor" in the Storage Kit (or click on the opcode constants).

 BInputServerDevice

11

#BMessage
#B_NODE_MONITOR
#B_ENTRY_CREATED
#B_ENTRY_REMOVED
#B_ENTRY_MOVED
#The%20Node%20Monitor
#The%20Node%20Monitor

 EnqueueMessage()

status_t EnqueueMessage(BMessage *message)

Sends an event message to the Input Server, which passes it through the input methods and input filters before sending it to the App Server. The
message you create should be appropriate for the action you're trying to depict. For example, if the user presses a key, you should create and send a
B_KEY_DOWN message. A list of the system−defined event messages that an input device is expected to create and send is given in "Input Device
Event Messages".

RETURN CODES

B_OK. The message was sent.

• Anything else. The connection to the App Server has been brokenthis isn't good, and you may want to check the
is_computer_on_fire() function found in the Kernel Kit.

 InitCheck()

virtual status_t InitCheck(void)

Invoked by the Input Server immediately after the object is constructed to test the validity of the initialization. If the object is properly initialized (i.e.
all required resources are located or allocated), this function should return B_OK. Start() will be invoked soon if you need to do any extra
initialization. If the object returns non−B_OK, the object is deleted and the add−on is unloaded.

The default implementation returns B_OK.

 RegisterDevices() , UnregisterDevices()

status_t RegisterDevices(input_device_ref **devices)

status_t UnregisterDevices(input_device_ref **devices)

RegisterDevices() tells the Input Server that this object is responsible for the listed devices. This means that when a control message is sent
back upstream, the messagewhich is tagged as being relevant for a specific device, or type of devicewill be forwarded (through the Control() hook)
to the responsible BInputServerDevice object(s). Typically, you initially register your devices as part of the constructor or InitCheck().
Registration is cumulativeeach RegisterDevices() call adds to the object's current list of devices.

UnregisterDevices() tells the Input Server that this object is no longer responsible for the listed devices. The devices are automatically
unregistered when your object is deleted.

RegisterDevices() invokes Start() for each device in the devices list; UnregisterDevices() invokes Stop().

For both functions, the devices list must be NULL−terminated, and the caller retains ownership of the list and its contents.

Note that the BeOS currently only targets the device types when sending a Control() message. For example, let's say you've registered two
pointing devices and a keyboard:

 status_t MyISDevice::InitCheck()
 {
 ...
 input_device_ref **devices =
 (input_device_ref **)malloc(sizeof(*input_device_ref * 4));
 input_device_ref mouse1 = {"Mouse 1", B_POINTING_DEVICE,
 (void *)this)};
 input_device_ref mouse2 = {"Mouse 2", B_POINTING_DEVICE,
 (void *)this)};
 input_device_ref keyboard = {"Keyboard", B_KEYBOARD_DEVICE,
 (void *)this)};
 devices[0] = &mouse1;
 devices[1] = &mouse2;
 devices[2] = &keyboard;
 devices[3] = NULL;
 RegisterDevices(devices);
 ...
 }

When the user fiddles with the Mouse preference (more specifically, if an application calls set_mouse_speed() et. al.), this object will receive
two Control() messages: one targets "Mouse 1", and the other targets "Mouse 2". That's because the mouse and keyboard functions (as defined by
the BeOS and as used by the system preferences) know which type of device to control, but they don't provide a means for more granular
identification. If you need a UI that identifies specific devices, you have to create the UI yourself, and use a BInputDevice object to tune the control
messages that are sent back upstream.

RETURN CODES

 BInputServerDevice

12

#BMessage
#B_KEY_DOWN
#B_OK
#is_computer_on_fire()
#B_OK
#B_OK
#B_OK

B_OK. At least one of the devices was registered.

• B_ERROR. None of the devices were registered.

The functions don't let you un/register the same device definition twice, and RegisterDevices() won't register a device
that doesn't have a name (although the name can be ""). However, the functions don't complain about violations of these
conditions as long as at least one definition is properly formed.

 Start() , Stop()

virtual status_t Start(const char *name, void *cookie)

virtual status_t Stop(const char *name, void *cookie)

Start() is invoked by the Input Server to tell the object that it can begin sending events for the registered device identified by the arguments. The
values of the arguments are taken from the input_device_ref structure you used to register the device (see RegisterDevices()). If your
object needs to resume a thread (spawned in the constructor, in InitCheck(), or here), this is the place to do it.

Stop() is invoked to tell the object to stop sending events for the registered device. The device is not unregisteredyou can still receive
Control() messages for the device while it's stopped. You should pause or kill any threads associated with the device (that were spawned by this
object) from here.

The return value (for both of these functions) is ignored.

 StartMonitoringDevice() , StopMonitoringDevice()

status_t StartMonitoringDevice(const char *deviceDir)

status_t StopMonitoringDevice(const char *deviceDir)

These are convenient covers for the Node Monitor's watch_node() and stop_watching() functions. You use them to watch for physical
devices that are attached and detached, as indicated by changes to subdirectories of the system device directory (/dev).

deviceDir is the name of the device subdirectory that you want to watch. The "/dev/" root is automatically prepended; for example, if you want to
watch for new ps2 mice, you would pass "input/mouse/ps2" as the deviceDir name. The Node Monitor is told to look for changes to the directory
(B_WATCH_DIRECTORY opcode). When an entry is added or removed, this object receives a B_NODE_MONITOR message delivered to its
Control() function.

RETURN CODES

B_OK. Success.

• B_ERROR. Unspecified failure.

• B_NOT_A_DIRECTORY. You're trying to monitor a node that isn't a directory.

• B_BAD_VALUE. deviceDir not found.

 SystemShuttingDown()

virtual status_t SystemShuttingDown(void) const

Tells the object that the Input Server is in the process of shutting down. Unless something interrupts the shutdown, this notification will be followed by
a Stop() and delete, thus you don't have to do much from this function (other than note that the end is near).

 BInputServerDevice

13

#B_OK
#B_ERROR
#watch_node()
#stop_watching()
#B_NODE_MONITOR
#B_OK
#B_ERROR
#B_NOT_A_DIRECTORY
#B_BAD_VALUE

The return value is ignored.

UnregisterDevices see RegisterDevices()

 BInputServerDevice

14

 BInputServerFilter
Derived from: none

Declared in: be/add−ons/input_server/InputServerFilter.h

Library: libbe.so

Allocation: By the Input Server only

Summary

BInputServerFilter is a base class for input filters; these are instances of BInputServerFilter that modify, generate, or eat input events. An input filter
add−on is privy to all the events that pass through the Input Server>s event stream. A filter is similar to the Interface Kit>s BMessageFilter, but at a
much lower level. The BInputServerFilter also sees all events, while a BMessageFilter only sees the events targeted at its BLooper.
BInputServerFilters can also generate additional events in place of, or in addition to, the original input event.

BInputServerFilter objects are created and deleted by the Input Server onlyyou never create or delete these objects in your code.

 Creating
To create a new input filter, you must:

• create a subclass of BInputServerFilter

• implement the instantiate_input_filter() C function to create an instance of your BInputServerFilter subclass

• compile the class and function as an add−on

• install the add−on in one of the input filter directories

At boot time (or whenever the Input Server is restarted; see "Loading" in The Input Server), the Input Server loads the add−ons it finds in the input
filter directories. For each add−on it finds, the Server invokes instantiate_input_filter() to get a pointer to the add−ons>s
BInputServerFilter object. After constructing the object, the Server calls InitCheck() to give the add−on a chance to bail out if the constructor
failed.

 Installing an Input Filter
The input server looks for input filters in the "input_server/filters" subdirectories of B_BEOS_ADDONS_DIRECTORY,
B_COMMON_ADDONS_DIRECTORY, and B_USER_ADDONS_DIRECTORY.

• You can install your input devices in the latter two directoriesi.e. those under B_COMMON_ADDONS_DIRECTORY, and
B_USER_ADDONS_DIRECTORY.

• The B_BEOS_ADDONS_DIRECTORY is reserved for add−ons that are supplied with BeOS.

 Hook Functions
• Filter()

• InitCheck()

 Constructor and Destructor

 BInputServerFilter()

BInputServerFilter(void)

Creates a new BInputServerFilter object. You can initialize the objectset initial values, spawn threads, etc.either here or in the
InitCheck() function, which is called immediately after the constructor.

 ~BInputServerFilter()

~BInputServerFilter()

Deletes the BInputServerFilter object. The destructor is invoked by the Input Server onlyyou never delete a BInputServerFilter object from your own
code. If this object has spawned its own threads or allocated memory on the heap, it must clean up after itself here.

15

InputServerFilter.h
InputServerFilter.summary.html
#BMessageFilter
#BMessageFilter

 Member Functions

 Filter()

virtual filter_result Filter(BMessage *message, BList *outList)

The Filter() hook function is invoked by the Input Server to filter the in−coming message. You can add fields to message, remove them, or
otherwise modify the object. When you're finished with the message, your implementation of Filter() should return B_SKIP_MESSAGE if this
input event message should be dropped (or replaced by outList), or B_DISPATCH_MESSAGE if it should continue through the Input Server towards
its destination.

To insert new messages into the event stream, fill the empty outList with pointers to new BMessage objects filled in with the proper input event fields,
and return B_SKIP_MESSAGE. The Input Server will ignore message if you use outList, so you'll need to make a copy if you want it to continue
downstream:

 BMessage *new_message = new BMessage(message);
 outList−>AddItem(new_message);

The Input Server owns all of the messages you pass back in outList, so don't delete them yourself. Events added via outList are processed in the order
they appear in the list and are inserted into the event stream in place of message. If Filter() returns B_DISPATCH_MESSAGE, messages in
outList are ignored.

The default implementation returns B_DISPATCH_MESSAGE without modifying the message.

 GetScreenRegion()

status_t GetScreenRegion(BRegion *region) const

The GetScreenRegion() function returns the screen's region in region. This is the most efficient way for an input filter to get the screen's region.
The system screen saver's input filter uses this for its "sleep now"/"sleep never" corners.

GetScreenRegion() returns B_OK.

 InputCheck()

virtual status_t InitCheck(void)

Invoked by the Input Server immediately after the object is constructed to test the validity of the initialization. If the object is properly initialized (i.e.
all required resources are located or allocated), this function should return B_OK. If the object returns non−B_OK, the object is deleted and the add−on
is unloaded.

The default implementation returns B_OK.

 BInputServerFilter

16

#BList
#B_SKIP_MESSAGE
#B_DISPATCH_MESSAGE
#BMessage
#B_SKIP_MESSAGE
#B_DISPATCH_MESSAGE
#B_DISPATCH_MESSAGE
#B_OK
#B_OK
#B_OK
#B_OK

 BInputServerMethod
Derived from: BInputServerFilter

Declared in: be/add−ons/input_server/InputServerMethod.h

Library: libbe.so

Allocation: By the Input Server only

Summary

BInputServerMethod is a base class for input methods; these are instances of BInputServerMethod that act as an interface between the user and
languages using character sets that can>t be easily represented on standard keyboards, such as the Japanese input method that comes with BeOS.

Input methods generally handle B_KEY_DOWN messages in their Filter() function (see BInputServerFilter), keeping some sort of state around to
translate these standard keyboard messages into new B_KEY_DOWN messages representing another character set. An input method can handle any
input event, they>re not limited to keyboard events.

Writing an input method is an involved process, even though the BInputMethod protocol is relatively simple. If you>re
working on an input method, please feel free to contact Be Developer Technical Support (devsupport@be.com) for
additional information.

 Input Method Events

Input methods insert B_INPUT_METHOD_EVENT messages (using their EnqueueMessage() function) into the Input Server>s event stream.
These messages let BView subclasses work together with your input method to create a seamless experience for the user.

Each B_INPUT_METHOD_EVENT message contains a be:opcode field (an int32 value) indicating the kind of event:

• B_INPUT_METHOD_STARTED

• B_INPUT_METHOD_STOPPED

• B_INPUT_METHOD_CHANGED

• B_INPUT_METHOD_LOCATION_REQUEST

B_INPUT_METHOD_STARTED indicates that a new input transaction has begun. Add a BMessenger in the be:reply_to field; the receiver of the
message will use this messenger to communicate with you during the transaction.

B_INPUT_METHOD_STOPPED indicates that the transaction is over.

In between the B_INPUT_METHOD_STARTED and B_INPUT_METHOD_STOPPED messages, you>ll send B_INPUT_METHOD_CHANGED and
B_INPUT_METHOD_LOCATION_REQUEST messages as the transaction proceeds.

B_INPUT_METHOD_CHANGED does most of the work in an input transaction; add the following important fields:

be:string B_STRING_TYPE The text the user is currently entering; the receiver will display it at the current insertion point.
BTextView also highlights the text in blue to show that it>s part of a transitory transaction.

be:selection B_INT32_TYPE A pair of B_INT32_TYPE offsets into the be:string if part of be:string is current selected.
BTextView highlights this selection in red instead of drawing it in blue.

be:clause_start B_INT32_TYPE

Zero or more offsets into the be:string for handling languages (such as Japanese) that separate a
sentence or phrase into numerous clauses. An equal number of be:clause_start and
be:clause_end pairs delimit these clauses; BTextView separates the blue/red highlighting wherever
there is a clause boundary.

be:clause_end B_INT32_TYPE Zero or more offsets into be:string; there must be as many be:clause_end entries as there are
be:clause_start.

be:confirmed B_BOOL_TYPE
True when the user has entered and "confirmed" the current string and wishes to end the transaction.
BTextView unhighlights the blue/red text and waits for a B_INPUT_METHOD_STOPPED (to close the
transaction) or another B_INPUT_METHOD_CHANGED (to start a new transaction immediately).

B_INPUT_METHOD_LOCATION_REQUEST is the input method>s way of asking for the on−screen location of each character in be:string. This
information can be used by the input method to pop up additional windows giving the user an opportunity to select characters from a list or anything
else that makes sense. When you send a B_INPUT_METHOD_LOCATION_REQUEST, the receiver will reply to the be:reply_to messenger (that you
sent in your B_INPUT_METHOD_STARTED message) with a B_INPUT_METHOD_EVENT message, filling in the following fields:

be:opcode B_INT32_TYPE Set to B_INPUT_METHOD_LOCATION_REQUEST.

17

InputServerMethod.h
InputServerMethod.summary.html
#B_KEY_DOWN
#B_KEY_DOWN
#B_INPUT_METHOD_EVENT
#BView
#B_INPUT_METHOD_EVENT
#BMessenger
#B_STRING_TYPE
#B_INT32_TYPE
#B_INT32_TYPE
#BTextView
#B_INT32_TYPE
#BTextView
#B_INT32_TYPE
#B_BOOL_TYPE
#BTextView
#B_INPUT_METHOD_EVENT
#B_INT32_TYPE

be:location_reply B_POINT_TYPE The co−ordinates of each character (there should be one be:location_reply for every character in
be:string) relative to the display (not your view or your window).

be:height_reply B_FLOAT_TYPE The height of each character in be:string.

 Creating
To create a new input method, you must:

• create a subclass of BInputServerMethod

• implement the instantiate_input_method() C function to create an instance of your BInputServerMethod subclass

• compile the class and function as an add−on

• install the add−on in one of the input method directories

At boot time (or whenever the Input Server is restarted; see "Dynamic Loading"), the Input Server loads the add−ons it finds in the input method
directories. For each add−on it finds, the Server invokes instantiate_input_method() to get a pointer to the add−on>s BInputServerMethod
object. After constructing the object, the Server calls InitCheck() to give the add−on a chance to bail out if the constructor failed.

 Installing an Input Method
The input server looks for input methods in the "input_server/methods" subdirectories of B_BEOS_ADDONS_DIRECTORY,
B_COMMON_ADDONS_DIRECTORY, and B_USER_ADDONS_DIRECTORY.

• You can install your input devices in the latter two directoriesi.e. those under B_COMMON_ADDONS_DIRECTORY, and
B_USER_ADDONS_DIRECTORY.

• The B_BEOS_ADDONS_DIRECTORY is reserved for add−ons that are supplied by the BeOS.

 Hook Functions
• MethodActivated()

 Constructor and Destructor

 BInputServerMethod()

BInputServerMethod(const char *name, const uchar *icon)

Creates a new BInputServerMethod object. You can initialize the objectset initial values, spawn threads, etc.either here or in the
InitCheck() function, which is called immediately after the constructor.

name is a textual name describing the input method, and icon is the raw data for a 16x16 8−bit icon built from the standard BeOS palette. This
name and icon will be displayed in the input method menu (the little keyboard icon in the Deskbar). When the user selects your input method from
the menu, your MethodActivated() function is called.

 ~BInputServerMethod()

~BInputServerMethod()

Deletes the BInputServerMethod object. The destructor is invoked by the Input Server onlyyou never delete a BInputServerMethod object from your
own code. If this object has spawned its own threads or allocated memory on the heap, it must clean up after itself here.

 Member Functions

 EnqueueMessage()

 BInputServerMethod

18

#B_POINT_TYPE
#B_FLOAT_TYPE

status_t EnqueueMessage(BMessage *message)

Inserts the specified message into the Input Server>s event queue; the message continues down−stream from this point, passing through additional
active input methods and input filters on its way to the App Server.

 MethodActivated()

virtual status_t MethodActivated(bool active)

The MethodActivated() hook function is invoked by the Input Server when the user activates your input method (active is true) or deactivates it
(active is false). This is your chance to activate any helper threads or loopers to the fact that you>ll be handling input events soon.

Return B_OK if that>s OK, or something else if it>s not. The default implementation returns B_OK.

 SetName()

status_t SetName(const char *name)

Changes your input method>s name, as found in the input method menu of the Deskbar.

The Input Server makes a copy of name.

 SetIcon()

status_t SetIcon(const uchar *icon)

Changes your input method>s icon, as found in the input method menu of the Deskbar. icon should be raw data for a 16x16 8−bit icon built from the
standard BeOS palette.

The Input Server makes a copy of icon.

 SetMenu()

status_t SetMenu(const BMenu *menu, const BMessenger target)

Lets you assign a menu to your input method>s entry in the input method menu of the Deskbar. Messages generated by the menu are sent to target.

Passing a NULL menu disables your input method>s menu.

You retain ownership of menu; be careful not to delete it while the Input Server is still using it.

 BInputServerMethod

19

#status_t
#BMessage
#B_OK
#B_OK
#BMenu
#BMessenger

 Input Server Messages
This section describes the messages that your Input Server objects are expected to create and send, and that they're expected to respond to.

 Input Device Event Messages
Declared in: be/app/AppDefs.h

This section lists the event messages that a BInputServerDevice is expected to create and send through its EnqueueMessage() function. The
primary documentation for these messages is in the System Messages appendix (click on an item in the lists below to be taken to a specific definition).

 Pointing Device Event Messages

B_MOUSE_DOWN
B_MOUSE_UP
B_MOUSE_MOVED

Note that a pointing device isn't expected to send the B_MOUSE_ENTER_EXIT message.

 Keyboard Device Event Messages

B_KEY_DOWN
B_UNMAPPED_KEY_DOWN
B_KEY_UP
B_UMAPPED_KEY_UP
B_MODIFIERS_CHANGED

 Input Device Control Messages
Declared in: be/add−ons/input_server/InputServerDevice.h

This section lists the control messages that are defined by the BeOS for pointing and keyboard devices. These are messages that appear in the
BInputServerDevice::Control() function. Each control message is identified by the value that appears as the command argument in the
Control() function. None of the Be−defined control messages use the additional BMessage argument.

Control messages are used to notify input devices of downstream requests. For example, when the user changes the mouse speed, a
B_MOUSE_SPEED_CHANGED command is sent back upstream. It's expected that an input device that receives this message will tune subsequent
event messages that it generates to match the requested mouse speed.

The messages listed below are defined by the BeOS; you can send custom control messages back upstream through the
BInput::Control() function. Of course, this is only effective if you install a custom input device that can handle the messages.

Note that the Be−defined control messages ask a device to set parameters (such as mouse speed), but they never ask a device for the value of a
parameter. For example, a pointing device is never asked what the mouse speed is. This is because the Input Server maintains the state of the keyboard
and pointing device environments and can answer these requests itself.

Furthermore, the Be−defined control messages don't contain the value of the parameter that's being set. For example, the
B_MOUSE_SPEED_CHANGED message doesn't contain the requested mouse speed. The input device must ask the Input Server for the new value
through a global function (get_mouse_speed(), in this case). The functions that correspond to the messages are listed in the descriptions below.

 Pointing Device Control Messages

 B_CLICK_SPEED_CHANGED

Requests that the receiver change the mouse double−click speed to the value retrieved through get_click_speed().

 B_MOUSE_MAP_CHANGED

Requests that the receiver change the mouse map (the correspondence between physical mouse buttons and the B_PRIMARY_MOUSE_BUTTON, et.
al., constants) to the map retrieved through get_mouse_map().

 B_MOUSE_SPEED_CHANGED

Requests that the receiver change the mouse speed to the value retrieved through get_mouse_speed().

 B_MOUSE_TYPE_CHANGED

Requests that the receiver change the mouse type (the number of buttons) to the type retrieved through get_mouse_type().

20

AppDefs.h
#B_MOUSE_DOWN
#B_KEY_DOWN
InputServerDevice.h
#BMessage
#B_PRIMARY_MOUSE_BUTTON

 Keyboard Device Control Messages

 B_KEY_LOCKS_CHANGED

Requests that the receiver change the state of the locked keys (caps lock, num lock, etc.). To get the desired state of the locking keys, read the states
out of the key map returned by get_key_map().

 B_KEY_MAP_CHANGED

Requests that the receiver change the keyboard's key mapthe mapping between physical keys and the character codes they generate. The new key map
is returned by get_key_map().

 B_KEY_REPEAT_DELAY_CHANGED

Requests that the receiver change the delay before a held key starts generating repeated characters to the value retrieved through
get_key_repeat_delay().

 B_KEY_REPEAT_RATE_CHANGED

Requests that the receiver change the speed at which a held key generates repeated characters to the value retrieved through
get_key_repeat_rate().

 Device Monitoring
The watch_input_devices() function lets you ask the Input Server to send you a message when a device starts or stops, or when the set of
registered devices changes. These "device monitoring" notifications are sent to the target specified in the function. The command constant is always
B_INPUT_DEVICES_CHANGED. The be:opcode field will be one of:

 B_INPUT_DEVICE_ADDED

An input device has been added to the system.

 B_INPUT_DEVICE_REMOVED

An input device has been removed from the system.

 B_INPUT_DEVICE_STARTED

An input device has been started.

 B_INPUT_DEVICE_STOPPED

An input device has been stopped.

 Input Method Events
Active input methods send input method events (B_INPUT_METHOD_EVENT messages) downstream to application views to help integrate the
method>s work with the view>s display. Inside each B_INPUT_METHOD_EVENT message is a be:opcode field indicating the type of input method
event:

 B_INPUT_METHOD_CHANGED

Sent whenever the user changes the text during an input transaction.

 B_INPUT_METHOD_LOCATION_REQUEST

Sent whenever the input method needs to know the on−screen locations of characters in the input transaction.

 B_INPUT_METHOD_STARTED

Sent when a new input transaction is beginning.

 Input Server Messages

21

#B_INPUT_DEVICES_CHANGED
#B_INPUT_METHOD_EVENT
#B_INPUT_METHOD_EVENT

 B_INPUT_METHOD_STOPPED

Sent when an input transaction is completed.

 Input Server Messages

22

 Input Functions
Declared in: be/interface/InterfaceDefs.h

Library: libbe.so

This section describes the global mouse and keyboard functions.

 Mouse Functions

get_click_speed() see set_click_speed()

get_mouse_map() see set_mouse_map()

get_mouse_speed() see set_mouse_map()

get_mouse_acceleration() see set_mouse_acceleration()

get_mouse_type() see set_mouse_map()

 set_click_speed() , get_click_speed()

Declared in: be/interface/InterfaceDefs.h

status_t set_click_speed(bigtime_t interval)

status_t get_click_speed(bigtime_t *interval)

These functions set and report the timing for multiple−clicks. For successive mouse−down events to count as a multiple−click, they must occur within
the interval set by set_click_speed() and provided by get_click_speed(). The interval is measured in microseconds; it's usually set by
the user in the Mouse preferences application. The smallest possible interval is 100,000 microseconds (0.1 second).

If successful, these functions return B_OK; if unsuccessful, they return an error code, which may be just B_ERROR.

 set_mouse_map() , get_mouse_map() , set_mouse_type() , get_mouse_type() , set_mouse_speed() ,
 get_mouse_speed()

Declared in: be/interface/InterfaceDefs.h

status_t set_mouse_map(mouse_map *map)

status_t get_mouse_map(mouse_map *map)

status_t set_mouse_type(int32 numButtons)

status_t get_mouse_type(int32 *numButtons)

status_t set_mouse_speed(int32 speed)

status_t get_mouse_speed(int32 *speed)

status_t set_mouse_acceleration(int32 acceleration)

status_t get_mouse_acceleration(int32 *acceleration)

These functions configure the mouse and supply information about the current configuration. The configuration should usually be left to the user and
the Mouse preferences application.

set_mouse_map() maps the buttons of the mouse to their roles in the user interface, and get_mouse_map() writes the current map into the
variable referred to by map. The mouse_map structure has a field for each button on a three−button mouse:

uint32 left

23

InterfaceDefs.h
#set_mouse_acceleration()
#B_OK
#B_ERROR
#mouse_map

The button on the left of the mouse

uint32 right
The button on the right of the mouse

uint32 middle
The button in the middle, between the other two buttons

Each field is set to one of the following constants:

 B_SECONDARY_MOUSE_BUTTON

 B_TERTIARY_MOUSE_BUTTON

The same role can be assigned to more than one physical button. If all three buttons are set to B_PRIMARY_MOUSE_BUTTON, they all function as the
primary button; if two of them are set to B_SECONDARY_MOUSE_BUTTON, they both function as the secondary button; and so on.

set_mouse_type() informs the system of how many buttons the mouse actually has. If it has two buttons, only the left and right fields of the
mouse_map are operative. If it has just one button, only the left field is operative. set_mouse_type() writes the current number of buttons
into the variable referred to by numButtons.

set_mouse_speed() sets the speed of the mousethe rate at which the cursor image moves on−screen relative to the actual speed at which the user
moves the mouse on its pad. A speed value of 0 is the slowest movement rate. The maximum rate is 20, though even 10 is too fast for most users.
get_mouse_speed() writes the current speed into the variable referred to by speed.

set_mouse_acceleration() sets the mouse's accelerationthe rate at which the cursor image gains and loses speed as the user begins and ceases
moving the mouse. An acceleration value of 0 is the slowest movement rate. The maximum rate is 20, though even 10 is too fast for most users.
get_mouse_acceleration() writes the current acceleration into the variable referred to by acceleration.

All six functions return B_OK if successful, and an error code, typically B_ERROR, if not.

 Keyboard Functions

 get_key_info()

Declared in: be/interface/InterfaceDefs.h

status_t get_key_info(key_info *keyInfo)

Writes information about the state of the keyboard into the key_info structure referred to by keyInfo. This function lets you get information about
the keyboard in the absence of B_KEY_DOWN messages. The key_info structure has just two fields:

uint32 modifiers
A mask indicating which modifier keys are down and which keyboard locks are on.

uint8 key_states [16]
A bit array that records the state of all the keys on the keyboard, and all the keyboard locks. This array works identically to the "states" array passed in
a key−down message. See "Key States" in the Keyboard Information appendix for information on how to read information from the array.

get_key_info() returns B_OK if it was able to get the requested information, and B_ERROR if the return results are unreliable.

See also: BView::KeyDown(), the Keyboard Information appendix, modifiers()

 get_key_map()

Declared in: be/interface/InterfaceDefs.h

void get_key_map(key_map **keys, char **chars)

Provides a pointer to a copy of the system key mapthe structure that describes the role of each key on the keyboard. The pointers returned by the
function are yours; you must free() them when you're finished with them.

In versions of the BeOS before Release 4, the pointers used to belong to the operating system. Now they're yours to do
with as you please. Please update your applications as necessary to avoid leaking memory.

 Input Functions

24

#B_PRIMARY_MOUSE_BUTTON
#mouse_map
#set_mouse_acceleration()
#get_mouse_acceleration()
#B_OK
#B_ERROR
#key_info
#B_KEY_DOWN
#key_info
#B_OK
#B_ERROR
#free()

Through the Keymap preferences application, users can configure the keyboard to their liking. The user's preferences are stored in a file
(Key_map within the B_USER_SETTINGS_DIRECTORY, returned by the find_directory() function). When the machine reboots, the key
map is read from this file. If the file doesn't exist, the original map encoded in the Application Server is used.

The key_map structure contains a large number of fields, but it can be broken down into these six parts:

• A version number.

• A series of fields that determine which keys will function as modifier keyssuch as Shift, Control, or Num Lock.

• A field that sets the initial state of the keyboard locks in the default key map.

• A series of ordered tables that assign character values to keys. Except for a handful of modifier keys, all keys are mapped to characters,
though they may not be mapped for all modifier combinations.

• A series of tables that locate the dead keys for diacritical marks and determine how a combination of a dead key plus another key is mapped
to a particular character.

• A set of masks that determine which modifier keys are required for a key to be considered dead.

The following sections describe the parts of the key_map structure.

 Version

The first field of the key map is a version number:

uint32 version
An internal identifier for the key map.

The version number doesn't change when the user configures the keyboard, and shouldn't be changed programmatically either. You can ignore it.

 Modifiers

Modifier keys set states that affect other user actions on the keyboard and mouse. Eight modifier states are definedShift, Control, Option, Command,
Menu, Caps Lock, Num Lock, and Scroll Lock. These states are discussed under "Modifier Keys" in the Keyboard Information appendix. They fairly
closely match the key caps found on a Macintosh keyboard, but only partially match those on a standard PC keyboardwhich generally has a set of
Alt(ernate) keys, rarely Option keys, and only sometimes Command and Menu keys. Because of these differences, the mapping of keys to modifiers is
the area of the key map most open to the user's personal judgement and taste, and consequently to changes in the default configuration.

Since two keys, one on the left and one on the right, can be mapped to the Shift, Control, Option, and Command modifiers, the keyboard can have as
many as twelve modifier keys. The key_map structure has one field for each key:

uint32 caps_key
The key that functions as the Caps Lock key; by default, this is the key labeled "Caps Lock," key 0x3b.

uint32 scroll_key
The key that functions as the Scroll Lock key; by default, this is the key labeled "Scroll Lock," key 0x0f.

uint32 num_key
The key that functions as the Num Lock key; by default, this is the key labeled "Num Lock," key 0x22.

uint32 left_shift_key
A key that functions as a Shift key; by default, this is the key on the left labeled "Shift," key 0x4b.

uint32 right_shift_key
Another key that functions as a Shift key; by default, this is the key on the right labeled "Shift," key 0x56.

uint32 left_command_key
A key that functions as a Command key; by default, this is key 0x5d, sometimes labeled "Alt."

uint32 right_command_key
Another key that functions as a Command key; by default, this is key 0x5f, sometimes labeled "Alt."

uint32 left_control_key
A key that functions as a Control key; by default, this is the key labeled "Control" on the left, key 0x5c.

uint32 right_control_key
Another key that functions as a Control key; by default on keyboards that have Option keys, this key is the key labeled "Control" on the right, key
0x60. For keyboards that don't have Option keys, this field is unmapped (its value is 0); key 0x60 is used as an Option key.

uint32 left_option_key
A key that functions as an Option key; by default, this is key 0x66, which has different labels on different keyboards"Option," "Command," or a
Windows symbol. This key doesn't exist on, and therefore isn't mapped for, a standard 101−key keyboard.

uint32 right_option_key
A key that functions as an Option key; by default, this is key 0x67, which has different labels on different keyboards"Option," "Command," or a
Windows symbol. For keyboards without this key, the field is mapped to the key labeled "Control" on the right, key 0x60.

uint32 menu_key
A key that initiates keyboard navigation of the menu hierarchy; by default, this is the key labeled with a menu symbol, key 0x68. This key doesn't exist
on, and therefore isn't mapped for, a standard 101−key keyboard.

Each field names the key that functions as that modifier. For example, when the user holds down the key whose code is set in the
right_option_key field, the B_OPTION_KEY and B_RIGHT_OPTION_KEY bits are turned on in the modifiers mask that the
modifiers() function returns. When the user then strikes a character key, the B_OPTION_KEY state influences the character that's generated.

 Input Functions

25

#find_directory()
#key_map
#key_map
#key_map

If a modifier field is set to a value that doesn't correspond to an actual key on the keyboard (including 0), that field is not mapped. No key fills that
particular modifier role.

 Keyboard locks

One field of the key map sets initial modifier states:

uint32 lock_settings
A mask that determines which keyboard locks are turned on when the machine reboots or when the default key map is restored.

The mask can be 0 or may contain any combination of these three constants:

B_SCROLL_LOCK

B_NUM_LOCK

It's 0 by default; there are no initial locks.

Altering the lock_settings field has no effect unless the altered key map is made the default.

 Character maps

The principal job of the key map is to assign character values to keys. This is done in a series of nine tables:

int32 control_map [128]
The characters that are produced when a Control key is down but both Command keys are up.

int32 option_caps_shift_map [128]
The characters that are produced when Caps Lock is on and both a Shift key and an Option key are down.

int32 option_caps_map [128]
The characters that are produced when Caps Lock is on and an Option key is down.

int32 option_shift_map [128]
The characters that are produced when both a Shift key and an Option key are down.

int32 option_map [128]
The characters that are produced when an Option key is down.

int32 caps_shift_map [128]
The characters that are produced when Caps Lock is on and a Shift key is down.

int32 caps_map [128]
The characters that are produced when Caps Lock is on.

int32 shift_map [128]
The characters that are produced when a Shift key is down.

int32 normal_map [128]
The characters that are produced when none of the other tables apply.

Each of these tables is an array of 128 offsets into another array, the chars array of Unicode UTF−8 character encodings. get_key_map() provides
a pointer to the chars array as its second argument.

Key codes are used as indices into the character tables. The offset stored at any particular index maps a character to that key. For example, the code
assigned to the M key is 0x52; at index 0x52 in the option_caps_map is an offset; at that offset in the chars array, you'll find the character that's
mapped to the M key when an Option key is held down and Caps Lock is on.

This indirectionan index to an offset to a characteris required because characters are encoded as Unicode UTF−8 strings. Character values of 127 or
less (7−bit ASCII) are just a single byte, but UTF−8 takes two, three, or (rarely) four bytes to encode values over 127.

The chars array represents each character as a Pascal stringthe first byte in the string tells how many other bytes the string contains. For example, the
string for the trademark symbol ((TM)) looks like this:

 x03xE2x84xA2

The first byte (x03) indicates that Unicode UTF−8 takes 3 bytes to represent the trademark symbol, and those bytes follow (xE2x84xA2). Pascal
strings are not null−terminated.

Here's an example showing you how to decode the character tables. This sample prints out a simple chart of the normal_map, shift_map,
option_map , and option_shift_map characters:

 #include <interface/InterfaceDefs.h>
 #include <stdio.h>
 #include <string.h>
 #include <stdlib.h>

 static void print_key(char *chars, int32 offset)
 {
 int size = chars[offset++];

 switch(size) {
 case 0:
 // Not mapped
 printf("N/A");

 Input Functions

26

 break;

 case 1:
 // 1−byte UTF−8/ASCII character
 printf("%c", chars[offset]);
 break;

 default:
 // 2−, 3−, or 4−byte UTF−8 character
 {
 char *str = new char[size + 1];
 strncpy(str, &(chars[offset]), size);
 printf("%s", str);
 delete [] str;
 }
 break;
 }

 printf("t");
 }

 int main(void)
 {
 // Get the current key map.
 key_map *keys;
 char *chars;
 get_key_map(&keys, &chars);

 // Print a chart of the normal, shift, option, and option+shift
 // keys.
 printf("Key #tNormaltShifttOptiontOption+Shiftn");
 for(int idx = 0; idx < 128; idx++) {
 printf(" %3dt", idx);
 print_key(chars, keys−>normal_map[idx]);
 print_key(chars, keys−>shift_map[idx]);
 print_key(chars, keys−>option_map[idx]);
 print_key(chars, keys−>option_shift_map[idx]);
 printf("n");
 }

 // Free our copy of the key map.
 free(chars);
 free(keys);

 return EXIT_SUCCESS;
 }

The character map tables are ordered. Values from the first applicable table are used, even if another table might also seem to apply. For example, if
Caps Lock is on and a Control key is down (and both Command keys are up), the control_map array is used, not caps_map. If a Shift key is
down and Caps Lock is on, the caps_shift_map is used, not shift_map or caps_map.

Notice that the last eight tables (all except control_map) are paired, with a table that names the Shift key (..._shift_map) preceding an
equivalent table without Shift:

• option_caps_shift_map is paired with option_caps_map,

• option_shift_map with option_map,

• caps_shift_map with caps_map, and

• shift_map with normal_map.

These pairings are important for a special rule that applies to keys on the numerical keypad when Num Lock is on:

• If the Shift key is down, the non−Shift table is used.

• However, if the Shift key is not down, the Shift table is used.

In other words, Num Lock inverts the Shift and non−Shift tables for keys on the numerical keypad.

Not every key needs to be mapped to a character. If the chars array has a 0−length string for a key, the key is not mapped to a character (given the
particular modifier states the table represents). Generally, modifier keys are not mapped to characters, but all other keys are, at least for some tables.
Key−down events are not generated for unmapped keys.

 Dead keys

Next are the tables that map combinations of keys to single characters. The first key in the combination is "dead"it doesn't produce a key−down event
until the user strikes another character key. When the user hits the second key, one of two things will happen: If the second key is one that can be used
in combination with the dead key, a single key−down event reports the combination character. If the second key doesn't combine with the dead key,
two key−down events occur, one reporting the dead−key character and one reporting the second character.

There are five dead−key tables:

int32 acute_dead_key [32]
The table for combining an acute accent (xab) with other characters.

int32 grave_dead_key [32]
The table for combining a grave accent (Q) with other characters.

int32 circumflex_dead_key [32]
The table for combining a circumflex (xf6) with other characters.

int32 dieresis_dead_key [32]
The table for combining a dieresis (xac) with other characters.

 Input Functions

27

int32 tilde_dead_key [32]
The table for combining a tilde (xf7) with other characters

The tables are named after diacritical marks that can be placed on more than one character. However, the name is just a mnemonic; it means nothing.
The contents of the table determine what the dead key is and how it combines with other characters. It would be possible, for example, to remap the
tilde_dead_key table so that it had nothing to do with a tilde.

Each table consists of a series of up to 16 offset pairswhere, as in the case of the character maps, each offset picks a character from the chars character
array. The first character in the pair is the one that must be typed immediately after the dead key. The second character is the resulting character, the
character that's produced by the combination of the dead key plus the first character in the pair. For example, if the first character is 'o', the second
might be 'ô'meaning that the combination of a dead key plus the character 'o' produces a circumflexed 'ô'.

The character pairs for the default grave_dead_key array look something like this:

 > >, >'>,
 >A>, >À>,
 >E>, >È>,
 >I>, >Ì>,
 >O>, >Ò>,
 >U>, >Ù>,
 >a>, >à>,
 >e>, >è>,
 >i>, >ì>,
 >o>, >ò>,
 >u>, >ù>,
 . . .

By convention, the first offset in each array is to the B_SPACE character and the second is to the dead−key character itself. This pair does double duty:
It states that the dead key plus a space yields the dead−key character, and it also names the dead key. The system understands what the dead key is
from the second offset in the array.

 Character tables for dead keys

As mentioned above, for a key to be dead, it must be mapped to the character picked by the second offset in a dead−key array. However, it's not typical
for every key that's mapped to the character to be dead. Usually, there's a requirement that the user must hold down certain modifier keys (often the
Option key). In other words, a key is dead only if selected character−map tables map it to the requisite character.

Five additional fields of the key_map structure specify what those character−map tables arewhich modifiers are required for each of the dead keys:

uint32 acute_tables
The character tables that cause a key to be dead when they map it to the second character in the acute_dead_key array.

uint32 grave_tables
The character tables that cause a key to be dead when they map it to the second character in the grave_dead_key array.

uint32 circumflex_tables
The character tables that cause a key to be dead when they map it to the second character in the circumflex_dead_key array.

uint32 dieresis_tables
The character tables that cause a key to be dead when they map it to the second character in the dieresis_dead_key array.

uint32 tilde_tables
The character tables that cause a key to be dead when they map it to the second character in the tilde_dead_key array.

Each of these fields contains a mask formed from the following constants:

 B_OPTION_CAPS_SHIFT_TABLE B_CAPS_TABLE

 B_OPTION_CAPS_TABLE B_SHIFT_TABLE

 B_OPTION_SHIFT_TABLE B_NORMAL_TABLE

 B_OPTION_TABLE

The mask designates the character−map tables that permit a key to be dead. For example, if the mask for the grave_tables field is,

 B_OPTION_TABLE | B_OPTION_CAPS_SHIFT_TABLE

a key would be dead whenever either of those tables mapped the key to the character of the second offset in the grave_dead_key array ('Q' in the
example above). A key mapped to the same character by another table would not be dead.

See also: get_key_info() , modifiers(), the Keyboard Information appendix, set_modifier_key()

get_key_repeat_delay() see set_key_repeat_rate()

get_key_repeat_rate() see set_key_repeat_rate()

 Input Functions

28

#B_SPACE
#key_map

 get_keyboard_id()

Declared in: be/interface/InterfaceDefs.h

status_t get_keyboard_id(uint16 *id)

Obtains the keyboard identifier from the Application Server and device driver and writes it into the variable referred to by id. This number reveals
what kind of keyboard is currently attached to the computer.

The identifier for the standard 101−key PC keyboardand for keyboards with a similar set of keysis 0x83ab.

If unsuccessful for any reason, get_keyboard_id() returns B_ERROR. If successful, it returns B_OK.

 modifiers()

Declared in: be/interface/InterfaceDefs.h

uint32 modifiers(void)

Returns a mask that has a bit set for each modifier key the user is holding down and for each keyboard lock that's set. The mask can be tested against
these constants:

 B_CONTROL_KEY B_MENU_KEY B_SCROLL_LOCK

 B_OPTION_KEY B_NUM_LOCK

No bits are set (the mask is 0) if no locks are on and none of the modifiers keys are down.

If it's important to know which physical key the user is holding down, the one on the right or the one on the left, the mask can be further tested against
these constants:

 B_LEFT_CONTROL_KEY B_RIGHT_CONTROL_KEY

 B_LEFT_OPTION_KEY B_RIGHT_OPTION_KEY

 B_LEFT_COMMAND_KEY B_RIGHT_COMMAND_KEY

By default, the keys closest to the space bar function as Command keys, no matter what their labels on particular keyboards. If a keyboard doesn't have
Option keys (for example, a standard 101−key keyboard), the key on the right labeled "Control" functions as the right Option key, and only the left
"Control" key is available to function as a Control modifier. However, users can change this configuration with the /bin/keymap application.

 set_key_repeat_rate() , get_key_repeat_rate() , set_key_repeat_delay() , get_key_repeat_delay()

Declared in: be/interface/InterfaceDefs.h

status_t set_key_repeat_rate(int32 rate)

status_t get_key_repeat_rate(int32 *rate)

status_t set_key_repeat_delay(bigtime_t delay)

status_t get_key_repeat_delay(bigtime_t *delay)

These functions set and report the timing of repeating keys. When the user presses a character key on the keyboard, it produces an immediate
B_KEY_DOWN message. If the user continues to hold the key down, it will, after an initial delay, continue to produce messages at regularly spaced
intervalsuntil the user releases the key or presses another key. The delay and the spacing between messages are both preferences the user can set with
the Keyboard application.

set_key_repeat_rate() sets the number of messages repeating keys produce per second. For a standard PC keyboard, the rate can be as low as
2 and as high as 30; get_key_repeat_rate() writes the current setting into the integer that rate refers to.

set_key_repeat_delay() sets the length of the initial delay before the key begins repeating. Acceptable values are 250,000, 500,000, 750,000
and 1,000,000 microseconds (.25, .5, .75, and 1.0 second); get_key_repeat_delay() writes the current setting into the variable that

 Input Functions

29

#B_ERROR
#B_OK
#B_KEY_DOWN

delay points to.

All four functions return B_OK if they successfully communicate with the Application Server, and B_ERROR if not. It's possible for the
set...() functions to communicate with the server but not succeed in setting the rate or delay (for example, if the delay isn't one of the listed four
values).

 set_keyboard_locks()

Declared in: be/interface/InterfaceDefs.h

void set_keyboard_locks(uint32 modifiers)

Turns the keyboard locksCaps Lock, Num Lock, and Scroll Lockon and off. The keyboard locks that are listed in the modifiers mask passed as an
argument are turned on; those not listed are turned off. The mask can be 0 (to turn off all locks) or it can contain any combination of the following
constants:

 B_NUM_LOCK

 B_SCROLL_LOCK

See also: get_key_map() , modifiers()

 set_modifier_key()

Declared in: be/interface/InterfaceDefs.h

void set_modifier_key(uint32 modifier, uint32 key)

Maps a modifier role to a particular key on the keyboard, where key is a key identifier and modifier is one of the these constants:

 B_NUM_LOCK B_LEFT_CONTROL_KEY B_RIGHT_CONTROL_KEY

 B_SCROLL_LOCK B_LEFT_OPTION_KEY B_RIGHT_OPTION_KEY

 B_MENU_KEY B_LEFT_COMMAND_KEY B_RIGHT_COMMAND_KEY

The key in question serves as the named modifier key, unmapping any key that previously played that role. The change remains in effect until the
default key map is restored. In general, the user's preferences for modifier keysexpressed in the Keymap applicationshould be respected.

Modifier keys can also be mapped by calling get_key_map() and altering the key_map structure directly. This function is merely a convenient
alternative for accomplishing the same thing. (It's currently not possible to alter the key map; get_key_map() looks at a copy.)

 Input Functions

30

#B_OK
#B_ERROR
#key_map

 Input Server Structures and Constants

 Structures

 input_device_ref

Declared in: be/add−ons/input_server/InputServerDevice.h

struct input_device_ref {
 char *name;
 input_device_type type;
 void *cookie;
 }

The input_device_ref structure is used to identify specific devices that a BInputServerDevice manages. To tell the Input Server about the
devices your object manages, you create an array of these structures and pass them in a BInputServerDevice::RegisterDevices() call.

The fields are:

const char *name An arbitrarybut preferably human−readablename that you invent. Although the name is used as an identifier (in
Control() calls), you should choose a name that's "UI−suitable" (e.g. "ADB Mouse", or "USB Keyboard").

input_device_type
type

This is either B_POINTING_DEVICE (i.e. mice), B_KEYBOARD_DEVICE, or B_UNDEFINED_DEVICE, where the last of
these is a catchall for anything that isn't a mouse or a keyboard.

void *cookie
This is an arbitrary piece of data that you can associate with the device. Use it to conveniently store some cogent piece of
data (such as *this), or to more specifically identify the device (such as the pathname of the driver it corresponds to), and
so on.

 Constants

 Device Types

Declared in: be/interface/Input.h

 B_POINTING_DEVICE

 B_KEYBOARD_DEVICE

 B_UNDEFINED_DEVICE

These constants represent the different types of input devices; they're used when defining an input_device_ref structure, and when sending
control messages through a BInputDevice object.

• B_POINTING_DEVICE signifies devices, such as mice and tablets, that are used to control the cursor.

• B_KEYBOARD_DEVICE signifies keyboards.

• B_UNDEFINED_DEVICE is anything that isn't a pointer or keyboard.

Note that there is no "joystick device"the Input Server doesn't currently handle joysticks.

 Input , Method , Operations

Declared in: be/interface/Input.h

31

InputServerDevice.h
#type
#B_POINTING_DEVICE
#B_KEYBOARD_DEVICE
#B_UNDEFINED_DEVICE
#open_device_iterator
#this
Input.h
#B_POINTING_DEVICE
#B_KEYBOARD_DEVICE
#B_UNDEFINED_DEVICE
Input.h

enum input_method_op {
B_INPUT_METHOD_STARTED,
B_INPUT_METHOD_STOPPED,
B_INPUT_METHOD_CHANGED,
B_INPUT_METHOD_LOCATION_REQUEST

}

 Input , Device , Notifications

Declared in: be/interface/Input.h

enum input_device_notification {
B_INPUT_DEVICE_ADDED,
B_INPUT_DEVICE_STARTED,
B_INPUT_DEVICE_STOPPED,
B_INPUT_DEVICE_REMOVED

}

 Input , Device , Control , Messages

Declared in: be/add−ons/input_server/InputServerDevice.h

B_KEY_MAP_CHANGED

B_KEY_LOCKS_CHANGED

B_KEY_REPEAT_DELAY_CHANGED

B_KEY_REPEAT_RATE_CHANGED

B_MOUSE_TYPE_CHANGED

B_MOUSE_MAP_CHANGED

B_MOUSE_SPEED_CHANGED

B_CLICK_SPEED_CHANGED

These constants are used in the BInputServerDevice::Control() function to tell a BInputServerDevice that a change to a device parameter
has been requested.

 Input Server Structures and Constants

32

Input.h
InputServerDevice.h

The Input Server: Master Index

A

acute_dead_key Input Functions

acute_tables Input Functions

App and Input Events The Input Server

B

C

caps_key Input Functions

B_CAPS_LOCK Input Functions

B_CAPS_LOCK Input Functions

caps_map Input Functions

caps_shift_map Input Functions

B_CAPS_SHIFT_TABLE Input Functions

B_CAPS_TABLE Input Functions

Character maps Input Functions

Character tables for dead keys Input Functions

circumflex_dead_key Input Functions

circumflex_tables Input Functions

B_CLICK_SPEED_CHANGED Input Server Messages

B_COMMAND_KEY Input Functions

Constants Input Server Structures and Constants

Constructor and Destructor BInputDevice

Constructor and Destructor BInputServerDevice

Constructor and Destructor BInputServerFilter

Constructor and Destructor BInputServerMethod

Control() BInputDevice

Control() BInputServerDevice

Control Input Server Structures and Constants

33

#B_CAPS_LOCK%20
#B_CAPS_LOCK
#B_CAPS_SHIFT_TABLE
#B_COMMAND_KEY

B_CONTROL_KEY Input Functions

control_map Input Functions

B_CONTROL_TABLE Input Functions

Creating and Registering BInputServerDevice

Creating BInputServerFilter

Creating BInputServerMethod

D

Device Input Server Structures and Constants

Device Monitoring Input Server Messages

Device State BInputServerDevice

Device Types and Control Messages BInputServerDevice

Device Types Input Server Structures and Constants

dieresis_dead_key Input Functions

dieresis_tables Input Functions

Drivers and Input Devices The Input Server

Dynamic Devices BInputServerDevice

E

EnqueueMessage() BInputServerMethod

Eraser Mode The Input Server

F

find_input_device() BInputDevice

G

get_click_speed() Input Functions

get_input_devices() BInputDevice

get_key_info() Input Functions

get_key_map() Input Functions

get_key_repeat_delay() Input Functions

The Input Server: Master Index

34

#B_CONTROL_TABLE

get_key_repeat_rate() Input Functions

get_keyboard_id() Input Functions

get_mouse_map() Input Functions

get_mouse_speed() Input Functions

get_mouse_type() Input Functions

grave_dead_key Input Functions

grave_tables Input Functions

H

Hook Functions BInputServerFilter

Hook Functions BInputServerMethod

I

InputCheck() BInputServerFilter

BInputDevice BInputDevice

BInputDevice() BInputDevice

~BInputDevice() BInputDevice

Input Device Control Messages BInputServerDevice

Input Device Control Messages Input Server Messages

Input Device Event Messages Input Server Messages

Input Functions Input Functions

Input Functions Input Functions

Input Input Server Structures and Constants

Input Method Events BInputServerMethod

Input Method Events Input Server Messages

Input Server and You The Input Server

BInputServerDevice BInputServerDevice

BInputServerDevice() BInputServerDevice

~BInputServerDevice() BInputServerDevice

BInputServerFilter BInputServerFilter

BInputServerFilter() BInputServerFilter

The Input Server: Master Index

35

~BInputServerFilter() BInputServerFilter

Input Server Messages Input Server Messages

Input Server Messages Input Server Messages

BInputServerMethod BInputServerMethod

BInputServerMethod() BInputServerMethod

~BInputServerMethod() BInputServerMethod

Input Server Structures and Constants Input Server Structures and Constants

Input Server Structures and Constants Input Server Structures and Constants

The Input Server The Input Server

The Input Server The Input Server

B_INPUT_DEVICE_ADDED Input Server Messages

input_device_ref Input Server Structures and Constants

B_INPUT_DEVICE_REMOVED Input Server Messages

B_INPUT_DEVICE_STARTED Input Server Messages

B_INPUT_DEVICE_STOPPED Input Server Messages

B_INPUT_METHOD_CHANGED Input Server Messages

B_INPUT_METHOD_LOCATION_REQUEST Input Server Messages

B_INPUT_METHOD_STARTED Input Server Messages

B_INPUT_METHOD_STOPPED Input Server Messages

Installing an Input Device BInputServerDevice

Installing an Input Filter BInputServerFilter

Installing an Input Method BInputServerMethod

Installing The Input Server

IsRunning() BInputDevice

K

B_KEY_MAP_CHANGED Input Server Messages

B_KEY_REPEAT_DELAY_CHANGED Input Server Messages

B_KEY_REPEAT_RATE_CHANGED Input Server Messages

key_states Input Functions

The Input Server: Master Index

36

Keyboard Device Control Messages Input Server Messages

Keyboard Device Event Messages Input Server Messages

Keyboard Functions Input Functions

Keyboard Functions Input Functions

Keyboard locks Input Functions

B_KEYBOARD_DEVICE Input Server Structures and Constants

L

B_LEFT_COMMAND_KEY Input Functions

B_LEFT_CONTROL_KEY Input Functions

B_LEFT_OPTION_KEY Input Functions

B_LEFT_SHIFT_KEY Input Functions

Loading The Input Server

lock_settings Input Functions

M

Member Functions BInputServerDevice

Member Functions BInputServerFilter

Member Functions BInputServerMethod

B_MENU_KEY Input Functions

B_MENU_KEY Input Functions

Messages from Input Methods The Input Server

Messages Input Server Structures and Constants

MethodActivated() BInputServerMethod

Method Input Server Structures and Constants

Mice and Tablets The Input Server

middle Input Functions

Modifiers Input Functions

modifiers() Input Functions

Mouse Functions Input Functions

B_MOUSE_MAP_CHANGED Input Server Messages

The Input Server: Master Index

37

#B_LEFT_SHIFT_KEY

B_MOUSE_SPEED_CHANGED Input Server Messages

B_MOUSE_TYPE_CHANGED Input Server Messages

N

Node Monitor Messages BInputServerDevice

normal_map Input Functions

B_NORMAL_TABLE Input Functions

Notifications Input Server Structures and Constants

Now where? BInputServerDevice

num_key Input Functions

B_NUM_LOCK Input Functions

B_NUM_LOCK Input Functions

O

option_caps_map Input Functions

option_caps_shift_map Input Functions

B_OPTION_CAPS_SHIFT_TABLE Input Functions

B_OPTION_CAPS_TABLE Input Functions

B_OPTION_KEY Input Functions

option_map Input Functions

option_shift_map Input Functions

B_OPTION_SHIFT_TABLE Input Functions

B_OPTION_TABLE Input Functions

Other Useful Information BInputServerDevice

P

Pointing Device Event Messages Input Server Messages

Pointing Devices BInputServerDevice

B_POINTING_DEVICE Input Server Structures and Constants

Precision Position Information The Input Server

Pressure The Input Server

The Input Server: Master Index

38

B_PRIMARY_MOUSE_BUTTON Input Functions

R

Relative Locations BInputServerDevice

right Input Functions

B_RIGHT_COMMAND_KEY Input Functions

B_RIGHT_COMMAND_KEY Input Functions

B_RIGHT_CONTROL_KEY Input Functions

B_RIGHT_CONTROL_KEY Input Functions

B_RIGHT_OPTION_KEY Input Functions

B_RIGHT_OPTION_KEY Input Functions

B_RIGHT_SHIFT_KEY Input Functions

B_RIGHT_SHIFT_KEY Input Functions

S

B_SCROLL_LOCK Input Functions

B_SCROLL_LOCK Input Functions

B_SECONDARY_MOUSE_BUTTON Input Functions

SetIcon() BInputServerMethod

SetMenu() BInputServerMethod

SetName() BInputServerMethod

set_click_speed() Input Functions

set_key_repeat_delay() Input Functions

set_key_repeat_rate() Input Functions

set_keyboard_locks() Input Functions

set_modifier_key() Input Functions

set_mouse_map() Input Functions

set_mouse_speed() Input Functions

set_mouse_type() Input Functions

B_SHIFT_KEY Input Functions

shift_map Input Functions

The Input Server: Master Index

39

#B_PRIMARY_MOUSE_BUTTON
#B_RIGHT_SHIFT_KEY%20
#B_RIGHT_SHIFT_KEY
#B_SHIFT_KEY

B_SHIFT_TABLE Input Functions

Start() BInputDevice

Start() BInputServerDevice

StartMonitoringDevice() BInputServerDevice

Starting and Sending Messages BInputServerDevice

Stop() BInputDevice

Stop() BInputServerDevice

StopMonitoringDevice() BInputServerDevice

Structures Input Server Structures and Constants

Supporting Input Methods in Views The Input Server

SystemShuttingDown() BInputServerDevice

T

tilde_dead_key Input Functions

tilde_tables Input Functions

Tilt The Input Server

Type() BInputDevice

U

UnregisterDevices() BInputServerDevice

V

version Input Functions

W

The Input Server: Master Index

40

	The Device Kit - Table of Contents
	 The Input Server
	 BInputDevice
	 BInputServerDevice
	 BInputServerFilter
	 BInputServerMethod
	 Input Server Messages
	 Input Functions
	 Input Server Structures and Constants
	The Input Server: Master Index

