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 Device Drivers
Writing device drivers requires additional knowledge of the inner workings of the BeOS. To write a driver you must follow the rules laid out in this
chapter very carefully. These rules are not the same as those for writing a normal applicationif your driver tries to do things it's not allowed to do, it
could bring down the system.

This introduction covers how drivers interact with the kernel.

 The Kernel and the Driver Author
The BeOS kernel comprises the basic functionality of the operating system: It knows how to start the boot process and to manage memory and threads,
and it contains the PCI bus manager, the ISA bus manager, the device file system (devfs, which manages /dev), the root file system (rootfs, which
manages /), and a few other things.

But this isn't enough to satisfy the needs of most applications, so the kernel uses add−ons to provide additional functionality. During the boot process,
add−ons are loaded to handle "real" file systems, devices, busses, and the like.

Although Be's kernel add−ons provide support for a wide range of hardwarefrom disk devices to joysticksthis support isn't all−inclusive. Hardware
developers may need to create their own drivers for their products.

 Types of Kernel Add−on

There are three types of kernel add−on:

• Device drivers are add−ons that communicate directly with devices.

• Modules are kernel space add−ons that export an API for use by drivers (or by other modules).

• File systems are add−ons that support specific file systems, such as BFS, DOSFS, HFS, and so forth.

Device drivers and file systems, while extending the functionality of the kernel, are still accessible from user space: Applications can open and address
them using file descriptors. Modules, on the other hand, are kernel−only units. Applications have no access to them; they're provided strictly for use by
the kernel and other kernel add−ons.

 Device Drivers

A device driver is an add−on that recognizes a specific device (or class of devices) and provides a means for the rest of the system to communicate
with it. Usually this communication involves some form of device−specific protocol. For example, if the system wants to use an Ethernet card or
graphics card, it needs to load a device driver add−on that knows how to communicate with that card. Similarly, code that knows how to talk to a class
of devices (SCSI disks, ATA devices, ATAPI disks, or USB input devices, etc.) must be implemented as a device driver add−on.

 Modules

Modules provide a uniform API for use by other modules and drivers. A module is like a library in that it acts as a repository for common code that's
shared among several drivers.

For example: Let's say you have a device driver that talks to a SCSI device connected to a SCSI bus. A computer can have multiple SCSI busses.
Because all SCSI devices use the same command set independent of the particular controller used to send the commands, the command set can be (and
is) implemented as a module. The SCSI module knows how to handle all SCSI cards the BeOS supports; the API that the SCSI module defines is
adopted by and augmented by the modules for specific SCSI device types (hard disks, scanners, CD drives, etc). The SCSI device modules are
managed by a SCSI bus manager module, which knows how to cope with multiple busses and presents them in encapulated form to the drivers. The
drivers then only need to deal with the bus manager's API, which makes the life of a driver author much simpler.

Be provides bus managers for SCSI, USB, IDE, and PCMCIA.

 File Systems

File system add−ons provide support for disk and network file systems, such as BFS, HFS, FAT, ISO 9660, CIFS, and so forth. By creating new file
system add−ons, developers can provide access to disks that are formatted using other file system.

 Interactions with the Kernel

The kernel provides a number of services that drivers and modules can use. These include:

• Enabling and disabling interrupts.

• Setting up memory for DMA transactions.

• Access to other devices and modules.

The kernel also provides, at the user level, a Posix−like API for accessing devices. An application can open a device through open(), and use
read(), write(), and ioctl() to access the device.

The Posix functions are converted into system calls into the kernel, which then passes them, via devfs, to the appropriate device driver.

 devfs
The kernel manages device drivers through devfs, the device file system that's mounted at /dev during the boot process. In order to be accessed, a
driver must "publish" itself by adding an entry in the /dev hierarchy. The basic Posix I/O functions (open(), read(), write(), readv(),
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writev(), ioctl(), and close()) can then be used.

Devfs makes the drivers available as needed in /dev; this usually happens the first time a program iterates through the directory entries for a
subdirectory in /dev. The kernel knows where in the /dev hierarchy to publish drivers based on their location in
/boot/beos/system/add−ons/kernel/drivers/dev. For example, the ATAPI driver publishes drivers in /dev/disk/ide/atapi, the driver is located in
/boot/beos/system/add−ons/kernel/drivers/dev/disk/ide/atapi. Whew.

You can see this device hierarchy by using the "ls" command from a Terminal window. "ls /dev" will show you the root of the device hierarchy, "ls
/dev/disk" will show you disk device busses, "ls /dev/disk/ide" will show you the IDE devices, and so forth.

In reality, drivers tend to publish themselves in multiple locations in the /dev hierarchy, so instead of putting duplicate copies of the driver in the
.../drivers/dev tree, the driver binaries are put at /boot/beos/system/add−ons/kernel/drivers/bin, and symlinks are created in the .../drivers/dev tree
at the appropriate place. (The same is also done for drivers in /boot/home/config/add−ons/kernel/drivers/....)

 Driver Implementation Principles
Much of the stability of the BeOS is achieved by constructing a nearly impenetrable wall between the kernel and user applications. Drivers are chinks
in that wall. If a driver misbehaves or fails, there's a strong possibility that it will cause unexpected behavior or kill the entire system. It's absolutely
critical that drivers not only be very carefully tested before being released to the public, but that they follow the rules to the letter.

 Kernel Space vs. User Space

One way you can reduce the risk of your driver causing a general system failure is by putting as much code as possible in user space. Create a driver
that loads into kernel space just enough code to handle the low−level interactions that absolutely have to be done in kernel space, then load code into
user space to handle the rest of the work. If the add−on fails, the system will keep runningonly your driver will fail.

Another plus to placing as much of your code as possible into user space is that it's much easier to debug code running in user space. Conventional
debugging techniques that don't work for kernel code can be applied, and there's much less chance of taking down the system in the process.

 Code Synchronization

Normally, spinlocks are a bad thing. A spinlock is a tight loop that watches for a condition to occur, looping endlessly until that condition is met (this
is called "busy waiting"). This wastes valuable processor time, and is normally discouraged.

In general, you're encouraged to use semaphores instead of spinlocks; however, you can't acquire a semaphore while handling an interrupt. So if you
need to synchronize code while handling an interrupt, you must use a spinlock. Put simply:

• Use spinlocks to protect critical sections in interrupt−handling code.

• Use semaphores in any other situation that calls for code synchronization.

Anywhere you use a spinlock to protect a critical section, you should disable interrupts. Of course, in an interrupt handler, you know that interrupts are
already disabled, so you don't need to explicitly disable interrupts yourself. Interrupt handlers include I/O interrupts installed using
install_io_interrupt()  and timer interrupts installed by calling add_timer().

 Functions Available During Spinlocks

While your spinlock is running, you can perform the following actions. If it's not on this list, you can't do it.

• You can examine and alter hardware registers by using the appropriate bus manager hooks.

• You can examine and alter any locked−down memory.

• You can call the following kernel functions: system_time() , atomic_add() , atomic_or() , atomic_and().

• You can call the following bus manager functions: read_io_*() and write_io*().

If you do anything else inside your spinlock, you're breaking the rules, so don't do it.

 Using Spinlocks

You need to be sure that your calls to acquire_spinlock()  and release_spinlock() are balanced. In addition, if you nest spinlocks, they
must be released in logical orderthat is, in the opposite order in which they're acquired.

The kernel keeps track of which spinlocks are being held and which are being waited upon. The kernel assumes that spinlocks are initialized to 0, and
then acquired and released in logical order.

By keeping track of spinlocks, the kernel can detect and break deadlocks on multiprocessor systems.

 Disabling Interrupts

The only time you should ever disable interrupts in a device driver is just before entering a spinlock−protected critical section. There is absolutely no
other reason to do it, so don't.

After disabling interrupts, you should reenable them as quickly as possible. You must never, under any circumstances, leave interrupts disabled for
more than 50 microseconds. This means that your interrupt handler code (which runs with interrupts implicitly disabled) must execute in 50
microseconds or less.

 Device Drivers
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 Functions Available While Interrupts Are Disabled

If you have interrupts disabled and aren't in a spinlock, you can do the following things in addition to those listed above in "Functions Available
During Spinlocks":

• You can call release_sem_etc()  with the B_DO_NOT_RESCHEDULE flag set.

• You can call get_sem_count() , add_timer() , cancel_timer() , and dprintf().

If you feel that you need to call a function not explicitly listed as permitted here, please contact Be Developer Support at devsupport@be.com and
explain your needs; we'd be happy to discuss the situation with you.

 Don't Block

It's crucial that your interrupt handler never block, whether directly (by acquiring a semaphore, for example) or indirectly (by calling a function that
might block).

Blocking can happen in a surprisingly large number of BeOS functions. It's obvious that acquire_sem() can block, but you might not be aware
that functions such as malloc()  or read_port() can block. Even touching unlocked memory areas can block because of virtual memory hits.

The point is this: If the BeOS function you want to call isn't explicitly listed in this section as one you can use, don't call it.

 Don't Preempt

Your interrupt handler or spinlock section can't be preempted. Preemption could occur if you call release_sem() or
release_sem_etc()  without specifying the B_DO_NOT_RESCHEDULE flag. Normally, release_sem() lets the scheduler preempt your
thread to allow other threads to acquire the semaphore as fast as possible. By specifying B_DO_NOT_RESCHEDULE, you tell the scheduler to allow
your thread to continue running after it releases the semaphore.

If your interrupt handler wants to ensure that any preemption is handled immediately, it should specify B_DO_NOT_RESCHEDULE when calling
release_sem(), then return B_INVOKE_SCHEDULER. This causes the scheduler to immediately handle preemption after your interrupt handler
returns, instead of resuming the interrupted task. This is especially useful if your code called release_sem_etc() to release a semaphore that will
allow other code to run elsewhere (such as in your driver's corresponding user−space code).

Again, when you call release_sem_etc() , be sure to specify the B_DO_NOT_RESCHEDULE flag to avoid any chance of
preemption.

In summary, the order in which you should do things is this:

• Disable interrupts.

• Acquire the spinlock.

• Perform your tasks.

• Release the spinlock.

• Restore the original interrupt state.

 File I/O

Sometimes a driver needs to be able to access disk files. Perhaps the driver has a preference file it needs to read. There are two ways to do this. You
can use Posix I/O calls, or you can use the driver settings API provided by BeOS. The latter is preferred.

 Using Posix Calls

Under BeOS, device drivers can access disk files using the standard low−level Posix I/O functions: open(), close(), read(), write(), and so
forth. There aren't any special chores to attend to beforehand. Just open() the file and do your thing.

Two Posix extensions that might be helpful when you're writing code to perform file I/O from a device driver: readv() and writev().

   int readv(int fd, const struct iovec *vector, size_t count);

   int writev(int fd, const struct iovec *vector, size_t count);

   struct iovec {
      __ptr_t iov_base;
      size_t iov_len;
   };

These functions provide a means to read and write contiguous portions of a file from multiple buffers. vector is a pointer to an array containing
count vector records, each of which contains a pointer to a buffer, and the size of the buffer. readv() fills these buffers with data from the file, and
writev() writes them to the file, in order.

When successful, readv() returns the number of bytes read.

For example, if your code needs to write two separate 1k buffers into a file, one after the other, you might do something like this:

   struct iovec v[2];
   v[0].iov_base = &buffer1;
   v[0].iov_len = 1024;
   v[1].iov_base = &buffer2;

 Device Drivers
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   v[1].iov_len = 1024;
   if (writev(fd, &v, 2) != B_OK) {
      /* error */
   }

Performing vectored I/O like this is often faster than doing multiple calls to read() and write().

 The Driver Settings API

If your driver is loaded before the file system for the disk on which your settings file resides, your driver might not be able to load its settings using
Posix calls. The driver settings API lets you work around this circumstance. See the "Driver Settings API" section for details.

 Device Drivers
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 Writing Drivers
A device driver is an add−on that communicates with a specific device or type of device. Usually this communication involves some form of
device−specific protocol. For example, an add−on that specifically addresses an Ethernet card or graphics card is a device driver. Likewise, add−ons
that know how to talk to a class such as SCSI disks, ATA devices, ATAPI disks, or USB input devices is also a device driver.

A driver's job is to recognize the device and provide a means for applications to talk to it.

We can't stress this enough: a bug in a device driver can bring down the entire system. Be very careful, and be sure to
test your work well.

To reduce the risk of the system being adversely affected by a bug in your code, you should put as much of your code into user space as possible.

This section covers the structure of device drivers, and provides some examples of how to write them.

 Symbols Drivers Export
The kernel communicates with drivers by calling certain known entry points, which the driver must implement and export. These entry points are:

• init_hardware()
Called when the system is booted, to let the driver detect and reset the hardware.

• init_driver()
Called when the driver is loaded, so it can allocate needed system resources.

• uninit_driver()
Called just before the driver is unloaded, so it can free allocated resources.

• publish_devices()
Called to obtain a list of device names supported by the driver.

• find_device()
Called to obtain a list of pointers to the hook functions for a specified device.

• api_version
This exported value tells the kernel what version of the driver API it was written to, and should always be set to
B_CUR_DRIVER_API_VERSION in your source code.

 init_hardware()

status_t init_hardware(void)

This function is called when the system is booted, which lets the driver detect and reset the hardware it controls. The function should return B_OK if
the initialization is successful; otherwise, an appropriate error code should be returned. If this function returns an error, the driver won't be used.

 init_driver()

status_t init_driver(void)

Drivers are loaded and unloaded on an as−needed basis. When a driver is loaded by devfs, this function is called to let the driver allocate memory and
other needed system resources. Return B_OK if initialization succeeds, otherwise return an appropriate error code. <<<what happens if this returns an
error?>>>

 uninit_driver()

void uninit_driver(void)

This function is called by devfs just before the driver is unloaded from memory. This lets the driver clean up after itself, freeing any resources it
allocated.
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 publish_devices()

const char **publish_devices(void)

Devfs calls publish_devices() to learn the names, relative to /dev, of the devices the driver supports. The driver should return a
NULL−terminated array of strings indicating all the installed devices the driver supports. For example, an ethernet device driver might return:

   static char *devices[] = {
      "net/ether",
      NULL
   };

In this case, devfs will then create the pseudo−file /dev/net/ether, through which all user applications can access the driver.

Since only one instance of the driver will be loaded, if support for multiple devices of the same type is desired, the driver must be capable of
supporting them. If the driver senses (and supports) two ethernet cards, it might return:

   static char *devices[] = {
      "net/ether1",
      "net/ether2",
      NULL
   };

 find_device()

device_hooks *find_device(const char *name)

When a device published by the driver is accessed, devfs communicates with it through a series of hook functions that handle the requests.The
find_device() function is called to obtain a list of these hook functions, so that devfs can call them. The device_hooks structure returned lists out
the hook functions.

The device_hooks structure, and what each hook does, is described in the next section.

 api_version

int32 api_version;

This variable defines the API version to which the driver was written, and should be set to B_CUR_DRIVER_API_VERSION at compile time. The
value of this variable will be changed with every revision to the driver API; the value with which your driver was compiled will tell devfs how it can
communicate with the driver.

 Device Hooks
The hook functions specified in the device_hooks function returned by the driver's find_device() function handle requests made by devfs (and
through devfs, from user applications). These are described in this section.

The structure itself looks like this:

   typedef struct {
      device_open_hook open;
      device_close_hook close;
      device_free_hook free;
      device_control_hook control;
      device_read_hook read;
      device_write_hook write;
      device_select_hook select;
      device_deselect_hook deselect;
      device_readv_hook readv;
      device_writev_hook writev;
   } device_hooks;

In all cases, return B_OK if the operation is successfully completed, or an appropriate error code if not.

 open_hook()

 Writing Drivers
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status_t open_hook(const char *name, uint32 flags, void **cookie)

This hook function is called when a program opens one of the devices supported by the driver. The name of the device (as returned by
publish_devices()) is passed in name, along with the flags passed to the Posix open() function. cookie points to space large enough for you
to store a single pointer. You can use this to store state information specific to the open() instance. If you need to track information on a
per−open() basis, allocate the memory you need and store a pointer to it in *cookie.

 close_hook()

status_t close_hook(void **cookie)

This hook is called when an open instance of the driver is closed using the close() Posix function. Note that because of the multithreaded nature of
the BeOS, it's possible there may still be transactions pending, and you may receive more calls on the device. For that reason, you shouldn't free
instance−wide system resources here. Instead, you should do this in free_hook(). However, if there are any blocked transactions pending, you
should unblock them here.

 free_hook()

status_t free_hook(void **cookie)

This hook is called once all pending transactions on an open (but closing) instance of your driver are completed. This is where your driver should
release instance−wide system resources. free_hook() doesn't correspond to any Posix function.

 read_hook()

status_t read_hook(void *cookie, off_t position, void *data, size_t *len)

This hook handles the Posix read() function for an open instance of your driver. Implement it to read len bytes of data starting at the specified byte
position on the device, storing the read bytes at data. Exactly what this does is device−specific (disk devices would read from the specified offset on
the disk, but a graphics driver might have some other interpretation of this request).

Before returning, you should set len to the actual number of bytes read into the buffer. Return B_OK if data was read (even if the number of returned
bytes is less than requested), otherwise return an appropriate error.

 readv_hook()

status_t readv_hook(void *cookie, off_t position, const struct iovec *vec, 
      size_t count, size_t *len)

This hook handles the Posix readv() function for an open instance of your driver. This is a scatter/gather read function; given an array of iovec
structures describing address/length pairs for a group of destination buffers, your implementation should fill each successive buffer with bytes, up to a
total of len bytes. The vec array has count items in it.

As with read_hook(), set len to the actual number of bytes read, and return an appropriate result code.

 write_hook()

status_t write_hook(void *cookie, off_t position, void *data, size_t len)

This hook handles the Posix write() function for an open instance of your driver. Implement it to write len bytes of data starting at the specified
byte position on the device, from the buffer pointed to by data. Exactly what this does is device−specific (disk devices would write to the specified
offset on the disk, but a graphics driver might have some other interpretation of this request).

Return B_OK if data was read (even if the number of returned bytes is less than requested), otherwise return an appropriate error.

 Writing Drivers
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 writev_hook()

status_t writev_hook(void *cookie, off_t position, const struct iovec *vec, 
      size_t count, size_t *len)

This hook handles the Posix writev() function for an open instance of your driver. This is a scatter/gather write function; given an array of iovec
structures describing address/length pairs for a group of source buffers, your implementation should write each successive buffer to disk, up to a total
of len bytes. The vec array has count items in it.

Before returning, set len to the actual number of bytes written, and return an appropriate result code.

 control_hook()

status_t control_hook(void *cookie, uint32 op, void *data, size_t len)

This hook handles the ioctl() function for an open instance of your driver. The control hook provides a means to perform operations that don't map
directly to either read() or write(). It receives the cookie for the open instance, plus the command code op and the data and len arguments
specified by ioctl()'s caller. These arguments have no inherent relationship; they're simply arguments to ioctl() that are forwarded to your hook
function. Their definitions are defined by the driver. Common command codes can be found in be/drivers/Drivers.h.

The len argument is only valid when ioctl() is called from user space; the kernel always sets it to 0.

 select_hook() , deselect_hook()

status_t select_hook(void *cookie, uint8 event, uint32 ref, selectsync *sync)

status_t deselect_hook(void *cookie, uint8 event, uint32 ref, selectsync *sync)

These hooks are reserved for future use. Set the corresponding entries in your device_hooks structure to NULL.

 Driver Rules
Keep the following rules in mind for each instance of your driver:

• open() will be called first, and no other hooks will be called until open() returns.

• close() may be called while other requests are pending. As previously mentioned, if you have blocked transactions, you must unblock
them when close() is called. Further calls to other driver hooks my continue to occur after close() is called; however, you should
return an error to any such requests.

• free() isn't called until all pending transactions for the open instance are completed.

• Multiple threads may be accessing the driver's hooks simultaneously, so be sure to lock and unlock where appropriate.

 Writing Drivers
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 Writing Modules
Modules provide services that can be used by other modules, by device drivers, and by the kernel itself. They can be dynamically loaded and unloaded
by the kernel, as needed. If a client can't find a module it needs, it will still load, which gives it the opportunity to find another way to perform the
desired tasks, or to disable those features of itself.

Modules, like drivers, export an API through a structure that provides pointers to the functions provided by the module, along with other information
about the module. You do this by expanding upon the basic module definition in be/drivers/module.h. For example, you might define your module
information structure like this:

   #define MY_MODULE_NAME "generic/mymodule/v1"

   struct my_module_info {
      module_info module;
      int32 (*function1)();
      int32 (*function2)();
      void (*configure)(int32 parameter, int32 value);
   };

Note that the first field in your module information structure is a module_info, which looks like this:

   struct module_info {
      const char *name;
      uint32 flags;
      status_t (*std_ops);
   };

The name field should be a pointer to the driver's name as indicated in your module's header file (in this example, MY_MODULE_NAME).

The flags field specifies which flags should be in effect for your module. Currently, the B_KEEP_LOADED flag is the only one available; as expected,
it tells the kernel not to unload your module when nobody is using it; normally, the first time your module is requested by someone calling
get_module(), the kernel loads it. With each subsequent call to get_module(), a reference count is incremented. Every time
put_module() is called to release the module, the reference count is decremented. When the counter reaches zero, the module is unloaded.
B_KEEP_LOADED prevents unloading from taking place.

std_ops is a pointer to a function that your module must provide. This function is called to handle standard module operations. Currently, there are
only two of these operations (initialization and uninitialization). Your module's std_ops() function will probably look something like this:

   static status_t std_ops(int32 op, ...) {
      switch(op) {
         case B_MODULE_INIT:
            /* do whatever you need to do */
            break;
         case B_MODULE_UNINIT:
            /* do whatever you need to do */
            break;
         default:
            return B_ERROR;   /* necessary, for future expansion */
      }
      return B_OK;
   }

It's important to return B_ERROR for any unknown operations, in case future versions of the kernel define additional operations.

Exporting your module to the outside world is similar to publishing device driver hooks, but since you define the hooks yourself, it's slightly more
involved. Your module needs to have a filled−out version of your module's information structure, like this:

   static struct my_module_info my_module {
      {
         MY_MODULE_NAME,   /* module name */
         0,   /* flags */
         std_ops
      },
      function1,
      function2,
      configure
   };

When loading your module, the kernel looks for a symbol called "modules" that contains a list of pointers to the modules you export, terminated by a
NULL:

   _EXPORT module_info *modules[] = {
      (module_info *) &my_module,
      NULL
   };

This is how the kernel finds out what modules are available for use by drivers (or by other modules). See the "Using Modules" section for details on
how modules are accessed by other drivers or modules.
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 Using Modules
Modules provide a means for multiple drivers to share common functionality; for example, if a variety of types of device might be accessed on the
same bus, a module might be created to provide a common interface to the bus.

Your driver can access these modules via the kernel functions get_module() and put_module(), which obtain and release references to a
specified module. When you call get_module(), you obtain a structure that provides information about the module, plus pointers to the module's
functions. The module is defined in a header file provided by the module's author, similar to this:

   #define MY_MODULE_NAME "generic/mymodule/v1"

   struct my_module_info {
      module_info module;
      int32 (*function1)();
      int32 (*function2)();
      void (*configure)(int32 parameter, int32 value);
   };

When you want to access the module's functions, you call get_module() to get a pointer to this structure from the kernel:

   struct my_module_info *minfo = NULL;

   /* get a pointer to the module */

   get_module(MY_MODULE_NAME, (module_info **) &minfo);

Once you've done this, you can call the module's functions through the structure:

   minfo−>configure(0, 10);

When you're done with the module, you should call put_module() to release it. The kernel loads and unloads modules as needed, and properly
calling put_module() lets the kernel do its job.

   put_module(MY_MODULE_NAME);

If you want a better understanding of how modules work, see the "Writing Modules" section.
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 The area_malloc Module
Declared in: drivers/area_malloc.h

The area_malloc module provides a means for your driver to allocate memory in areas instead of on the heap. It provides malloc(), calloc(),
realloc() , and free() functions that work just like their POSIX counterparts, except they require a pool argument as their first input.

These functions aren't safe to call from interrupt handlers; they may block on semaphores.

The area_malloc functions are thread−safe in relation to one another, but not in relation to delete_pool(). Be sure you don't call
delete_pool()  on the pool you're using until you know none of the other functions might be called. create_pool() and
delete_pool() are safe in relation to each other.

When the last user of the module puts it away, any remaining pools are automatically deleted.

 Module Functions

 create_pool() , delete_pool()

const void *create_pool(uint32 addressSpec, size_t size, 
      uint32 lockSpec, uint32 protection)

status_t delete_pool(const void *poolID)

create_pool()  creates a new pool of memory from which to allocate. The parameters are the same as those used by create_area(), so you
have complete control over the area's characteristics (except for its name). Returns an opaque pool idenfityer, or NULL if the creation failed. The
ability to share resources allocated from the pool is determined by the permissions and protections used to create the area.

delete_pool() deletes the pool specified by the opaque poolID given. Any pointers returned by the other functions in the module are immediately
invalid. Returns B_OK if the pool was deleted, otherwise B_ERROR.

See also: create_area() in the Kernel Kit.

 malloc() , calloc() , realloc()

void *malloc(const void *poolID, size_t size)

void *calloc(const void *poolID, size_t numMembers, size_t size)

void *realloc(const void *poolID, void *ptr, size_t size)

malloc() allocates a block of size bytes and returns a pointer to it.

calloc() allocates a block that can contain numMembers items of the specified size and returns a poiner to it.

realloc() resizes the memory block pointed to by ptr to the indicated size. Resizing a block can require that the memory be relocated, so this
function returns the new pointer.

Each of these operations functions in the pool specified by poolID.

If there's not enough memory to allocate the requested block, these functions return NULL.

 free()

void free(const void *poolID, void *ptr)

Releases the memory block pointed to by ptr from the pool specified by poolID.
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 Constants

 B_AREA_MALLOC_MODULE_NAME

Declared in: <drivers/area_malloc.h>

The B_AREA_MALLOC_MODULE_NAME constant identifies the area_malloc module; use this constant to open the module.

 The area_malloc Module
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 Driver Settings API
Declared in: drivers/driver_settings.h

If your driver is loaded before the file system for the disk on which your settings file resides, your driver might not be able to load its settings using
Posix calls. Also, a robust method for reading settings fileseven if they might have become corruptedcan help the system be more stable; if your driver
crashes trying to read its settings, the entire system is in jeopardy.

The driver settings API provides easy, safe access to boolean and string settings, and is available to all drivers and modules. If your driver has more
complex settings, the get_driver_settings() function is available to retrieve all your settings in a hierarchical tree.

The boot loader reads the settings files from the boot volume and passes them to the kernel for distribution to the drivers upon request. The boot loader
also lets the user add to these settings at boot time; a line of the form "filename:parameters" in the advanced safe mode menu will add "parameters" to
the end of the specified settings file. This can be used to change debugging information and to test different options while developing your driver.

 Using the Driver Settings API
Using the API is very simple. Just follow these basic steps:

• Call load_driver_settings() to load the settings data.

• Use get_driver_settings()  or get_driver_parameter()  and get_driver_boolean_parameter() to read the settings.

• Call unload_driver_settings() when you're done.

 The Settings File

Driver settings files are kept in ~/config/settings/kernel/drivers.

The settings file is formatted like this:

• Words beginning with "#" indicate that the rest of the line should be treated as a comment.

• Parameters can have values and subparameters. A parameter has the following form in the settings file:

name [value]* [{ 
[parameter]* 
}] ['n',',']

Where [ ... ] indicates an optional part, and [ ... ]* indicates an optional repeated part.

• Names and values may not contain spaces unless the spaces are preceded by a backslash ('') or the words are enclosed in quotes.

Here's an example settings file:

device 0 { 
   attribute1 value 
   attribute2 value 
} 
device 1 { 
   attribute1 value 
}

For this settings file, get_driver_settings() will return a pointer to the following tree:

driver_settings = { 
   parameter_count = 2 
   parameters = { 
      name = "device" 
      value_count = 1 
      values = { "0" } 
      parameter_count = 2 
      parameters = { 
         name = "attributes1" 
         value_count = 1 
         values = "value" 
         parameter_count = 0 
         parameters = NULL 
      }, 
      { 
         name = "attribute2" 
         value_count = 1 
         values = "value" 
         parameter_count = 0 
         parameters = NULL 
      } 
   }, 
   { 
      name = "device" 
      value_count = 1 
      values = { "1" } 
      parameter_count = 1 
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      parameters = { 
         name = "attribute1" 
         value_count = 1 
         values = "value" 
         parameter_count = 0 
         parameters = NULL 
      } 
   } 
}

 Loading the Settings

To load the driver's settings, you need to call load_driver_settings(). For example, if your driver's name is "xr_joystick", you might do this:

   void *handle = load_driver_settings("xr_joystick");

The handle is then used when calling the other driver settings functions, to indicate which driver's settings you want to reference. This opaque
reference protects you against any future changes in the kernel.

 Reading the Settings

There are three functions you can use to read driver settings:

• get_driver_boolean_parameter() returns a boolean parameter's value.

• get_driver_parameter() returns a string parameter's value.

• get_driver_settings() returns all the settings at once, encapsulated in a hierarchical format.

 Reading a Boolean Parameter

Let's look at a simple driver that has one boolean parameter, "debug", that enables a special debug mode. The value of this parameter is represented in
the settings file by a line "debug value", where value is either "true" or "false". By default, if there's no setting for the debug parameter, false should be
assumed. If the parameter is specified but no value is included, we want to assume that the user means true.

Our code to read this setting looks like this:

   void *handle = load_driver_settings("xr_joystick");
   bool debug = get_driver_boolean_parameter(handle, "debug", false,
               true);
   unload_driver_settings(handle);

If there's no settings file, load_driver_settings() will return NULL . In this case, get_driver_boolean_parameter() will return
false (the value we're passing as the unknownValue argument).

If there's a settings file, but the debug entry isn't found, the unknownValue argument is returned. Even though the handle is valid, the function can't
find a value for that argument, so it uses this as the default.

If the file contains a line starting with "debug", the second word on the line is used as the value. If no value is specified, true is returned (the value of
the noArgValue argument to get_driver_boolean_parameter()). Otherwise the following is done:

• If the value is "1", "true", "yes", "on", "enable", or "enabled", true is returned.

• If the value is "0", "false", "no", "off", "disable", or "disabled", false is returned.

• If the value matches none of these strings, it's treated as if no entry were found, and unknownValue is returned.

If more than one line containing the word "debug" is found, the last one in the file is used. This lets the user override, at boot time, the value previously
specified in the settings file.

 Reading a String Parameter

Reading string parameters works in much the same way, using the get_driver_parameter() function. The only difference is that the string
returned will be NULL if the parameter is missing, or the file doesn't exist.

 Reading All Parameters

If your driver has more complex parameters (such as parameters with multiple values, or with subparameters), you can read the entire settings tree
using the get_driver_settings() function.

The driver_settings structure contains the root of the settings tree:

   typedef struct driver_settings {
      int parameter_count;
      struct driver_parameter *parameters;
   };

Each parameter is described by the driver_parameter structure:

   typedef struct driver_parameter {
      char *name;
      int value_count;
      char **values;
      int parameter_count;
      struct driver_parameter *parameters;
   };

 Driver Settings API
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 C Functions

 get_driver_boolean_parameter()

bool get_driver_boolean_parameter(void *handle, 
      const char *keyName, 
      bool unknownValue, 
      bool noArgValue)

Returns the value of a given boolean parameter. The driver settings file is specified by the handle, as returned by load_driver_settings().
The parameter's name is given by keyName. If the parameter isn't found, unknownValue is returned. If the parameter exists but has no value,
noArgValue is returned. This lets you easily deal with these two conditions, providing appropriate default values without additional code to check for
error conditions.

If the handle is NULL, unknownValue is returned.

 get_driver_parameter()

const char *get_driver_parameter(void *handle, 
      const char *keyName, 
      const char *unknownValue, 
      const char *noArgValue)

Returns the value of a given string parameter. The driver settings file is specified by the handle, as returned by load_driver_settings(). The
parameter's name is given by keyName. If the parameter isn't found, unknownValue is returned. If the parameter exists but has no value,
noArgValue is returned. This lets you easily deal with these two conditions, providing appropriate default values without additional code to check for
error conditions.

The special keyName value B_SAFEMODE_SAFE_MODE can be used if you want to find out whether or not BeOS was booted in safe mode; the value
will be true if BeOS is running in safe mode, or false if a normal boot was performed.

If the handle is NULL, unknownValue is returned.

 get_driver_settings()

const driver_settings *get_driver_settings(void *handle)

Returns the values of all parameters in encapsulated form.

 load_driver_settings() , unload_driver_settings()

void *load_driver_settings(const char *driverName)

status_t unload_driver_settings(void *handle)

load_driver_settings() loads the settings for the driver specified by driverName, and returns a handle that should be used for calls to other
driver settings functions. If you want to access the safe mode settings, pass B_SAFEMODE_DRIVER_SETTINGS Returns NULL if no settings are
available for the driver.

unload_driver_settings() unloads the settings for the driver whose settings file is specified by handle. You should always call this function
when you're done reading the settings.

 Defined Types

 Driver Settings API
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 driver_parameter

typedef struct driver_parameter { 
         char *name; 
         int value_count; 
         char **values; 
         int parameter_count; 
         struct driver_parameter *parameters; 
      };

Describes a subtree of parameters.

 driver_settings

typedef struct driver_settings { 
         int parameter_count; 
         struct driver_parameter *parameters; 
      };

Encapsulates all the settings for a driver.

 Driver Settings API
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 Constants and Defined Types
This section covers constants and types defined for use by kernel drivers and modules.

 Constants

 Current Driver API Version

Declared in: <drivers/Drivers.h>

The B_CUR_DRIVER_API_VERSION constant indicates what version of the driver API your driver will be built to.

See also: "Symbols Drivers Export"

 Driver Control Opcodes

Declared in: <drivers/Drivers.h>

 B_GET_DEVICE_SIZE Returns a size_t indicating the device size in bytes.

 B_SET_DEVICE_SIZE Sets the device size to the value pointed to by data.

 B_SET_NONBLOCKING_IO Sets the device to use nonblocking I/O.

 B_SET_BLOCKING_IO Sets the device to use blocking I/O.

 B_GET_READ_STATUS Returns true if the device can read without blocking, otherwise false .

 B_GET_WRITE_STATUS Returns true if the device can write without blocking, otherwise false .

 B_GET_GEOMETRY Fills out the specified device_geometry structure to describe the device.

 B_GET_DRIVER_FOR_DEVICE Returns the path of the driver executable handling the device.

 B_GET_PARTITION_INFO Returns a partition_info structure for the device.

 B_SET_PARTITION Creates a user−defined partition. data points to a partition_info structure.

 B_FORMAT_DEVICE Formats the device. data should point to a boolean value. If this is true , the device is formatted
low−level. If it's false , <<<unclear>>>

 B_EJECT_DEVICE Ejects the device.

 B_GET_ICON Fills out the specified device_icon structure to describe the device's icon.

 B_GET_BIOS_GEOMETRY Fills out a device_geometry structure to describe the device as the BIOS sees it.

 B_GET_MEDIA_STATUS Gets the status of the media in the device by placing a status_t at the location pointed to by data.

 B_LOAD_MEDIA Loads the media, if this is supported. <<<what does that mean?>>>

 B_GET_BIOS_DRIVE_ID Returns the BIOS ID for the device.

 B_SET_UNINTERRUPTABLE_IO Prevents control−C from interrupting I/O.

 B_SET_INTERRUPTABLE_IO Allows control−C to interrupt I/O.

 B_FLUSH_DRIVE_CACHE Flushes the drive's cache.

 B_GET_NEXT_OPEN_DEVICE Iterates through open devices; data points to an open_device_iterator .
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 B_ADD_FIXED_DRIVER For internal use only.

 B_REMOVE_FIXED_DRIVER For internal use only.

 B_AUDIO_DRIVER_BASE Base for codes in audio_driver.h.

 B_MIDI_DRIVER_BASE Base for codes in midi_driver.h.

 B_JOYSTICK_DRIVER_BASE Base for codes in joystick.h.

 B_GRAPHIC_DRIVER_BASE Base for codes in graphic_driver.h.

 B_DEVICE_OP_CODES_END End of Be−defined control IDs.

B_GET_MEDIA_STATUS can return the following values:

 Defined Types

 device_geometry

Declared in: <drivers/Drivers.h>

typedef struct { 
         uint32 bytes_per_sector ; 
         uint32 sectors_per_track ; 
         uint32 cylinder_count ; 
         uint32 head_count ; 
         uchar device_type ; 
         bool removable ; 
         bool read_only ; 
         bool write_once ; 
      } device_geometry

The device_geometry structure is returned by the B_GET_GEOMETRY driver control function. Its fields are:

• bytes_per_sector indicates how many bytes each sector of the disk contains.

• sectors_per_track indicates how many sectors each disk track contains.

• cylinder_count indicates the number of cylinders the disk contains.

• head_count indicates how many heads the disk has.

• device_type specifies the type of device; there's a list of device type definitions below.

• removable is true if the device's media can be removed from the drive, and is false otherwise.

• read_only is true if the media is read−only (such as CD−ROM), or false if the media can be both read from and written .

• write_once is true if the media can only be written to once (such as CD−recordable), or false if there's no limit to the number of times
the media can be written to.

If you need to compute the total size of the device in bytes, you can obtain this figure using the following simple formula:

   disk_size = geometry.cylinder_count * geometry.sectors_per_track *
            geometry.head_count * geometry.bytes_per_sector;

The device type returned in device_type is:

 B_DISK Hard disk, floppy disk, etc.

 B_TAPE Tape drive

 B_PRINTER Printer

 B_CPU CPU device

 Constants and Defined Types
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 B_WORM Write−once, read−many device (like CD−recordable)

 B_CD CD−ROM

 B_SCANNER Scanner

 B_OPTICAL Optical device

 B_JUKEBOX Jukebox device

 B_NETWORK Network device

 device_hooks

Declared in: <drivers/Drivers.h>

typedef struct { 
         device_open_hook open ; 
         device_close_hook close ; 
         device_free_hook free ; 
         device_control_hook control ; 
         device_read_hook read ; 
         device_write_hook write ; 
         device_select_hook select ; 
         device_deselect_hook deselect ; 
         device_readv_hook readv ; 
         device_writev_hook writev ; 
      } device_hooks

This structure is used by device drivers to export their function hooks to the kernel.

 device_icon

Declared in: <drivers/Drivers.h>

typedef struct { 
         int32 icon_size ; 
         void * icon_data ; 
      } device_icon

When you want to obtain an icon for a specific device, call ioctl() on the open device, specifying the B_GET_ICON opcode. Pass in data a pointer
to a device_icon structure in which icon_size indicates the size of icon you want and icon_data points to a buffer large enough to receive the icon's
data.

icon_size can be either B_MINI_ICON, in which case the buffer pointed to by icon_data should be large enough to receive a 16x16 8−bit bitmap
(256−byte), or B_LARGE_ICON, in which case the buffer should be large enough to receive a 32x32 8−bit bitmap (1024−byte). The most obvious
way to set up this buffer would be to create a BBitmap of the appropriate size and color depth and use its buffer, like this:

   BBitmap bits(BRect(0, 0, B_MINI_ICON−1, B_MINI_ICON−1, 0, B_CMAP8));
   device_icon iconrec;

   iconrec.icon_size = B_MINI_ICON;
   iconrec.icon_data = bits.Bits();
   status_t err = ioctl(dev_fd, B_GET_ICON, &iconrec);
   if (err == B_OK) {
      /* enjoy the icon */
      ...
      view−>DrawBitmap(bits);
   } else {
      /* I don't like icons anyway */
      }

 driver_path

Declared in: <drivers/Drivers.h>

 Constants and Defined Types
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typedef char driver_path [256];

Used by the B_GET_DRIVER_FOR_DEVICE control function to return the pathname of the specified device.

 open_device_iterator

Declared in: <drivers/Drivers.h>

typedef struct { 
         uint32 cookie ; 
         char device [256]; 
      } open_device_iterator

Used by the B_GET_NEXT_OPEN_DEVICE control function. The first time you call this function, your open_device_iterator should have
cookie initialized to 0. Then just keep calling it over and over; each time you'll get the name of the next open device. When an error is returned, you're
done.

 partition_info

Declared in: <drivers/Drivers.h>

typedef struct { 
         off_t offset ; 
         off_t size ; 
         int32 logical_block_size ; 
         int32 session ; 
         int32 partition ; 
         char device [256]; 
      } partition_info

The partition_info structure describes a disk partition, and is used by the B_GET_PARTITION_INFO and B_SET_PARTITION control commands.

The fields are:

• offset is the offset, in bytes, from the beginning of the disk to the beginning of the partition.

• size is the size, in bytes, of the partition.

• logical_block_size is the block size with which the file system was written to the partition.

• session and partition are the session and partition ID numbers for the partition.

• device is the pathname of the physical device on which the partition is located.

 Constants and Defined Types
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 Functions for Drivers & Modules
The kernel exports a number of functions that device drivers can call. The device driver accesses these functions directly in the kernel, not through a
library.

Remember when writing a driver that calls one of these functions to link against _KERNEL_. This will instruct the loader to dynamically locate the
symbols in the current kernel when the driver is loaded.

 acquire_spinlock() , release_spinlock() , spinlock

Declared in: be/drivers/KernelExport.h

void acquire_spinlock(spinlock *lock)

void release_spinlock(spinlock *lock)

typedef vlong spinlock

Spinlocks are mutually exclusive locks that are used to protect sections of code that must execute atomically. Unlike semaphores, spinlocks can be
safely used when interrupts are disabled (in fact, you must have interrupts disabled).

To create a spinlock, simply declare a spinlock variable and initialize it 0:

   spinlock lock = 0;

The functions acquire and release the lock spinlock. When you acquire and release a spinlock, you must have interrupts disabled; the structure of your
code will look like this:

   cpu_status former = disable_interrupts();
   acquire_spinlock(&lock);
   /* critical section goes here */
   release_spinlock(&lock);
   restore_interrupts(former);

The spinlock should be held as briefly as possible, and acquisition must not be nested within the critical section.

Spinlocks are designed for use in a multi−processor system (on a single processor system simply turning off interrupts is enough to guarantee that the
critical section will be atomic). Nonetheless, you can use spinlocks on a single processoryou don't have to predicate your code based on the number of
CPUs in the system.

add_debugger_command() see kernel_debugger()

 add_timer() , cancel_timer() , timer_hook , qent , timer

Declared in: be/drivers/KernelExport.h

typedef int32 (*timer_hook)(timer *)

struct quent = { 
      int64   key; 
      qent   *next; 
      qent   *prev; 
      }

struct timer = { 
      qent   entry; 
      uint16   flags; 
      uint16   cpu; 
      timer_hook hook; 
      bigtime_t   period; 
      }

status_t add_timer(timer *theTimer, timer_hook hookFunction, bigtime_t period, int32 flags)

bool cancel_timer(timer_t *theTimer)

add_timer() installs a new timer interrupt. A timer interrupt causes the specified hookFunction to be called when the desired amount of time has
passed. On entry, you should pass a pointer to a timer structure in theTimer; this will be filled out with data describing the new timer interrupt you've
installed. The flags argument provides control over how the timer functions, which affects the meaning of the period argument as follows:
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B_ONE_SHOT_ABSOLUTE_TIMERThe timer will fire once at the system time specified by period.

B_ONE_SHOT_RELATIVE_TIMER The timer will fire once in approximately period microseconds.

B_PERIODIC_TIMER The timer will fire every period microseconds, starting in period microseconds.

cancel_timer() cancels the specified timer. If it's already fired, it returns true; otherwise false is returned. It's guaranteed that once
cancel_timer() returns, if the timer was in the process of running when cancel_timer() was called, the timer function will be finished
executing. The only exception to this is if cancel_timer() was called from inside a timer handler (in which case trying to wait for the handler to
finish running would result in deadlock).

RETURN CODES

B_OK. The timer was installed (add_timer() only).

• B_BAD_VALUE. The timer couldn't be installed because the period was invalid (probably because a relative time or period was negative;
unfortunately, Be hasn't mastered the intricacies of installing timers to fire in the past).

 call_all_cpus()

Declared in: be/drivers/KernelExport.h

void call_all_cpus(void (*func)(void *, int), void *cookie)

Calls the function specified by func on all CPUs. The cookie can be anything your needs require.

cancel_timer() see add_timer()

 disable_interrupts() , restore_interrupts() , cpu_status

Declared in: be/drivers/KernelExport.h

typedef ulong cpu_status

cpu_status disable_interrupts(void)

void restore_interrupts(cpu_status status)

These functions disable and restore interrupts on the CPU that the caller is currently running on. disable_interrupts() returns its previous
state (i.e. whether or not interrupts were already disabled). restore_interrupts() restores the previous status of the CPU, which should be the
value that disable_interrupts() returned:

   cpu_status former = disable_interrupts();
   ...
   restore_interrupts(former);

As long as the CPU state is properly restored (as shown here), the disable/restore functions can be nested.

See also: install_io_interrupt_handler()

 dprintf() , set_dprintf_enabled() , panic()

Declared in: be/drivers/KernelExport.h

void dprintf(const char *format, ...)

bool set_dprintf_enabled(bool enabled)

void panic(const char *format, ...)

dprintf() is a debugging function that has the same syntax and behavior as standard C printf(), except that it writes its output to the serial port
at a data rate of 19,200 bits per second. The output is sent to /dev/ports/serial4 on BeBoxes, /dev/modem on Macs, and /dev/ports/serial1 on Intel

 Functions for Drivers & Modules
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machines. By default, dprintf() is disabled.

set_dprintf_enabled() enables dprintf() if the enabled flag is true, and disables it if the flag is false. It returns the previous enabled
state, thus permitting intelligent nesting:

   /* Turn on dprintf */
   bool former = set_dprintf_enabled(true);
   ...
   /* Now restore it to its previous state. */
   set_dprintf_enabled(former);

panic() is similar to dprintf(), except it hangs the computer after printing the message.

 get_memory_map() , physical_entry

Declared in: be/drivers/KernelExport.h

long get_memory_map(const void *address, ulong numBytes, 
      physical_entry *table, long numEntries)

typedef struct {   void *address; 
      ulong size; 

} physical_entry

Returns the physical memory chunks that map to the virtual memory that starts at address and extends for numBytes. Each chunk of physical
memory is returned as a physical_entry structure; the series of structures is returned in the table array. (which you have to allocate yourself).
numEntries is the number of elements in the array that you're passing in. As shown in the example, you should lock the memory that you're about to
inspect:

   physical_entry table[count];
   lock_memory(addr, extent, 0);
   get_memory_map(addr, extent, table, count);
   . . .
   unlock_memory(someAddress, someNumberOfBytes, 0);

The end of the table array is indicated by (size == 0):

   long k;
   while (table[k].size > 0) {
      /* A legitimate entry */
      if (++k == count) {
         /* Not enough entries */
         break; }
   }

If all of the entries have non−zero sizes, then table wasn't big enough; call get_memory_map() again with more table entries.

RETURN CODES

The function always returns B_OK.

See also: lock_memory(), start_isa_dma()

 has_signals_pending()

Declared in: be/drivers/KernelExport.h

int has_signals_pending(struct thread_rec *thr)

Returns a bitmask of the currently pending signals for the current thread. thr should always be NULL; passing other values will yield meaningless
results. has_signals_pending() returns 0 if no signals are pending.

 install_io_interrupt_handler() , remove_io_interrupt_handler()

Declared in: be/drivers/KernelExport.h

long install_io_interrupt_handler(long interrupt_number, 
      interrupt_handler handler, 
      void *data, ulong flags)

long remove_io_interrupt_handler(long interrupt_number, 

 Functions for Drivers & Modules
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      interrupt_handler handler, 
      void *data)

install_io_interrupt_handler() adds the handler function to the chain of functions that will be called each time the specified
interrupt occurs. This function should have the following syntax:

int32 handler(void *data)

The data passed to install_io_interrupt_handler() will be passed to the handler function each time it's called. It can be anything that
might be of use to the handler, or NULL. If the interrupt handler must return one of the following values:

B_UNHANDLED_INTERRUPT The interrupt handler didn't handle the interrupt; the kernel will keep looking for someone to handle it.

B_HANDLED_INTERRUPT The interrupt handler handled the interrupt. The kernel won't keep looking for a handler to handle it.

B_INVOKE_SCHEDULER The interrupt handler handled the interrupt. This tells the kernel to invoke the scheduler immediately after the
handler returns.

If B_INVOKE_SCHEDULER is returned by the interrupt handler, the kernel will immediately invoke the scheduler, to dispatch processor time to tasks
that need handling. This is especially useful if your interrupt handler has released a semaphore (see release_sem_etc() in the Kernel Kit).

The flags parameter is a bitmask of options. The only option currently defined is B_NO_ENABLE_COUNTER. By default, the OS keeps track of the
number of functions handling a given interrupt. If this counter changes from 0 to 1, then the system enables the irq for that interrupt. Conversely, if the
counter changes from 1 to 0, the system disables the irq. Setting the B_NO_ENABLE_COUNTER flag instructs the OS to ignore the handler for the
purpose of enabling and disabling the irq.

install_io_interrupt_handler()  returns B_OK if successful in installing the handler, and B_ERROR if not. An error occurs when either the
interrupt_number is out of range or there is not enough room left in the interrupt chain to add the handler.

remove_io_interrupt() removes the named interrupt from the interrupt chain. It returns B_OK if successful in removing the handler, and
B_ERROR if not.

io_card_version() see motherboard_version()

 kernel_debugger() , add_debugger_command() , remove_debugger_command() , load_driver_symbols() ,
 kprintf() , parse_expression()

Declared in: be/drivers/KernelExport.h

void kernel_debugger(const char *string)

int add_debugger_command(char *name, int (*func)(int, char **), char *help)

int remove_debugger_command(char *name, int (*func)(int, char **))

int load_driver_symbols(const char *driverName)

void kprintf(const char *format, ...)

ulong parse_expression(const char *string)

kernel_debugger() drops the calling thread into a debugger that writes its output to the serial port at 19,200 bits per second, just as
dprintf() does. This debugger produces string as its first message; it's not affected by set_dprintf_enabled().

kernel_debugger()  is identical to the debugger() function documented in the Kernel Kit, except that it works in the kernel and engages a
different debugger. Drivers should use it instead of debugger().

add_debugger_command() registers a new command with the kernel debugger. When the user types in the command name, the kernel debugger
calls func with the remainder of the command line as argc/argv−style arguments. The help string for the command is set to help.

remove_debugger_command() removes the specified kernel debugger command.

load_driver_symbols() loads symbols from the specified kernel driver into the kernel debugger. driver_name is the path−less name of the
driver which must be located in one of the standard kernel driver directories. The function returns B_OK on success and B_ERROR on failure.

kprintf() outputs messages to the serial port. It should be used instead of dprintf() from new debugger commands because
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dprintf() depends too much upon the state of the kernel to be reliable from within the debugger.

parse_expression() takes a C expression and returns the result. It only handles integer arithmetic. The logical and relational operations are
accepted. It can also supports variables and assignments. This is useful for strings with multiple expressions, which should be separated with
semicolons. Finally, the special variable "." refers to the value from the previous expression. This function is designed to help implement new
debugger commands.

See also: debugger() in the Kernel Kit

kprintf() see kernel_debugger()

load_driver_symbols() see kernel_debugger()

 lock_memory() , unlock_memory()

Declared in: be/drivers/KernelExport.h

long lock_memory(void *address, ulong numBytes, ulong flags)

long unlock_memory(const void *address, ulong numBytes, ulong flags)

lock_memory() makes sure that all the memory beginning at the specified virtual address and extending for numBytes is resident in RAM, and
locks it so that it won't be paged out until unlock_memory() is called. It pages in any of the memory that isn't resident at the time it's called. It is
typically used in preparation for a DMA transaction.

The flags field contains a bitmask of options. Currently, two options, B_DMA_IO and B_READ_DEVICE, are defined. B_DMA_IO should be set if
any part of the memory range will be modified by something other than the CPU while it's locked, since that change won't otherwise be noticed by the
system and the modified pages may not be written to disk by the virtual memory system. Typically, this sort of change is performed through DMA.
B_READ_DEVICE, if set, indicates that the caller intends to fill the memory (read from the device). If cleared, it indicates the memory will be written
to the device and will not be altered.

unlock_memory() releases locked memory and should be called with the same flags as passed into the corresponding lock_memory() call.

Each of these functions returns B_OK if successful and B_ERROR if not. The main reason that lock_memory() would fail is that you're attempting
to lock more memory than can be paged in.

 map_physical_memory()

Declared in: be/drivers/KernelExport.h

area_id map_physical_memory(const char *areaName, void *physicalAddress, 
      size_t numBytes, uint32 spec, uint32 protection, 
      void **virtualAddress)

This function allows you to map the memory in physical memory starting at physicalAddress and extending for numBytes bytes into your team's
address space. The kernel creates an area named areaName mapped into the memory address virtualAddress and returns its area_id to the caller.
numBytes must be a multiple of B_PAGE_SIZE (4096).

spec must be either B_ANY_KERNEL_ADDRESS or B_ANY_KERNEL_BLOCK_ADDRESS. If spec is B_ANY_KERNEL_ADDRESS, the memory
will begin at an arbitrary location in the kernel address space. If spec is B_ANY_KERNEL_BLOCK_ADDRESS, then the memory will be mapped into
a memory location aligned on a multiple of B_PAGE_SIZE.

protection is a bitmask consisting of the fields B_READ_AREA and B_WRITE_AREA, as discussed in create_area().

create_area() returns an area_id for the newly−created memory if successful or an error code on failure. The error codes are the same as those
for create_area().

See also: create_area()

 motherboard_version() , io_card_version()

Declared in: be/drivers/KernelExport.h

long motherboard_version(void)

long io_card_version(void)
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These functions return the current versions of the motherboard and of the I/O card. These functions are only available on PowerPC−based systems
(they're intended for use on the BeBox).

panic() see dprintf()

parse_expression() see kernel_debugger()

 platform()

Declared in: be/drivers/KernelExport.h

platform_type platform(void)

Returns the current platform, as defined in <kernel/OS.h>.

 register_kernel_daemon() , unregister_kernel_daemon()

Declared in: be/drivers/KernelExport.h

int register_kernel_daemon(void (*func)(void *, int), void *arg, int freq)

int unregister_kernel_daemon(void (*func)(void *, int), void *arg)

Adds or removes daemons from the kernel. A kernel daemon function is executed approximately once every freq/10 seconds. The kernel calls
func with the arguments arg and an iteration value that increases by freq on successive calls to the daemon function.

release_spinlock() see acquire_spinlock()

remove_io_interrupt_handler() see install_io_interrupt_handler()

restore_interrupts() see disable_interrupts()

set_dprintf_enabled() see dprintf()

 send_signal_etc()

Declared in: be/drivers/KernelExport.h

int send_signal_etc(pid_t thid, uint sig, uint32 flags)

This function is a counterpart to send_signal() in the Posix layer, which is not exported for drivers.

thid is the thread_id of the thread the signal should be sent to, and sig is the signal type to send, just like in send_signal(). The flags argument
can be used to specify flags to control the function:

B_CHECK_PERMISSION The signal will only be sent if the destination thread's uid and euid are the same as the caller's.

B_DO_NOT_RESCHEDULEThe kernel won't call the scheduler after sending the signal. You should specify this flag when calling
send_signal_etc() from an interrupt handler.

RETURN CODES

B_OK. The signal was sent.

• B_BAD_VALUE. The signal type is invalid.

• B_BAD_THREAD_ID. The thread ID is invalid.
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• B_NOT_ALLOWED. The permission check failed (if B_CHECK_PERMISSION was specified).

 spawn_kernel_thread()

Declared in: be/drivers/KernelExport.h

thread_id spawn_kernel_thread(thread_entry func, const char *name, 
      long priority, void *data)

This function is a counterpart to spawn_thread() in the Kernel Kit, which is not exported for drivers. It has the same syntax as the Kernel Kit
function, but is able to spawn threads in the kernel's memory space.

See also: spawn_thread() in the Kernel Kit

 spin()

Declared in: be/drivers/KernelExport.h

void spin(bigtime_t microseconds)

Executes a delay loop lasting at least the specified number of microseconds. It could last longer, due to rounding errors, interrupts, and context
switches.

unlock_memory() see lock_memory()

unregister_kernel_daemon() see register_kernel_daemon()
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