
BeOS:
Porting UNIX
Applications

Martin MC Brown

Page%1%of%467

Table of Contents
..Dedication! 23

..Acknowledgements! 23

...Preface! 23
...Who should use this book! 23

...How to use this book! 24

......................................Why and How to contact the author! 25

...Lifecycle of a Port ! 27

.......................Choosing an Application to Port ! 28

..Machine Code! 28

.........................UNIX, Processors and Flavours! 29

..........The Free Software Foundation and GNU! 31

..................................Difficulties with the BeOS! 32
...Differences of Terminology! 33

..Missing Features ! 33

..Fundamental OS Differences ! 33

..The BeOS File System! 36

..Basic Structure! 37
...Volumes ! 37

..The Boot Volume! 38

...Directories! 39

...Default Directories! 39

Page%2%of%467

.., .. and .file! 40

...............Applying UNIX Structure to the BeOS! 41

.....................Missing Links and Other Goodies! 43

...........................The BeOS’s Concept of Users! 46

...................................User names and user IDs! 46
..Permissions! 46

...Processes! 49

..Execution! 49

.........................The BeOS’s Concept of Groups! 50
..Permissions! 50

...Processes! 50

..Execution! 51

...Effects on Porting! 51

..Processes! 52
...Threads ! 55

..Teams and Killing Processes ! 55

.........................Threads, Teams and Processes! 55

..bash! 57
..Command History ! 57

................The History of the Command History! 58
...Navigation! 58

...Editing! 59

Page%3%of%467

..Searching! 59

..File Selectors! 61

...* and ?! 61

..Square Brackets! 62

..Brace Expansion! 62

..Tilde Expansion! 63

...File-Name Completion! 63

...Job Control! 64

...Running Jobs in the Background! 65

..Listing Running Jobs! 65

..Redirection! 65

..Redirecting Output! 66

...Redirecting Input! 66

..Appending Output to Files! 67

..Multiple Redirections! 67

...Using Pipes! 68

..The for Loop! 68

...Syntax! 69

..Compilation Example! 69

..Using the for Loop with Redirection! 70

...Aliases! 70

..New Aliases! 71

...Alias Expansion! 71

..The Directory Stack! 72

...Pushing and Popping! 72
..Shell Scripts ! 73

Page%4%of%467

..The .profile file ! 74

..Grep! 75
...Output Options ! 76

..Regular Expressions! 76

...Special Characters! 76

..Square Brackets! 78

..Reverse Matches ! 78

.................................More Regular Expressions with egrep! 79

..Grepping Effectively! 79

..Selecting the Text! 80

..Using Pipes! 80

..Searching Multiple Files! 81

..Text without File Names! 81

..File Names without Text! 81

..Counts! 82

..Using for with grep! 82

..Multiple Directories! 83

..sed! 84
...Search and Replace! 86

..Sending Selected Text to a New File! 88

..The Dangers of Replacing Text! 88

..................................More Regular Expression Characters! 90

...Replacing Selected Elements! 91

..Using sed with grep! 92

...Using sed with bash! 93

Page%5%of%467

..Renaming Files! 93

..Global Replacements! 93

...less! 95
...Movement in less ! 95

..Searching in less! 95

..Other Features in less! 96

...Using less with Pipes! 97

...touch! 97

..tr! 98

...uniq and sort ! 99

..Editors! 100

..Getting the Sources! 101
..Removable Storage ! 101

......................................Working with Archives! 102
...Identifying Archives ! 103

...Encoding Systems! 105

..uuencode! 106

...shar! 106

.............................MIME (Multipurpose Internet Mail Extensions)! 107

..split! 108

...Compression Systems! 108

...Using compress! 108

...Using zip! 109

...Using gzip! 109

Page%6%of%467

..The tar Archiving System! 110

...Creating and using tar archives! 110

...Extracting files from tar archives! 112

..Archive Contents! 113
...Sources! 113

...Documentation! 114

..man! 115

..Info and TeX! 116

..Preformatted Documentation! 117

...Text Files ! 117

.......................Revision Control System (RCS)! 120
..Checking In/Out! 120

...Using ci with make! 123

...Backing Out a Revision! 123

..Checking the Contents ! 124

...Merging Revisions ! 124

...Cleaning a Revision! 125

.......................................Creating a Complete Source Tree! 125

..................Concurrent Version System (CVS)! 126

..Using Multiple Files! 127
...CVS over RCS! 128

.....................................Using diff for revisions! 128
...Standard diffs! 129

...ed Format diffs! 130

Page%7%of%467

...Context diffs ! 130

...Unified diffs! 131

..Preparing for patch! 132

...patch! 132
..Patching Packages ! 133

...Backups! 136

..Backup levels! 137

.............................Reading the Documentation! 140

................................Identifying the Build Type! 144

...........................Identifying the Build Process! 146

..Preparation! 148

..Expect to Change! 150
...Directories! 150

..Tools ! 151

..Libraries! 153

Using #include in the Configuration Process!154
..BeOS Headers! 154

...BeOS Priorities ! 156

..............Using Header Files to Control the Configuration! 156

.....................................Using the #ifdef macro! 158
..The Principles of #ifdef! 158

..Standard Defines! 160

Page%8%of%467

..Double Definitions ! 162

...................The Effects of the Config File on Compilation! 163

....................................Principles of a Makefile! 165

......................................Anatomy of a Makefile! 166
...Variables ! 166

..Using Variables for Configurations! 168

..Directories! 168

...Targets ! 169

...Format! 169

We will take a look at the entire execution process of make later in
..this chapters. Dependencies! 170

....................Making the Makefile a dependent ! 171
..Running Commands! 171

..Common Targets! 173

...depend! 173

...all! 173

...install! 173

..clean! 174

...Execution Sequence! 174
..lex and yacc! 175

...Headers! 175

...Source Code ! 175

..Libraries! 176

..Executables ! 177

...Documentation! 177

Page%9%of%467

...Installation! 178

..Coping with Errors! 179
...Missing Makefile! 179

..Nothing Happens! 180

...Badly Formed Lines ! 181

...Missing Sources! 182

..It Rebuilds Everything! 183

.................................Running under the BeOS! 185

..Faking Options! 190

..Creating empty files! 191

...Manual Adjustments! 192

.................................Testing the Configuration! 193

...Cheating! 194

.........................Smart compilers vs. Makefiles! 197

..Following the Script ! 198

................................Why use a smart compiler! 200

...Function checking! 203

..Faking Options! 204

..Hand Compilation! 205

.......................................Generating a Makefile! 207

..yacc and bison! 208

Page%10%of%467

...................................The finite state machine! 209

.....................................Developing calculators! 210
...Differences of bison from yacc ! 211

..Making bison yacc-Compatible ! 212

...lex and flex! 212
...Differences of flex from lex! 213

...Making flex lex-Compatible ! 214

..flex Library ! 214

...................How the compiler and linker work! 215

...Preprocessing! 216
...Defining Values! 216

...Using the Preprocessor! 217

..Creating a Dependency List! 218

...Optimization! 218
...Optimization Levels! 219

...................................Using Optimization with Debugging! 220

..................................Coping with Optimization Problems ! 221

..Debugging! 221
...Warnings! 222

...Header Files! 223
..Standard Locations ! 225

...Using Other Locations! 226

Page%11%of%467

...Libraries! 227
..Library Types ! 227

..Locations! 228

...Using Other Libraries! 229

..Making Libraries! 229
...Creating Different Libraries! 229

...Included Symbols ! 232

..Profiling! 232

...The BeOS Debugger! 234

...................................The Symbolic Debugger! 236

..Manual Debugging! 243
..Using printf! 244

...Creating a Log File! 246

..Keeping a Log! 249

...Storing Output ! 250

..Compilation Errors! 251
..Missing Header Files! 251

..Undefined Defines! 253

...Undefined Variables ! 255

...Undefined Types ! 255

..Incorrect/Incompatible Types ! 255

..Unexpected End of File ! 256

Page%12%of%467

...Introducing New Errors ! 256

......................................Compilation Warnings! 257
...Function Has No Prototype ! 257

...Return Value Expected! 257

..............................Variable Name Is Not Used in Function! 258

..Linking Errors! 258
..Missing Objects ! 258

..Missing Libraries! 259

..Missing Functions! 260

...Duplicate Objects! 261

...Installation! 261
...Removing Old Versions! 262

..Installation of the Files ! 264

...Testing the Build! 268

..............................Checking the Created Files! 268

.............................Creating Your Own Harness! 269

............................Using the Supplied Harness! 270

..Pointers to Problems! 272
...Memory Overflow! 273

...Signed/Unsigned Numbers! 273

..Character Order! 273

...Missing Files/Directories! 274

..The File System Interface! 275

Page%13%of%467

..Program Styles! 276

..Be Style! 277
...A Closer Look! 277

..Program Structure ! 279

...Threads ! 281

..Software Kits ! 283

..Application Kit! 283

..Device Kit! 283

...Game Kit! 283

...3D Kit! 284

..Interface Kit! 284

..Kernel Kit! 284

...Media Kit! 284

..Midi Kit! 285

...Network Kit! 285

..Storage Kit! 285

..Support Kit! 286

..Headers and Libraries! 286

...Naming Conventions! 287

..................................Interfacing with the POSIX Libraries! 287

..UNIX Style! 288
..Overview! 288

..Program Structure ! 288

..Headers and Libraries! 289

...Naming Conventions! 291

Page%14%of%467

...What Is POSIX?! 295

..POSIX and UNIX! 298

..The BeOS and POSIX! 299

...Effects on Porting! 300

...Datatypes! 302

..Resource Limits! 304
...Default Values ! 304

...Using sysconf! 305

...setrlimit and getrlimit! 306

..Memory Handling! 307
...alloca ! 308

...malloc, calloc, and realloc ! 308

...free ! 310

...Users and Groups! 310
...Results from get Functions! 311

...Results of set Functions ! 313

..Processes! 314
..Process Groups! 314

...Process IDs! 315

...Signals! 315
..Supported Signals ! 316

..Signal Data! 318

Page%15%of%467

..Signal Functions ! 318

..Signal Sets ! 319

..Signal Handling! 322

...Reentrant Functions! 323

...........................Interprocess Communication! 324
..Pipes ! 324

..Sockets ! 326

...FIFOs ! 326

..Others Forms of IPC! 326

..System Calls! 327
...system! 327

...exec! 328

...fork! 328

..wait! 329

...unexec! 330

..getenv and putenv! 330

...abort! 331

...exit and atexit! 331

..Regular Expressions! 332

..Non-Local Jumps! 332

...setjmp and longjmp! 332

..........................Moving and copying memory! 333
...bcopy and bzero ! 333

Page%16%of%467

......................................memcpy, memmove, and memset! 334

..memchr! 334

..String Handling! 335
...Data Conversions! 335

...........................strlen and Other Basic String Functions ! 335

...strcasecmp and strncasecmp! 336

..stpcpy! 336

..strdup! 336

..strtok! 337

...strchr, index, strrchr, and rindex! 337

...strerror! 338

...................................Variable Argument Lists! 343

......................Standard Variables and Defines! 346

..Time Zones! 347

...Time Calculations! 349
..Granularity ! 350

..Getting the Time! 351
..time ! 351

...gmtime and localtime! 351

..difftime ! 351

...mktime! 352

..ctime and asctime ! 353

..strftime ! 353

Page%17%of%467

...gettimeofday! 355

..Setting the Time! 355

..Timers! 356
..alarm! 357

..itimers! 357

...sleep and usleep! 357

...System Information! 358

..Using I/O Devices! 360

....................................Working with Terminals! 362
...termio and termios! 363

...Basic Principles! 363

.......................................Terminal Terminology! 364
..termio! 365

..termios! 372

...Moving from termio to termios! 375

..termcap and terminfo ! 376

...termcap! 377

...terminfo and termcap! 380

..Moving from /dev/pty to /dev/pt! 382

...Device Drivers! 383

...General Functions! 389
...rename ! 389

..link and symlink! 390

Page%18%of%467

...remove ! 391

...unlink! 391

...Why link?! 391
...mkdir, chdir, and rmdir! 392

..getcwd/getwd! 392

..Streams! 393
...The FILE Structure! 393

...fopen and fclose! 394

..fdopen! 395

..fileno ! 395

..fflush! 395

..setbuf and setvbuf! 396

..Temporary Files! 397

...File Positioning! 398

..Error Handling! 400

..Unix File Descriptors! 401
..open and creat! 402

..close ! 404

...read and write! 404

..dup and dup2! 404

...fpathconf! 405

..fcntl! 405

...mmap! 406

Page%19%of%467

...lseek! 407

..Utility Functions! 407
...Directories! 408

...dirent! 408

...opendir, readdir, and closedir! 409

...stat, fstat, and lstat! 410

..Locking Files ! 412

...flock! 413

...lockf! 414

...Using fcntl! 414

...readv and writev! 415

...File Attributes ! 417

..File Systems! 418

...select and poll! 419

..Sockets! 420
...socket and closesocket! 421

..bind! 423

..connect! 424

..listen! 424

..accept! 425

...getsockname and getpeername ! 427

...setsockopt! 427

...send and recv! 428

...Out-of-Band Data! 429

Page%20%of%467

..Utility Functions! 430
...gethostbyname ! 431

...gethostbyaddr! 432

...getservbyname ! 433

...Using select ! 434

......................Remote Procedure Calls (RPCs)! 437

..FTP! 443

...Web Sites! 447

........................Mailing Lists and Newsgroups! 448

...CD-ROMs! 449

...................Compatibility and Utility Software! 450

................................Checking the Compilation! 452

..Packaging! 453

..Adding a License! 454

..Distribution! 464
..Web Sites ! 464

..FTP Servers ! 465

..Mailing Lists ! 465

..BeWare ! 465

.......................................Contacting the Author! 466

Page%21%of%467

Preface to 2012 Release
A few years ago, Scott McCreary contacted me about releasing my book to
the Haiku community. It’s taken some time to get everything together.

I first published this book back in 1997, and it’s been a very popular resource,
for BeOS and BeOS programmers alike. Of all the books I’ve written (which
now number almost 30), the BeOS book is still the one that either gets
mentioned or asked about. Usually prefixed by ‘Hey, you’re the guy that wrote
that BeOS book’ and a long discussion about how great BeOS is and what
happened.

I’ve released this book, which is now back under my copyright (thanks to
Elsevier) to help porting applications.

The book content itself is unchanged; I haven’t updated or corrected any of
the content, and many things have moved on since 1997.

If you have any issue, or any questions, please find me at my website,
MCslp.net. You can reach me by email using MC at that domain.

Have Fun

MC

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivs 3.0 Unported

License.

Page%22%of%467

http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US

Preface

Dedication
To my wife, Sharon, who let me stay at my computers long after bedtime.

Acknowledgements
As tempting as it is to list everybody who might have been involved, I’ll try to
keep this list as short as possible.

First of all, I’d like to thank the publishing people for getting me started,
and more importantly asking me in the first place. Those people include
Simon Hayes, Angela Allen, Paul Hardin, Mark Stone and Meghan Keefe.
Thanks should also go to Chris Herborth, my technical editor who managed
not only to correct my mistakes, but also kept me abreast of developments in
the rest of the Be community when my time was taken up writing.

Lots of thanks to Christoph Droulers at Be, who managed to supply me
with a replacement motherboard within a few days of the Advanced Access
release, and thanks to William Adams and Jake Hamby at Be for providing me
with timely information about the new OS version.

I can’t really get by without thanking all the people who write great
software and supply the source code to the public. This includes Richard
Stallman who wrote emacs the first UNIX application I ever bought, and
Larry Wall who wrote perl, the first package I ported to the BeOS.

Finally, I’d like to thank all the people in the Be community who have
continued to encourage me to complete this port or that port and thanked me
for doing so. I don't have enough space to name you all, but you know who
you are!

Preface
Welcome to the practical guide for porting applications to the BeOS. This
guide will, I hope, provide you with all the information you need to guide
you through the process of porting off-the shelf-utilities like emacs and perl
and your own programs and tools to the new OS.

Who should use this book

Page%23%of%467

Anybody who is porting or writing software for the BeOS. Although this
book primarily concentrates on porting software from the range of UNIX
works, such as those from the Free Software Foundation, this book can be
used as a reference work for all porting activity.

I have written this book with both beginners and advanced
programmers in mind, but I’ve made some assumptions about your abilities.
You should be able to program in C, and it would be to your advantage if you
had had experience of using UNIX. I have catered for Windows and Mac
users where possible, and experience of a command line interface would be a
significant advantage. Whatever your background, I would hope you are
familiar with using the BeOS even if you don't know how to program with it.

How to use this book

The book is split into three parts:

Part 1: Preparation - This section deals with getting to know the BeOS,
making the best use of the available tools and preparing yourself for the
porting process. If you already know UNIX fairly well you may wish to skip
some of the chapters in this section. Alternatively you might want to read
them anyway, in which case you might find some new techniques you
weren’t aware of.

Part 2: The Porting Process - We cover the entire process of porting
software from the moment you download it to release your work to the
unsuspecting public. This process includes configuration, identifying and
using the various build techniques, building the package and identifying
what to fix and testing the package to make sure it built correctly.

Part 3: Writing for BeOS - This last section is for reference purposes and
contains a comprehensive guide to the POSIX functionality and how it affects
the porting process within the BeOS.

The dialogue throughout the book is geared towards to providing you
with a s birds eye view of the porting process and so I make extensive use of
examples. In most cases these are examples from my own experience and I’ve
often included the output and code from live ports that I’m working on.
However, in some cases I’ve had to modify the code or the text contained in
this book. Not everything from the monitor travels well to the printed page!

I have used the following conventions:

This is standard text, used throughout the book.

Names of programs, command line options, functions and other related
items within the text are in this style
Whilst program listings and shell examples are in this style

Page%24%of%467

In all cases, I’ve used the standard shell supplied with the BeOS which is
based on the bash shell from the Free Software Foundation. For UNIX users
this is similar to the Korn and Bourne shells and uses the same prompt
symbol of the dollar sign, ‘$’.

Keyboard combinations are explained using the terms Alt (generally
next to the spacebar, also called ‘Option’ on Macs) and Ctrl for the control key.
We exclusively use the ‘Return’ key throughout the book, especially when
using the shell. On Mac keyboards this key is the one with the main character
keys usually with an arrow of some kind on it. This is not to be confused with
the ‘Enter’ key which is on the numeric keypad.

I tend to use the terms application, package and software throughout the
book to mean essentially the same thing. This is because in most situations a
package (for example, gawk) creates only one application which is the
software. However, in some situations I make the distinction that a package
includes all the elements (source code, documentation, support files etc)
whilst the application is the result of building the package.

Why and How to contact the author

Hopefully this book should help you through every step of porting Unix-style
applications to the BeOS. If you are having problems, the best place to start is
by talking to other programmers working on the project or the author, these
details are usually kept within one of the many README files supplied with
package. You may also want to try any mailing lists or usenet newsgroups
that cover the package you are working on, or one of the general BeOS
mailing lists such as bedevtalk, details are in the appendix at the end of this
book.

As a last resort, or if the book doesn’t mention something which you think it
should (and for that I apologize in advance!), you can e-mail me on
mc@whoever.com. For more details on me and the other projects I’m working
on, my website is at http://www.prluk.demon.co.uk.

Page%25%of%467

Chapter 1. - Introduction to the
Porting Process
For those of you who picked this book up expecting to find out what the
‘BeOS’ in the title meant, I’ll explain. BeOS is the new OS from Be Inc. It runs
on the now extinct BeBox hardware and on Apple Mac and compatibles such
as those from Power Computing and Motorola.

The operating system itself is based around a brand new design and
some brand new ideas in order to provide a OS for the future, rather than one
stuck with the standards of the past. Dealing with this compatibility issue
makes existing OS slow and clumsy. Consider Windows 95, which still
supports and in some cases uses DOS which itself was based on CP/M.
Alternatively, take a look at MacOS, previously System 7. This is still a
supported OS on some of Apples first Macs such as the Mac Plus. The
compatibility works in reverse too, the new PowerPC based Macs support 68k
code. All these issues go to make up a slower OS requiring ever faster
machines with more memory and more hard disk space just to support the
same basic functions.

With the BeOS, the entire OS was built from scratch. To use techno-
babble it’s a multi-threaded, pre-emptive multi-tasking OS supporting
multiple processors. For the lay-person, this means an OS able to do lots of
things simultaneously. Better still, it’s able to do lots of things simultaneously
much faster than existing OS, and it takes up less disk space and memory
when doing so. The OS also supports two interfaces as standard, the familiar
windows style interface and also a UNIX like command line interface. This
helps it to appeal to Mac, Windows and UNIX users and provide the best of
all worlds.

The core of the programming effort around the BeOS will be the object-
oriented C++ programming environment. This is fine for new software, and
it’s something that Be themselves encourage, but the environment is geared
towards the windows based interface. For people who want to port their
software to the BeOS there has to be an easier way, and this is why the BeOS
also supports POSIX. Porters and programmers alike can now move their
UNIX style software to the BeOS. People porting other applications can also
use the same POSIX interface to port the internals of their software whilst
using the C++ environment to support their interface.

This is where this book fits in, it’s a guide to porting the core of
applications and packages to the BeOS. This includes the wealth of ‘free’
software available on the UNIX platform (for example, emacs and perl) and

Page%26%of%467

software from Macs and Windows PCs that use a UNIX or POSIX like
interface to the outside world.

Porting is a structured and recursive process. By following some simple
rules and steps it’s possible to port most packages relatively simply. However,
there are some packages which require a less rigid approach. Although a lot of
porting has less to do with programming skill than writing the program in the
first place, you still need to know about the machine to which you are porting.
This includes knowing how to use the machine itself, as well as making the
best use of the tools and features of the OS. Finally, you need to know what it
is about the OS that makes it different and similar to other operating systems
so that you can configure the finally port the software.

This book aims to provide you all the information you should need but
shouldn’t be taken as a complete solution to the solution. There are many
steps to porting, including extracting the software, configuring, building and
installing the software, and then communicating all your efforts to the
original authors. I cover all of this, and more, in this book giving you a
complete breakdown of the processes involved, and all the information you
need.

Your success when porting will be governed by a combination of your
programming ability and your understanding of the principles in this book.

Lifecycle of a Port
There are several stages to the porting process. Once you have decided what
application to port, you need to follow the steps below:

1.! Transfer the package to your machine and then decompress and extract
the sources..

2.! Configure the package by defining the local environment. This includes
setting directory names and file locations. You will then also need to tell
the configuration system what OS you are using, and in some cases
provide information about individual functions and data structures
within the BeOS..

3.! Building or compiling the package, usually using a development tool
such as make and a suitable Makefile. This is probably the longest part
of the process, as you will undoubtedly need to make modifications to
the original configuration and perhaps even to the source code to get the
program to compile properly. In extreme circumstances you may also
need to write more code or supply additional functions and features to
plug the gaps in abilities and requirements.

Page%27%of%467

4.! Testing using the supplied test suite or building your own. If you find
any problems, you’ll need to return to building the package and make
the modifications to get the program to work as desired.

5.! Converting the documentation. Under UNIX this is traditionally been
easy; most implementations included the nroff/troff typesetting system,
which is what supplies the formatting for man pages. Increasingly,
however, online help and documentation is being done in HTML.
Indeed, with the BeOS, the standard documentation system is HTML.

6.! Creating a new package to supply to the public. This should include
everything the old package includes, plus any additional items required
for your version of the port.

7.! Communicating the changes back to the author.
This is vital and it’s often forgotten by porters. In fact, unless you

thoroughly enjoy the porting process, not telling the author of the changes
you made will mean you have to repeat all the steps above with the next
version he releases. Providing this information also means that new versions
should automatically work on the BeOS without requiring you to change
anything.

Choosing an Application to Port
The Unix world abounds with an interesting collection of free tools and
software, any of which could make good candidates for porting to the BeOS..
Most of the software available for Windows or the MacOS is supplied
precompiled and ready to use. In part this is because you can make certain
assumptions about the machine on which the program will be run. Almost
certainly the processor will be the same. For PCs this is an Intel x86 (including
the Pentium series) and for Macs this is a Motorola 68k or more recently a
Motorola/IBM PowerPC.

Machine Code
All programs used on computers are in machine code, this is code which

makes up the instructions sent to the microprocessor which control the
execution of the program. The instruction itself is represented by a number,
and it is this number, combined with the data, that makes a program work.
Each instruction is a low level function that the processor must perform. For
example, most processors have an instruction to add two numbers together.
However, the use of different processors means that the numbers for
instructions, and the format of the instructions and data is different. It is these

Page%28%of%467

binary code differences, combined with differences in the OS that mean we
can’t move applications between, Apple Macs and PCs.

When dealing with a group of processors, such as the Intel x86 group
which includes the original 8086, the 80286, i386, i486 and newer Pentium,
each processor is just an expanded and updated version of the previous
model. This retains backwards compatibility and saves everybody
recompiling every application ever written to allow it to work. Any
application which will work on a 80286 chip will work on a Pentium, but the
reverse is not always true because the Pentium uses instructions not found on
the 80286 chip.

UNIX is a different matter altogether. There are hundreds of different
varieties of UNIX, and all of them can be attributed to a variety of different
processors, which doesn’t help the situation. Solaris, for example, is now
available on both SPARC and Intel hardware, but although this provides OS
compatibility it doesn’t retain binary compatibility. Even within Sun there is
diversity; six years ago the current OS for the SPARC platform was SunOS 4, a
stable and still widely installed version of the OS. As part of the march of
technology and progress, five years ago Sun introduced Solaris. This was a
new OS, and though still based on UNIX and still incorporating support for
SunOS applications, for the real benefits of the operating system software
needed recompilation.

UNIX, Processors and Flavours
The history of UNIX goes back much further than people think. Much of

the history has helped to form the features and facilities with which we are
familiar today, including multitasking, multiprocessing and protected
memory spaces. One of the advantages of UNIX is that at it’s core it is
relatively simple, and so the range of processors on which it runs is varied.
This makes the compatibility more complex because not only do applications
need to be aware of the OS on which they run, but they also need to be in the
binary machine code format for the processor to understand the commands.
Taking just the lead players in the market today, Sun already support Solaris
on the SPARC processor, the Intel 486 and Pentium processors and the
PowerPC. Despite the compatibility between Solaris at an OS level, it’s not
possible to take a program compiled with Solaris on Intel and use it on a
machine running Solaris for SPARC. The code is not binary compatible, even
if though the OS is essentially identical.

If we broaden the range, Linux runs on Intel processors. Here we have a
different problem. We cannot assume that a Windows Intel application can be

Page%29%of%467

moved to the Linux Intel machine simply because of the same underlying
hardware. The OS is now the incompatibility. All of the libraries and functions
on which an application relies will not exist in identical forms on two
different OS, even if they both run on the same processor and therefore have
the same machine code. The other two major UNIX vendors, HP and Silicon
Graphics, both run yet another version of UNIX.

Even taking POSIX, a standard interface to the underlying OS that
makes porting between UNIX flavors easier, into account doesn’t help. The
underlying differences between the OS can still make portability a problem.

When you compare the market share of UNIX and it’s various processors
and the market share of Windows with it’s identical Intel processor family,
you begin to realize why so much of the free software is available as source
code for UNIX and as compiled applications for Windows. The precompiled
binaries that are available under UNIX work on such a small range of
machines that supplying source is the only practical solution to supporting all
flavors of Unix. This is the opposite of the Windows and Intel world, where a
binary compiled on one machine will generally run on the whole range of
machines.

The choice of code to port depends on several factors.. Make sure there is
a demand for the package you are going to take the time to port. You also
want to make sure that your work isn’t redundant with somebody else’. . My
first work on the BeOS was to port the sed utility, something which Be was
introducing in to the next version of the BeOS. I learnt a great deal about
porting software to the new OS by choosing a small, and relatively simple
application. Choosing a similar package to port at the outset gives you a lot of
practical experience, and if the package has already been ported then you
have something to benchmark against.

If possible, determine that it is possible for you to do it. Even using this
guide, porting is difficult and requires experience programming the OS before
you can even start. If you’re new to porting, choose something small, as I did
with sed, before moving on to something larger like sendmail or emacs.

One thing you should do is to check the dependencies. A dependency is
a requirement of the package to have access to a library or other application
before you can start working on the main package. For instance, porting RCS,
the revision system, would require the diff utility, which in GNU form
requires the regex regular expression library. In this example, to compile the
single package would actually require you to port two other packages before
you even started on the original work. These dependencies are important, and
the README file normally includes the information you need to know.

Page%30%of%467

Since there is no point in porting an application if you don’t actually
know how to use it, you should pick a package you know — otherwise you
won’t be able to test the package. If possible, choose one where you at least
know the basic principles of how the program works, even if you are not
completely sure of the programming steps involved.

With all this in mind, pick an application from those available. A good
selection is available from GNU (see sidebar), who are endeavoring to
provide all the programs available for the typical UNIX platform and
eventually an entire cross-platform UNIX clone. GNU software has the
advantage of being highly portable. There are several reasons for this. First,
the software is developed and released, via GNU, to the computing
community. Because the software and the source code is free, the packages are
then ported from the original code to many different platforms, and each time
a new platform has been ‘cracked’ and the port achieved, the information is
relayed back to GNU and the development team so that the next version of
the package is compatible with a larger number of platforms.

Out of all this work, all done for free by the members of the Internet and
computing community, GNU has developed a configuration script which
takes a lot of the guesswork out of the porting process. This guesswork
includes checking core things such as byte ordering and variable sizes, right
up to checking the existence of specific functions within the OS you are
porting to. Unfortunately, the configuration script is not infallible, and one of
the goals of porting software is to make sure that the configuration works on
all the platforms it’s been ported to, and that the information is sent back to
the developers.

The Free Software Foundation and GNU
GNU, which stands for the recursive ‘GNUs Not UNIX’ is a project

which produces a wide range of software aiming to plug the gaps in the
market of free software already available. The projects most famous export is
emacs a very powerful editor with built in scripting based on the LISP
programming language. The GNU project is one of the many projects
supported by the Free Software Foundation. Most people consider the two
entities to be identical. In fact, the Free Software Foundation do not write or
support any software, but they do support the GNU project with financial and
administration support in their cause to provide free software for everyone
whilst simultaneously battling the super-corporations such as Microsoft to
encourage them to reduce the cost of their software.

Page%31%of%467

Difficulties with the BeOS
Every OS has its own individual peculiarities and problems.There are

some things which are the same in the BeOS as they are in other OSs, and
these will help you quickly jump into the BeOS. Because of the POSIX
compatibility, libraries and header files and their contents will be familiar, if
not exactly the same to what you’re used to. The same shell programs and
utilities that regular UNIX users use are also available, as those used to gawk,
cut, paste and so on will be happy to know. For Windows and Mac users,
finding a common reference point is more difficult, but you should be familiar
with the windows based environment, and those used to DOS will find the
UNIX like command line much easier to use.

The biggest difficulty with the BeOS as a target OS for your port is that
it’s new. Other platforms have the advantage of having been around for a few
years, if not more. UNIX is decades old, and although it’s now fragmented
into a number of different varieties and flavors, the principles behind the OS
are the same. You can also be pretty sure that most flavors of UNIX come from
one of two stables—BSD or System V—and that makes the process easier still.
Part of the BeOS closely resembles UNIX. I’ve already mentioned the UNIX
like command line interface and tools. A number of the terms and frames of
reference are also similar, such as threads and processes.

To be more precise, BeOS supports the POSIX 1003.1-1990 standard for
communication between applications and the operating system, and that at
least gives us something to work with. This standard specifies the functions,
header files, data structures and other information which applications utilize
to access the abilities of the underlying operating system. Most UNIX flavors
now support the POSIX standard. Even if they don't support POSIX directly,
the chances are a number of their functions are actually supported within the
POSIX framework. This is because many of the functions that are now part of
the POSIX standard actually came from UNIX in the first place.

With POSIX support, - porting applications is made easier, because any
application written with POSIX standards in mind should be relatively easy to
port to another POSIX compliant OS.

At the time of this writing, the first public release of the OS has been
made, and the Intel version is now out on the shelves.. That makes the OS just
over 2 years old, a mere baby compared to monoliths like UNIX, DOS,
Windows, and MacOS. The youth of the BeOS means that its functions and
abilities are limited. Some of the ‘standard’ libraries and support applications
to aid in the porting process don’t exist. For example, UNIX programmers
will be used to a choice of editors, either emacs or vi. While ports of these

Page%32%of%467

tools exist, there may be minor differences in the way they operate and in the
features they provide, although this shouldn’t cause a huge problem..

We will look more closely at some of the specific problems with the BeOS
as we move through the different chapters, but a brief discussion of the main
issues will illustrate the nature of problems you will encounter.

Differences of Terminology

Even when the functionality of the BeOS is the same, the terminology may be
different. Although the POSIX interface helps to shield you from this to an
extent, you will find references to terms that you don’t recognize. For
example, where UNIX uses threads, processes, and process groups, the BeOS
uses threads and teams. In addition, UNIX uses filesystems to describe the
individual areas of a disk which go to make up the filesystem. Under BeOS
(and indeed MacOS), individual disks or partitions of disks are called
volumes. Under Windows and DOS they are called drives. Essentially, they all
refer to the same thing, a partition of a physical storage device.

Missing Features

Not all the features of all the UNIX variants are here—in some cases not even
all the features of just one variant. For example, the standard (and in fact
only) shell is bash, the sh/ksh/csh amalgamation from GNU; there aren’t
separate versions of each shell available. This shouldn’t cause any major
problems because most shell scripts are written in the Bourne or Korn shells.
However, missing utilities such as find (which is available for the BeOS) are of
greater concern when porting. Many such utilities now have versions
available within the BeOS porting community but it can be quite a shock to
not find the tool incorporated as part of the basic OS.

Fundamental OS Differences

The BeOS structure is different to most OS, from the general directory and file
layout to the core processes that run. There is still a kernel, but rather than a
large kernel providing all of the functionality for the entire operating system,
there is a smaller kernel which supports the multithreading, multitasking and
memory services. All the other facilities normally provided by a single kernel
are instead supported by a collection of “servers”. Each server is responsible
for a specific area of functionality. The Network server for example is
primarily responsible for communicating over the network. Unlike UNIX,
where such servers provide additional services, if the server isn’t running
then you don't have access to the network or any related network services.

Page%33%of%467

The advantage of individual servers for these services is that if the servers
crash, you merely need to restart the server and the entire OS to regain the
services.

The BeOS really isn’t any different from any other OS when it comes to
problems and difficulties. Although I’ve painted a fairly negative picture here,
you’d have just much difficulty porting applications to other OSs. Porting is
complicated. The processes in any instance remain the same: You need to
bridge and plug the gaps and find the compatible parts you need to resolve
the differences.

Page%34%of%467

Chapter 2. : BeOS Structure
We’ll start by taking a quick look at the interface. The BeOS can be split

into two types of interface. One is the now-familiar windows interface similar
to the Mac OS, The X Window System on UNIX, and Microsoft Windows in
its various incarnations; this main interface is called the Tracker and is similar
to the Finder on the MacOS. The other is a command-line interface similar to
MS-DOS or UNIX and is accessed via a program called the Terminal using a
shell called bash.

In this book we’ll deal largely with the terminal interface because it is the
preferred interface of software porters, particularly those coming from the
UNIX stable. Where necessary we’ll look into BeOS programs such as the
Integrated Development Environment (IDE) and Debugger.

The two interfaces are compatible. It’s possible to list contents of a
directory using the Tracker interface or using the ls (list files) command in a
Terminal window (Figure 2.1). By the same token, you can run a BeOS
(windows) program from the command line as you would run a UNIX
command, or you can double-click on the application’s icon in the Tracker.
Running a UNIX command from the Tracker has no effect since the Tracker is
incapable of accepting any input or output to the program you run.

Page%35%of%467

Figure 2.1
Accessing directories from the Tracker and the Terminal

The BeOS File System
The BeOS filesystem has changed a lot in the relatively short life of the
operating system. In it’s first incarnations, the filesystem was actually a
database, with the UNIX like interface built on top of it. This worked in
tandem with the rest of the OS which used the notion of databases as a way of
storing information about the system, preferences etc, much like the Windows
95 registry. However, the filesystem was slow in comparison to others when
used for storing the files everybody was used to. It it also meant the OS was
slow to start when it might take just 15 minutes to get to a point where you
could use the machine.

In the latest release, the filesystem is now based on a UNIX style
Journalling File System. The JFS is much more robust and much faster than
most other forms of UNIX OS. Instead of writing filesystem information
(directory entries, allocation blocks, etc.) directly to the disk each time, writes
and changes are written to a journal. In the background, the OS then updates
the files on the disk using the information in the journal. The most significant
advantage of this is is that it is almost impossible to corrupt the filesystem
information, even during a crash. Because the journal is written instantly to

Page%36%of%467

the disk at the time of the request, making modifications to files after a crash
is just a case of working through the journal.

This saves running an fsck like utility to recover a disk at startup, saving
time. My BeBox, which has dual 66Mhz 603 processors and 6.5Gb of space,
starts up in less than 30 seconds.

The database system from the original filesystem still exists and in
addition each file can now have a number of attributes attached to it. For
example, an email message could be stored as a file with attributes specifying
the sender, subject and other information. These attributes can be read
without having to open the file because they are stored along with the other
filesystem information, such as the files name, size and creation date. For
POSIX style programs, this information is not needed as it is in deference to
the abilities of other POSIX style OS.

The advantage to most people though will be that the OS now operates
like all other OS, and in particularly like UNIX, with the same basic file and
directory formats without the information having to be processed by the OS
first.

Basic Structure
Let’s look at the directories, folders, and files on the disk and their layout.
Initially the basic format looks like a cross between Mac OS and UNIX, and
anybody familiar with these platforms will be able to identify some of the
areas quite easily.

The different elements of the BeOS pick up on different aspects of
various other operating systems. The top level of the structure is the Disks
icon which is equivalent to “My Computer” under Windows 95 and similar to
the Desktop of the MacOS. There is no direct analogy with UNIX. UNIX
structure is based around the root filesystem, which itself is a place to store
files and directories. In that respect the Disks icon equates to the physical
machine.

Under each of these operating systems the different disk drives and
other storage devices (including networked drives) are referred to differently.

Volumes

Each physical drive under BeOS is classed as a volume. This is true for hard-
disk drives, CD-ROM drives, or floppy disks. Each volume has its own name,

Page%37%of%467

and these volumes are immediately available under the Disks icon. Within
each volume there are a number of directories.

As with UNIX, you can mount a volume at a specific directory location,
but most people will probably want to retain a match of different volumes to
different disk drives.

Like UNIX, the “root” directory is still valid, and can be referenced using
the “/” (forward slash) character. You can then reference individual volumes
by specifying the volume name after the slash.

For example, to access a volume called “MCBe” you would refer to it as:
$ cd /MCBe

If you are referring to a volume whose name has spaces in it, enclose the
name in quotes:
$ cd "/Be Hard Disk"

However, be warned that using
$ cd /
$ ls -l

does not just provide you with a list of additional volumes, it also lists some
top level directories such as /dev (for devices) and some links to important
directories such as system which contains the OS kernel and configuration
files.

This is very different from both Mac OS and DOS/Windows. Under Mac
OS each hard disk has its own icon on the Desktop, each of which is referred
to as a volume. The Desktop displays the available volumes and so is
equivalent to the root directory under BeOS. The principles used for handling
volumes in the BeOS’s Tracker interface are very similar to the MacOS style,
but you must access the individual disks using the Disks icon on the desktop.

Under DOS and Windows, the method for handling volumes is the same
but the terminology is slightly different. Each disk is referred to with a letter
and is equivalent to the BeOS volume. Each directory within each disk drive
can then be described by prefixing it with the drive letter in the same way that
directories on specific disks can be prefixed by the volume name under BeOS.

The Boot Volume

Under the BeOS there is a special volume named boot that refers to the disk
containing the active operating system and the OS applications. Items such as
preferences and commonly used applications should also be stored on the
boot volume.

The bootvolume is always available, because it will always equal the
disk which contains the currently running OS, regardless of the actual name
of that disk. In fact, it is really an alias to the disk that contains the OS. The

Page%38%of%467

boot volume should be your preferred option when you set default directories
in applications. We’ll look at using the boot reference as an alternative to
missing directories later in this chapter.

MacOS uses the term “Start-up Drive” for the equivalent functionality. It
is possible to work out which drive has been used to boot up the machine by
finding the active System Folder, which is also where most of the preferences
and system information can be found. DOS and Windows do not have a
specific way of finding out which drive started up the OS, but it is generally
fair to assume that it is the C: drive.

Directories

Using directories under the BeOS is not very different from UNIX or DOS,
which makes the transition fairly easy for most people. For those coming from
the MacOS the differences are more marked. Directories in the BeOS are
equivalent to folders on the Mac. These directories can be accessed via the
Tracker in the same way that folders are accessed on the Mac using the Finder.

Directories are separated by the UNIX-style “/” character. As with
UNIX, directories can also be referenced using “.” (dot, meaning the current
directory) and “..” (dot dot, meaning the parent directory). For example,
using
./foo

will select the file called foo in the current directory, while
../foo

will select the same file in the parent directory. You can also specify files and
directories absolutely (e.g. /MCBe/foo), but remember that the first item
must be either a volume name or the boot alias.

Default Directories

The basic contents of the boot volume are
$ cd /boot
$ ls -l
total 4651
drwxr-xr-x 1 ethyl wheel 2048 May 29 20:08 BeOS
drwxr-xr-x 1 ethyl wheel 2048 May 29 02:07 apps
drwxr-xr-x 1 ethyl wheel 7168 May 29 02:07 common
drwxr-xr-x 1 ethyl wheel 2048 Jun 14 14:47 home
drwxr-xr-x 1 ethyl wheel 2048 May 29 20:10 preferences
drwxr-xr-x 1 ethyl wheel 13312 Jul 6 10:37 tmp
$

You’ll notice that the list shown here doesn’t match the Tracker version
of this same directory. This is because the Tracker shows all files, while the
Terminal listing (which is what we get with ls -l) “hides” any files whose first
character is “.”. Refer back to Figure 2.1 to see the difference between the
Tracker and Terminal output of the boot volume.

Page%39%of%467

., .. and .file
Many people find the differences between the single dot, double dot and files
starting with dot to be confusing. This is understandable, it takes some time to
get used to terms which mean very different things but use the same basic
symbol.

A single dot always refers to the current directory, this is especially useful
when you want to refer to the program in the current directory, and to one of
the of the files in your directory path. The double dot always refers to the
parent of the current directory. This is useful when you are a number of
directories down, and don't want to specify the full path of the file you are
referring to. IT is also the only way to traverse back up a directory structure
when you have traversed down it using cd. Using:
$ cd ..

changes the current directory to the parent of the one you were just in.

Any file beginning with a dot is usually a configuration or preferences
file for an application, particularly when in a users home directory. For
example, the file .profile is executed by the shell each time it is run from a
Terminal window and specifies things such as the prompt to use on the
command line, and the search path to use for applications.

In all cases, ls will hide any file name beginning with a single dot. This
means that ., .. and files with a name beginning with . are ignored in the
standard listing. Using ls -a will show all files, including those beginning with
a “.”.

There are a number of basic directories including beos, bin, system, apps,
preferences and home.

The beos directory is the location of the OS, including the kernel support
applications and configuration information. It is further subdivided to include
the rest of the necessary files in a structured format. In particular /boot/
beos/bin is a link to /bin, which contains the command line utilities used in
the Terminal, /boot/beos/apps contains the programs supplied by Be as part
of the BeOS. The /boot/beos/system contains the OS files, libraries and
servers essential to the operation of the machine..

The /boot/beos/documentation directory, as the name suggests,
contains documentation on a number of aspects of the BeOS, including online
manuals for all of the software, tools, and BeOS application kits (but not
including documentation on the POSIX libraries and functions). The
documentation is supplied in the form of HTML (Hypertext Markup
Language) and can be viewed using the supplied Web Browser, NetPositive.

Page%40%of%467

The contents pages are linked to the other parts of the document, making it an
invaluable and easy-to-use reference.

The apps directory is for BeOS applications. These are applications used
by the BeOS as a whole, as opposed to the /boot/bin directory, which is used
to store the UNIX-like tools such as ls and compress. The applications
directory is further subdivided into software vendors. For example, apps/
Metrowerks contains the user software supplied by Metrowerks (the C
compiler and other tools).

The home directory contains files, applications and libraries for the user.

/boot/home/config should contain servers, libraries, fonts and
configuration files that are not directly related to the kernel of the core
operating systems operation.

Contributed software (non-system software) should ideally be placed
into the /boot/apps directory structure or for command line applications, /
boot/home/config/bin. This organization prevents you from overwriting the
OS-supplied software, and makes it easier for you to find the software and
update it when you need to.

The /develop directory contains the headers, libraries and other files
that you use to develop applications. The details of using the compiler and
other development tools will be discussed in Part 2 of the book.

The next top level directory, preferences, contains links to the programs
in /boot/beos/preferences required to change the machine’s configuration.
These are small applications which set program options, much like the control
panels under Windows and MacOS, rather than files used by the operating
system to specify the preferences, as you'd find in UNIX.

Take some time to look around these directories, particularly the /boot/
develop directory. We’ll be using that directory and its contents regularly
during the porting process.

Applying UNIX Structure to the BeOS
It is possible with some thought to apply the basic file-system structure used
on most UNIX machines to the BeOS. The layout is very similar; the only
major differences come from the change in the way physical drives are
handled and the names and locations of familiar directories.

We still have a root directory, but unlike UNIX this directory is incapable
of holding files, just directories and symbolic links. The BeOS has dispensed
with top level directories being the sole source of information about the

Page%41%of%467

current operating system because the boot volume implies the location of the
OS files.

In Table 2.1 you can see how many of the standard UNIX directories are
equivalent to their BeOS counterparts. I’ve used Sun’s Solaris variant of UNIX
for the directory names, although many of these names are common to most
UNIX flavors. Beyond the standard UNIX directories, there are also well-
recognized extensions to the layout. For example, the GNU project specifies
the /usr/local directory for installing additional pieces of software. The /
boot/home/config/bin directory structure should be used for the contributed
software, libraries, and support files.

Table 3.2

UNIX Directory Equivalents
UNIX (Solaris) BeOS
/ /boot
/dev /dev
/var /boot/var
/etc /boot/beos/etc
/lib /boot/beos/system/lib
/bin /boot/beos/bin
/usr /boot/home/config
/usr/bin /boot/home/config/bin
/usr/lib /boot/ home/config/lib
/usr/include /boot/ develop/headers

Once you’ve gotten used to these minor differences, using BeOS
directories is as easy as using directories under UNIX. You can’t change the
standard layout: for example, removing or renaming the beos directory has
catastrophic effects, much as removing the /usr or the /etc directory would
on a UNIX machine. The use of the /beos directory should make upgrades as
easy and painless as possible. To prevent any problems, no user files should
be stored in these directories.

Beyond that, however, you can re-create whatever structure you prefer
or are familiar with within your own home directory. However, it is best to try
to keep to the basic layout outlined here, as the BeOS is selective about where
it expects to find things like libraries and other files during program
execution. If you want to recreate a particular layout, use symbolic links to
refer to the equivalent items as I’ve outlined them above.

Page%42%of%467

Missing Links and Other Goodies
The BeOS is missing some familiar features and a number of useful utilities
from the standard range available on most UNIX variants.

The most obvious, and perhaps most annoying, missing feature is that
the BeOS has no concept of hard links, although it is aware of symbolic links.
The absence of hard links can cause you a number of problems when porting,
as some programs rely on hard links to compile and run correctly. This affects
the use of the machine as well. Aliases, introduced into the Mac’s System 7,
are now a common feature of the operating system; aliases were copied in
Windows 95 and renamed shortcuts. Both are different terms for the same
thing: links.

Links are essentially just pointers to a file or directory. They are used
under UNIX to create a duplicate name for the same file, perhaps in a more
convenient place. For example, contributed software usually has the current
version number appended to the program or folder name. A link is then
created whose name is just the base name of the program, which is much
more convenient to type. A good example of this is perl. The real program
name might be perl-4.036, but a hard link is created which enables the user to
refer to the same program simply as perl. Thus when the program is
upgraded to perl-4.037, the user can still access the most up-to-date (and
freshly linked) version by simply typing perl.

In most cases, these links are introduced using hard links. A hard link is
just a duplicate name entry in the directory list. A hard link takes up no
additional disk space (it doesn’t duplicate the file). A symbolic on the other
hand is really just a special type of file. Rather than adding an extra name to
the directory list, and then linking that name to the real location of the file, as
in hard links, a symbolic link is a pointer to the file. This is the same basis as
aliases and shortcuts, and so it should be more familiar to everybody.

It is often possible to get around the hard link requirement by using a
symbolic link, or by truly duplicating the file or directory, but this is a less
than ideal solution.

For those attached to a particular type of shell interface to UNIX, you
will be disappointed to find that the BeOS currently only supports bash.
Although bash is an amalgamation of the best features of the Bourne, Korn,
and C shells, those who prefer the individual shell interfaces will have to cope
with bash. You can find out how to make the best use of bash in Chapter 4.

Many of the familiar commands that you expect to find when using the
command-line interface are also missing. The more command doesn’t exist,
but it has been symbolically linked to the GNU software equivalent less. This

Page%43%of%467

isn’t a bad thing because less provides much better functionality, including
the ability to go back through a document as well as forward.

Page%44%of%467

Chapter 3: We’re Not in UNIX
Anymore
In the last chapter we saw the differences between the BeOS directory
structure and those of DOS, Windows, MacOS, and the various flavors of
UNIX. There are a number of similarities between the layouts of BeOS and
UNIX, but now we’ll concentrate on the more specific differences between the
core of the BeOS and UNIX. This chapter will help those readers with a UNIX
background to learn how the BeOS differs from UNIX, and help those with
Windows or Mac experience to understand how the BeOS's UNIX-like
elements work.

From very early in its life, UNIX was designed with multiple users in
mind. Each user has a specific ID number and can be a member of a number
of different groups. Each group also has its own unique ID. Finally, there is a
special set of users called “other” which is considered to be everybody else
(who isn't you or a member of your group). These sets—user, group, other—
affect the ways in which files, directories, and processes can be modified and
accessed.

This approach is very different from that taken in both DOS/Windows
and MacOS, where the user's access to the machine is absolute. There is no
separation on a single machine between what you have access to and what
you don't; you have access to everything. However, most people have come
across the user and groups concepts when accessing servers on a network,
where the same terminology is used. You can try this on MacOS by setting up
file sharing on your machine, selecting a volume, and then choosing Sharing
from the File menu. For file sharing, the main user (owner) has access to
anything on the machine, but can grant specific rights to individuals who
connect over the network, and can group these individuals with others who
share similar access rights.

Any individual user on the network will therefore have access to the
resources they own, to the resources which are owned by a group of which
they are a member, and finally to all those resources which are available to
everyone.

The BeOS is a hybrid of the multiuser approach of UNIX and the single-
user approach of the Mac. A BeOS machine is, in essence, a single-user
machine like a Mac, but the UNIX-style (POSIX) interface offered by the
Terminal provides a UNIX-style set of file permissions. This UNIX influence
extends to the way processes are handled and how the core of the OS
operates, but we’re not in UNIX anymore—there are some important
differences.

Page%45%of%467

The BeOS’s Concept of Users
To gain access to a UNIX machine you must log in with your user name. The
name identifies you to the system and sets up the environment (stored in
the /etc/passwd file) that will control your access to the resources on the
machine. Each user is unique, with their own unique number. Each file and
directory has an owner identified by the user ID.

User names and user IDs
The relationship between usernames and user IDs is controlled by the /

etc/passwd file under UNIX. User ID’s are numbers, and must be unique to
each individual user. User names are just text aliases to the individual
numbers. The OS only stores the ID against a file, not the name. This means
that you can change the name assigned to a specific number by modifying the
passwd file, but it doesn’t adjust the actual ID of the files concerned, just the
name that is reported back.

Really, the names are only there because humans are useless at
remembering numbers but much better at remembering words.

Under the BeOS, which was designed as a single-user OS rather than a
UNIX-style multiuser OS, no such system exists. This lack causes a few
problems during the porting process and in providing a working version of
the application you are porting. Many UNIX-bound applications use this
multiuser model to control access to files by different programs within an
entire application, and others require specific permissions on files and
directories to work properly.

The BeOS is now beginning to introduce a multiuser type environment,
and the changes to the directory structure reflect this progression.

Permissions

File and directory permissions are based around three bits: read, write and
execute. The combination of the file owner and the permissions controls
access to files and directories. When you do an ls -l (long listing) of a
directory, the first column of output shows you the permissions for each file
using a ten-character string:
$ ls -l
total 258
-r--r--r-- 1 ethyl wheel 17982 May 29 20:42 COPYING
-r--r--r-- 1 ethyl wheel 25263 May 29 20:42 COPYING.LIB
-r--r--r-- 1 ethyl wheel 47750 May 29 20:42 ChangeLog.Z
-r--r--r-- 1 ethyl wheel 6915 May 29 20:42 INSTALL

Page%46%of%467

-r--r--r-- 1 ethyl wheel 4038 May 29 20:42 Makefile.be
-r--r--r-- 1 ethyl wheel 4000 May 29 20:42 Makefile.in
-r--r--r-- 1 ethyl wheel 4699 May 29 20:42 NEWS
-r--r--r-- 1 ethyl wheel 4607 May 29 20:42 README
-r--r--r-- 1 ethyl wheel 3555 May 29 20:42 acconfig.h
-r--r--r-- 1 ethyl wheel 8785 May 29 20:42 config.h.be
-r--r--r-- 1 ethyl wheel 8287 May 29 20:42 config.h.in
-r-xr-xr-x 1 ethyl wheel 92914 May 29 20:42 configure
-r--r--r-- 1 ethyl wheel 11374 May 29 20:42 configure.in
drwxr-xr-x 1 ethyl wheel 2048 Jul 6 18:28 doc
-r-xr-xr-x 1 ethyl wheel 4771 May 29 20:42 install-sh
drwxr-xr-x 1 ethyl wheel 5120 Jul 6 18:28 lib
-rw-r--r-- 1 ethyl wheel 0 Jul 6 18:29 lsl.out
drwxr-xr-x 1 ethyl wheel 2048 Jul 6 18:28 man
-r-xr-xr-x 1 ethyl wheel 649 May 29 20:43 mkinstalldirs
drwxr-xr-x 1 ethyl wheel 2048 Jul 6 18:28 src
-r--r--r-- 1 ethyl wheel 1 May 29 20:43 stamp-h.in

The first character shows you the file type, using “d” for directory, other
possible characters can be seen in the sidebar.

The possible file types (indicated by the first character of the permissions
column) are as follows:

d! the entry is a directory

l! the entry is a symbolic link

b! the entry is a block special file

c! the entry is a character special file

p! the entry is a named pipe

-! the entry is an ordinary file

The next three characters show the permissions for the owner of the file;
the three after that show the permissions for the group owner; and the last
three show the permissions for everyone. Each character is called a
permission bit, and the combinations of different bits specify the mode. See
Figure 3.1.

Page%47%of%467

Figure 3.1
Users, Groups and Permissions

The third and fourth columns (ethyl and wheel) relate to the user and
group respectively. The user and group specify the registered users of the file.
Access to the file or directory is granted based on this information, and the
permissions.

For example, a read bit (the “r”) in the second column of the permissions
indicates that the owner can read the file. In the third column, a write bit (the
“w”) indicates that the owner can modify (write to) the file. An execute bit
(“x”) in the fourth column shows that the file is executable (a program or
script) by the owner. For example, a file with “-r-x” in the first four columns
has read and execute permissions set for the owner, and is therefore likely to
be an application or a script. The dash (-) indicates that the write bit is not set.
A file that has the read and write bits set (“rw-”) is more likely to be a regular
file.

UNIX uses the execute bit to decide whether a file is executable or not;
that is, whether it's a script or program. Under the BeOS, it is not necessary to
set the execute bit for a file to be recognized as executable, though this
shorthand is useful in helping you identify executable programs in directory
listings. Instead, the BeOS uses MIME (Multi-purpose Internet Mail
Extension), a system borrowed from the Internet which records information
about the files contents and format. The basic MIME list has been expanded to
cater to BeOS applications, but the principle remains the same.

There are some special cases with respect to permissions for directories.
If a directory that has the read bit set, the user can list its contents, but won't
be able to obtain details about the contents (size, date created, and so on) or
open the contained files unless the execute bit is also set. If a directory only
has the execute bit set, the user will have access to the files contained in the
directory, but only if they know the file name! This can be useful for incoming
FTP directories where you may want to allow people access to file with a
given URL, without providing them access to the rest of the directory.

Page%48%of%467

A user who has write permission to a directory can delete anything
contained within it. This is true even if the files themselves don’t give the user
write permissions. Many applications use these and other features to control
access to files and directories by users in multiuser situations.

File permissions represent one area in which the BeOS copies the
appearance of UNIX, but not the functionality: while the BeOS currently
makes any requested changes to the permissions of files and directories, it
generally ignores the permissions when it comes to separating access by
users, groups or everybody else. There are, under certain circumstances, ways
of getting around this, but you should keep in mind that the BeOS is not
currently a multiuser-aware machine. This doesn’t mean that it can’t be used
by more than one user, neither does it stop the machine from being a viable
server platform, but it does affect how the machine responds to multiuser-
aware applications, particularly in regard to file access and permissions.

Processes

Windows and MacOS users can think of a process as a currently running
application (the OS itself is also a process). Under UNIX and the BeOS, when
you list the current processes there appear to be a greater number of processes
running than you might expect. What is actually happening is that different
elements of the OS are split down into individual processes, whereas under
Windows and MacOS they are simply treated as part of the overall system in
one single process. The BeOS uses a slightly different model for processes
than UNIX does, as we will see later in this chapter.

We will consider those privileges that directly affect the multi-user
model we find under UNIX. Under UNIX a process that is executed is owned
by the user who created it, and this user has special privileges over the control
of the process. Since there is no concept of users within the BeOS, running a
process does not assign a user and therefore the user has ultimate control over
all processes running, including the system processes. For example, it’s
possible (but not recommended) to kill a system process—after all, you own
the process, so you should be able to kill it.

Execution

Under UNIX you can set the user permissions and the user ownership of a file
so that anybody running the program will execute the program as the owner
of the file, rather than the user. It is the combination of the owner of the file
and a special bit called the setuid (set user ID) bit which allows you to force
an application to execute as a specific user. The setuid bit appears in the place
of the execute bit as an “s” instead of the usual “x”.

Page%49%of%467

Executing as a specific user is a technique often used by OS-level
software to give the user file access that they would not normally have. The
passwd command is set to execute as the superuser so that, for example, the
user running the program can change their password. Under the BeOS, the
setuid bit can be set, although currently it has no effect (since the BeOS is not
truly a multi-user system).

In UNIX all processes that are executed by a specific user can be listed
using the ps command, and it’s also possible to list the processes that have
been executed within the current shell. Again, on the BeOS the lack of user
specifications means that all the processes are owned by the same user, which
is the only user on the system.

Running the ps command therefore produces the same output regardless
of the options you specify. Once more the unneeded options are included to
allow programs that use the ps command to execute without being
interrupted by an error condition.

The BeOS’s Concept of Groups
A group is a collection of users. Groups allow all users within that group
access to a resource. Access to processes, files, and directories can be
controlled and restricted by group ownership in the same way that user
ownership affects access by individual users.

Permissions

Under UNIX, as with user permissions, it is the combination of the group
ownership and group permissions which control the access to files. All
members within a group are considered to have group ownership, but while
user ownership is absolute, group ownership is always shared between all
members.

This doesn’t mean that a group member automatically has the same
rights as the owner of the file or directory. Group members are unable to
change the permissions of a file, even the group permissions to which,
logically, they should have access. They can delete a file or directory, though,
if the group has write permission. The BeOS does not support the concept of
groups and so group permissions make no difference to the access rights of
the individual user. It does, however, still honor any changes to the group
permissions, even though they have no effect.

Processes

Page%50%of%467

Under UNIX the group under which a process has been run affects the files
and directories to which that process has access. However, because the BeOS
does not distinguish between different groups, in fact there is only one group,
so groups have no effect on a process’s access rights to files. This means that
regardless of the group (and user) permissions on a file, e the BeOS all
processes have access to all files and directories.

This is a different mechanism from the process group ID under both the
BeOS and UNIX. A process group ID controls which processes are attached to
a specific parent process. Under the BeOS this is handled via the UNIX (or
more correctly POSIX) compatible interface interface, which we will look at
more closely in the coming chapters The BeOS also uses a different
mechanism for grouping processes together, as we will see later in this
chapter.

Execution

Because the BeOS is not group-aware, no facility to change group ownership
of applications exists. This affects the setgid (set group ID) bit, since without a
group owner setting the setgid bit will have no effect. Under UNIX, though,
the setgid bit allows a program to be run with the group ownership as
defined by the group owner of the file, in much the same way that the setuid
bit allows programs to be run as the owner of the application.

Effects on Porting
The absence of a users or groups concept in the BeOS can affect the porting
process, both in the code and in the processes required to port the application.
Because of the lack of the /etc/passwd and /etc/group files it is impossible
to set a file or directory’s owner or group.

For example, consider the following:
$ ls -l
drwxrwxrwx 0 elvis 1 0 Feb 24 23:02 t
drwxrwxrwx 0 elvis 1 0 Feb 24 23:02 t.c
drwxrwxrwx 0 elvis 1 0 Feb 24 23:02 t.o

Now try changing the owner:
$ chown martinb t.c
$ ls -l
drwxrwxrwx 0 elvis 1 0 Feb 24 23:02 t
drwxrwxrwx 0 elvis 1 0 Feb 24 23:02 t.c
drwxrwxrwx 0 elvis 1 0 Feb 24 23:02 t.o

You probably expect it to fail. The BeOS accepts the command as valid, but
actually does nothing. This keeps programs and shell scripts from failing
because the chown command, as we know, doesn’t work. The same is true for

Page%51%of%467

chgrp, which also does nothing, but still returns a successful exit status to the
calling program. This silence doesn’t always solve the problem during the
porting process, as it is possible that the installation program may not only
attempt to set the ownership of files, but also check the ownership to ensure
correct installation. Unlike attempting to set ownership, checking ownership
will return an error condition.

The BeOS’s chmod program, which adjusts the permissions on a file or
directory, does work identically to the UNIX command, and so it should
produce the correct exit status to the calling program and have the expected
effect on the file or directory concerned. Keep in mind, though, that the
execute bit does not have to be set on the file for it to be an executable
program.

Also, setuid and setgid programs won’t have any effect—there are no
users or groups for processes to execute as other than the default user. Again,
this lack can cause problems at various stages of the porting process, so it is
important to be aware of them right from the start.The problems of setting
permissions and ownership usually only occur during a packages installation
process, and it is a very rare occurrence when it happens.

You will also find that when you extract sources (which is discussed
further in Chapter 5), the files are recovered using the standard user and
group. Permissions, though, are extracted correctly.

Perhaps the best equivalent for the BeOS when using UNIX is the
superuser, or root. Under UNIX, the superuser has access to everything,
without exception and without restriction. The BeOS effectively gives you
permanent root access to the OS. This has some advantages, since you are
never restricted by the files you have access to. You should never end up in
the situation where the file you really need to have access to is unavailable
because you don’t have the required permissions.

Unfortunately, all the dangers of root access come with the privileges. It
is possible, and dare I say easy, to accidentally delete a file, overwrite the OS
files, or delete entire directories. So be careful when deleting and moving files
and directories. We’re not in UNIX anymore, and the same safety mechanisms
don’t exist.

Processes
Each program running on a UNIX machine is called a process, and each
process has a number of attributes. We’ve already seen how some of these
attributes are missing in the BeOS, and how that affects the porting process.
The BeOS’s process structure is very different from that found under most
UNIX variants. Let’s have a look at the output of the ps command:

Page%52%of%467

Listing 3.1

Output from the ps command

 thread name state prio user kernel semaphore
--
-
kernel_team(team 2)
 1 idle thread 1 rdy 0 0 41750
 2 idle thread 2 run 0 0 42541
 3 psycho_killer msg 10 0 1596
 4 kernel_daemon zzz 5 0 2944
 6 1 idle angel sem 10 0 0 debug idle
thread 1(30)
 7 2 idle angel sem 10 0 0 debug idle
thread 2(34)
 8 dprintf zzz 10 0 16
 9 dgets sem 10 0 0 request for
input(48)
 63 syslog_cleaner zzz 5 0 0
/boot/system/app_server (team 7)
 15 app_server sem 15 837 1670 Bpcreate(288)
 23 keyboard sem 100 23 98 kbsem(209)
 24 joystick sem 100 0 0 Joystick poller
lock(297)
 25 mouser sem 100 229 424 mssem(210)
 26 updater zzz 100 364 469
 27 picasso msg 15 0 4
 28 mouse_down_task sem 15 14 9 Bpcreate(290)
 35 app_task sem 15 2 8 CR_SRV_PORT(386)
 59 app_task sem 15 2 5 CR_SRV_PORT(608)
 60 app_task sem 15 866 1475 CR_SRV_PORT(616)
 62 app_task sem 15 86 193 CR_SRV_PORT(691)
 64 app_task sem 15 2 5 CR_SRV_PORT(715)
 65 app_task sem 15 2 5 CR_SRV_PORT(721)
 66 app_task sem 15 2 5 CR_SRV_PORT(730)
 67 #wt Deskbar sem 15 94 65 Bpcreate(763)
 73 #wt Tracker Status sem 15 2 3 Bpcreate(813)
 76 #wt desktop sem 15 251 201 Bpcreate(855)
 81 #wt MCBe sem 15 850 1109 Bpcreate(887)
 90 app_task sem 15 1 4 CR_SRV_PORT(991)
 129 app_task sem 15 74 136
CR_SRV_PORT(1536)
 131 #wt Terminal 1 sem 15 1043 1151 Bpcreate(1572)
/boot/system/registrar (team 11)
 29 _roster_thread_ sem 10 138 221
_roster_port_(380)
 36 main_mime sem 10 29 80 main_mime(397)
 37 pulse task zzz 10 202 106
/boot/system/syslog_daemon (team 15)
 38 syslog_daemon_wrapper sem 10 15 55
AppLooperPort(602)
 61 syslog_daemon sem 10 1 109
syslog_daemon_port(699)
/boot/system/Tracker (team 17)
 40 Tracker sem 10 109 447
AppLooperPort(610)
 74 Tracker Status sem 15 0 0 Tracker
Status(761)
 75 TrashWatcher sem 5 17 218
TrashWatcher(833)
 77 w>desktop sem 15 358 431
TrackerWindow(846)
 82 w>MCBe sem 15 709 1060
TrackerWindow(874)
 83 pulse task zzz 10 313 182
/boot/system/Deskbar (team 19)

Page%53%of%467

 43 Deskbar sem 10 84 249
AppLooperPort(684)
 79 w>Deskbar sem 15 118 125 Deskbar(750)
 80 pulse task zzz 10 232 136
/boot/system/audio_server (team 21)
 45 audio_server sem 10 25 120
AppLooperPort(701)
 69 DAC Feeder sem 120 0 0 first
subscriber(787)
 70 ADC Feeder sem 120 0 0 first
subscriber(797)
 71 pulse task zzz 10 184 105
/boot/system/print_server (team 23)
 47 print_server sem 10 68 379
AppLooperPort(703)
 72 pulse task zzz 10 196 113
/boot/system/debug_server (team 25)
 49 debug_server sem 10 24 73
AppLooperPort(706)
 68 kernel listener sem 10 0 0 msg from
kernel(773)
/boot/system/net_server (team 29)
 84 net_server sem 10 16 61
AppLooperPort(969)
 91 net main sem 10 26 176 timeout-
cancel(1038)
 92 ether-reader sem 10 0 2 ethercard
input(1017)
 93 loopip thread sem 10 0 0 loop wait(1025)
 94 socket server msg 10 2 19
 105 socket[33] sem 10 3 3 client-
read(1183)
 106 socket[35] sem 10 2 2 client-
read(1187)
/boot/bin/ftpd -E (team 33)
 96 ftpd sem 10 10 48 server-
read(1189)
/boot/bin/telnetd -E (team 35)
 98 telnetd sem 10 8 46 server-
read(1203)
/boot/apps/Terminal (team 44)
 128 Terminal sem 10 75 172
rAppLooperPort(1503)
 132 Terminal 1 sem 15 474 330 Terminal 1(1563)
 133 RNodeManager sem 10 327 216 LooperPort(1582)
 136 sem 10 62 108 wchan(1587)
 137 sem 10 40 48 LooperPort(1608)
 138 BTimer sem 10 15 15 BTimer(1625)
/boot/bin/sh -login (team 45)
 135 sh sem 10 512 385 Wait for dying
teams(1588)
/boot/bin/ps (team 49)
 142 ps run 10 34 104

32768k (33554432 bytes) total memory
17388k (17805312 bytes) currently committed
15380k (15749120 bytes) currently available
53.1% memory utilisation

You should notice almost immediately that the layout of the list is very
different from the analogous UNIX output. There is no user listed for each
entry and while the process ID exists, it has instead been called a thread. Also,
no parent process ID is listed, nor should we expect one given the already
discussed differences. There are a number of new columns giving each thread
a name, a state, and a priority. Each entry also has two memory columns: The
first displays the user memory allocated by the thread, and the second the

Page%54%of%467

kernel memory allocated by the thread. The final column shows the
semaphore for each thread. A semaphore is the identifying flag which controls
when the thread should be executing or idle.

Threads

What should, I hope, have been immediately obvious is that processes
appeared to be split into a number of sub-elements. This is because the BeOS
multithreading architecture, which I’ll discuss in more detail in Chapter 16,
causes BeOS applications using the BeOS GUI, such as the Tracker and
Terminal, to be split into at least two individual elements called threads.

Threads are not a new feature; UNIX has had multithreading capability
for some time, although it is implemented very differently in each different
UNIX flavor. All BeOS applications have two threads: one controls the main
function of the program, and the other controls the interface to the window
(menus, buttons, and so on). You can create more threads within an
application to allow a single program to be multitasking, rather than relying
on the multitasking features of the OS.

Note, however, that this feature is available to BeOS-GUI programs as
standard, and to UNIX style commands only with some special
programming. The UNIX-like commands (those run in a Terminal) run in a
single thread, as you can see if you look at thread number 135, which lists the
sh shell thread. This use of threads, and more to the point the inclusion of the
threads into the process list, is an important difference between UNIX and the
BeOS.

Teams and Killing Processes

Looking back at the output of the ps command again, hopefully you should
have noticed that threads were in fact grouped together by the term team. A
team, at its most basic level, is a collection of threads; but it is simpler to
compare a BeOS team to a UNIX process. A thread is just an extra level of
detail which the BeOS is able to provide because of its threaded nature.

Threads, Teams and Processes
The relationship between Threads, Teams and Processes is relatively

simple. A process is any application that is currently running. An individual
process can be split into a number of individual threads. A team is just
another name for a process.

Page%55%of%467

If you want to kill a thread under the BeOS, you specify the thread ID to
the kill command or the kill() function. In the case of POSIX programs, there
is only one thread and this is therefore equivalent to killing the entire process.

The BeOS differs from standard UNIX, although many of the basic principles
of the OS are the same. In general the same terms are used, but the same
functionality does not always stand behind that terminology. Keep in mind
that:

•! The BeOS and UNIX are different at the core

•! They differ in handling users and groups, and this affects file
permissions, processes, and how applications are executed

•! The lack of meaningful users or groups in the BeOS affects the porting
process, rather than the software you are porting

Page%56%of%467

Chapter 4: Useful Tools
Porting an application to a new OS is a complicated process. Knowing the
tools described in this chapter can significantly reduce the time it takes to port
an existing application or write a new one. Wherever possible, I’ve provided
some specific examples which you can adapt for your own purposes. If you're
familiar with UNIX, you might find that much of this chapter covers familiar
territory.

As we are already aware, the Terminal interface of the BeOS provides a
basic shell much like the UNIX shell or the DOS command prompt. The shell
is what provides the command line interface between the user and the
operating system. While each of the tools presented here is a separate
program, none of them would be available if it weren't for the shell.

Despite the friendly and easy to use environment of the GUI, there are
some things that can be done (and probably should be done) in the command
line interface (CLI). A good example is deleting files with a wildcard. This is
very difficult, although not impossible, using a GUI. Using a command line
interface it is as easy as typing the command and the wildcard.

bash
The bash shell was developed by GNU, itself part of the Free Software
Foundation, as a replacement for the UNIX shells that were previously
available. Actually, bash stands for Bourne Again SHell, and is an
amalgamation of the better features from the Bourne shell (sh), the C shell
(csh), and the Korn shell (ksh). It inherits its great ease of use from the Bourne
shell while still providing a number of useful extensions.

Let’s cover some basics to acquaint ourselves with bash. The prompt
provides the interface to the shell. There are two levels of commands that we
can type in. Some are built into the shell; others are programs executed when
you press Return. Commands are generally of the form
command [-options] [arguments] [files]

Each command you type in is executed when you press Return. When
you press Return, bash goes through a series of expansions, including aliases
and file selectors, before executing the expanded command and its
arguments. You'll learn more about aliases, file selectors, and other types of
expansion later in this chapter.

Command History

Page%57%of%467

Life would get tedious if you had to retype every command every time you
needed to use it. With bash, you can use shortcuts and substitutions for
commands you’ve typed already, thanks to its command history, a record of all
the commands you’ve typed during this shell session.

You can see all the commands you’ve typed by typing history at the
prompt. But just listing the commands isn’t very helpful—you need to know
what you can do with this history list.

The History of the Command History
In DOS you have a very simple way of repeating the last command. The
function keys F1 and F3 provide character-by-character and entire line
repetition which you can edit, delete, or insert as required. This functionality
only works on the previous line entered and is difficult to use because typing
any characters automatically replaces the corresponding contents of the
buffer.

In UNIX the command history interface is worse. All commands typed
into sh are executed once and forgotten, so there is no way of either listing the
commands entered or editing any previous commands. The C shell was the
first to provide a basic level of editing, but it works on substitution of text on
previous commands and is tricky to use at best.

The Korn shell provided a better interface, allowing commands to be
stored and recalled. The commands could also be edited using the familiar vi
commands (the default option) or emacs style commands.

bash provides a similar editing feature, but the default option is to use
Emacs command keys. These bindings can be changed, but most people use
the default, and it’s good practice to understand what the default settings are
should you plunged into a foreign environment.

Navigation

You can navigate through the list of commands using the Up and Down
Arrow keys. These select the previous and next history command,
respectively. For example, if you’ve previously run the commands
$ cd /boot
$ cd /boot/develop/headers

you can press the Up Arrow key once to get
$ cd /boot/develop/headers

Press it again, and you get
$ cd /boot

Page%58%of%467

Because the arrow keys do not work on all keyboards, it is useful to
know that ^p and ^n have the same previous/next effect. You can go to the
start of the history list by using M-< and to the end of the list by using M->.
Note. The Meta prefix (as in M-<) means "press and release the Escape key, then
press and release the next character." This obscure Emacs terminology is based on
some UNIX keyboards that had a key marked "meta," which you won't find on your
Macintosh, Windows, or BeBox keyboard.

Editing

Once we have found the command line we are looking for, we can edit the
line. This ability saves a lot of retyping of similar commands or of commands
you typed in incorrectly first time around.

We can use the Left and Right Arrow keys to move through the line, or
use the equivalent ^b and ^f to go backward and forward between individual
characters. You can also go backward and forward between individual words
(made up of alphanumeric characters) with the M-b and M-f key
combinations.Use the ^e key combination to move to the end of the line and
^a to move to the beginning of the line.

You can delete areas of the line with either the Backspace key, which
deletes the character immediately to the left of the cursor, or ^d, which deletes
the character under the cursor. You can also delete to the end of the line using
^k.

With all of these commands in mind, you should be able to change the
following line:
$ mwcc -DBEOS -DSVR3 -i- -I/boot/local/include -c foo.c

Note. The C compiler on the BeOS is called mwcc.
to
$ mwcc -DBEOS -DSVR4 -i- -I/boot/local/include -c bar.c

without too much difficulty. And you can see why it’s convenient to be able to
edit the line!

After editing a command line, you just press Return to execute the
command. You don’t need to be at the end of the line to press Return to run
the edited command line.
Note. The history lines recorded are the lines as typed, not as expanded. This allows
you to change a file specification or other definition while retaining the remainder of
the command. The shell can then re-expand the modified line at the time of execution.
You’ll learn about file expansion later in this chapter.

Searching

You can also search the history list for a specific string using an incremental
search. This type of search looks through the history list for each character you

Page%59%of%467

type until it finds a match. To start a reverse incremental search on the history
list, press ^R. For example, say that you’ve typed the following commands
during this session:
$ cd /boot
$ ls d*
$ cd /boot/develop/headers
$ ls

Now the history list contains these commands. If you press ^R here then start
typing ls, you will go back to the most recent command (which was just ls).
Add a space and you’ll go back two more lines to the only line that has “ls”
then a space (“ls d*”).

If you had typed “d” to start with, you would have gone back to
$ cd /boot/develop/headers

which is the most recent command line containing a “d”.. If we continue the
reverse search by typing a space we should go back to
 $ cd /boot

selecting the next nearest line matching the pattern. Searching continues until
we have fully expanded the line, matched the last possible line matching our
search, moved the cursor, or pressed Return to execute the command.

Pressing ^r again will take us back to the next previous line matching
the typed text, and we can continue pressing ^r until the string no longer
matches.

Table 4.1

Command History Navigation
Key Combination Function
^p, Up-arrow cursor
key

Go to previous line in history

^n, Down-arrow cursor
key

Go to next line in history

M-< Go to top of history list
M-> Go to bottom of history list
^b, Left cursor key Go backward by character through current line
^f, Right cursor key Go forward by character through current line
M-b Go Backward by word through current line
M-f Go forward by word through current line
^e Go to end of line
^a Go to beginning of line
^k Delete to end of line
^d Delete character under cursor
Backspace Delete the character to the left of the cursor
^r Start reverse incremental search

Page%60%of%467

File Selectors

The ability within the shell to refer quickly to a single file or multiple files is
based around the use of file selectors. Most DOS and UNIX users will be
familiar with these concepts. For Mac and Windows users, the concept of file
selectors and wildcards may well be new.

A file selector is a string made up of a combination of specific characters
and wildcards. A wildcard matches a selection of characters. For example, the
wildcard ‘?’ matches any single character, whilst the ‘*’ wildcard matches any
number of characters.

File names given as command-line arguments are passed verbatim to the
program you are running. However, file selections and wildcards are
expanded by the shell and it is this list of files which is then passed to the
command as the arguments. This is different from DOS, which takes the
command-line arguments and uses functions within a given program to
expand the wildcard.

The expansion of file names occurs anywhere within the shell command
line where a file selector specification is made. This ability to expand any
string to a list of files is used within other parts of the shell, as we will see
later in this chapter.

* and ?

The * (asterisk) and ? (question mark) operators match multiple characters
and single characters, respectively. These are what most people call
“wildcards”:, they match any single (?) or multiple (*)character, regardless of
whether it is a letter, number, or other symbol. Using these operators in
combination with characters enables you to select groups of files very easily.
Consider the following directory list and series of commands:

Note. Remember, ls is the command to list files and
directories.

$ ls
INSTALL Porting bar.c foo foo.o
Makefile README bar.h foo.c foobar
Makefile.bak bar bar.o foo.h fooby
$ ls *.c
bar.c foo.c
$ ls foo.*
foo.c foo.h foo.o
$ ls foo*
foo foo.c foo.h foo.o foobar fooby
$ ls foo??
foo.c foo.h foo.o fooby

Note: It is possible to use wildcards in any command, not just ls. As you can
see, it is possible to select a wide range of different files using these two
characters. However, you can be more precise in your file specifications.

Page%61%of%467

Square Brackets

Going back to the previous example, imagine if you had wanted to list all of
the files starting with a capital letter. It would be very difficult to do using the
two wildcards * and ?: you’d have to specify each capital letter with a trailing
asterisk. There’s an easier way. You can use square brackets ([and])to match
any of the characters enclosed in the brackets.
$ ls
INSTALL Porting bar.c foo foo.o
Makefile README bar.h foo.c foobar
Makefile.bak bar bar.o foo.h fooby
$ ls [MRIP]*
INSTALL Makefile Makefile.bak Porting README

As you can see, using brackets to specify the capital letters that you know are
there (M, R, I, and P) matches all of the files you want, which gets around the
problem in the current directory. What it doesn’t solve is the problem of
listing all files starting with any capital. The solution? A pair of characters
separated by “-” (hyphen) matches any character alphabetically between the
pair. With this information you can now use
$ ls
INSTALL Porting bar.c foo foo.o
Makefile README bar.h foo.c foobar
Makefile.bak bar bar.o foo.h fooby
$ ls [A-Z]*
INSTALL Makefile Makefile.bak Porting README

to match what you want. Because the “-” character works this way, you can
also use
$ ls [a-z]*

to match all files starting with lowercase letters, and
$ ls [0-9]*

for those starting with a number.

Combinations of the above examples can be used for complex matching.
For example, the expression [A-Za-z] will match any single upper- or
lowercase character. Notice, however, that brackets only match a single
character. To match multiple characters using square brackets, repeat them as
necessary. For example,
$ ls [A-Z][a-z]*

lists all the files starting with a capital whose second letter is lowercase.

Finally, using a “^” (caret) character as the first character in the
expression reverses the meaning, causing it to match any character not
enclosed. So
$ ls [^A-Z]

will match all files not starting with a capital letter, which effectively means
files starting with lowercase characters or numbers.

Brace Expansion

Page%62%of%467

Brace expansion allows us to produce arbitrary strings. It is similar to file-name
expansion, as outlined above, but you can use it to create new files, in
addition to referring to existing files. The format of a brace expansion
expression is an optional prefix, a set of comma-separated strings between a
pair of braces ({}), followed an optional suffix. The result is a group of strings
with the prefix and suffix appended to each string.

Using the above example again, we could describe the “foo” files by:
$ ls
INSTALL Porting bar.c foo foo.o
Makefile README bar.h foo.c foobar
Makefile.bak bar bar.o foo.h fooby
$ ls foo.{c,h,o}
foo.c foo.h foo.o

Note. The mkdir command creates a directory.
The ability to create such strings can be used to shorten command lines

quite considerably. Imagine creating a number of directories:
$ mkdir /boot/local/lib /boot/local/bin /boot/local/etc

Using brace expansion, you could shorten the process to
$ mkdir /boot/local/{lib,bin,etc}

Caution. Brace expansion presents an incompatibility with shell scripts expecting sh
commands instead of bash. A string of the form file{1,2} parsed by sh will generate
file{1,2}, whereas bash will produce file1 file2.

Tilde Expansion

The tilde character (~) is often used in UNIX to represent the home directory
of the user or the home directory of another user on the system. A single tilde
character expands to the value of the HOME environment variable or, if this
isn’t set, to the home of the user executing the shell. When the tilde precedes
the name of a valid user of the system, it is expanded to the home directory of
the specified user. For example, if your username is lskywalker, for you the ~
would expand to /u/lskywalker (your home directory). To get to hsolo’s
directory, you'd use ~hsolo, which is equivalent to /u/hsolo.

Both cases are affected by the BeOS’s lack of a user mechanism. Instead,
tilde expansion defaults to /boot/home. You can change the default by
specifying the home directory you want to use in the HOME variable. You can
assume, however, that using tilde expansion is a safe way to represent the
home directory and provides for the future compatibility of the BeOS when
multi-user features are added.

File-Name Completion

Typing the names of files you want when using the shell is a tiresome process,
especially if the file is in a another directory. It is also sometimes difficult to
remember the exact path to the file or directory you are looking for, and you

Page%63%of%467

constantly find yourself either going down level by level or listing the path
first before you try to type it in.

Simpler methods are available. Within UNIX you can specify files and
directories with the wildcard characters. Although this is neither as precise
nor as reliable as typing the whole thing, it can sometimes save time.

 With bash you can go one stage further, using file-name completion
with the Tab key to automatically complete and select a given name.. Say you
want to get to /boot/develop. You can type

Note. Use cd (change directory) to move between
directories.

$ cd /boot
$ cd de

then press the Tab key, and bash automatically completes the file name
$ cd develop

based on the names of the files and directories that you might intend. Any
unique match to the letters already typed is automatically completed. If an
exact match isn’t found (for instance, if you had a documentation directory in
addition to develop), bash doesn’t complete the name. In this instance, when
you typed
$ cd /boot
$ cd d

and press the Tab key, bash would display
$ cd d

You’d then press the Tab key again to display a list of possible completions:
$ cd d
develop documentation

Now you can type the next character (either “e” or “o”) to select one of the
directories.

When completing directories, bash automatically appends a slash to the
end of the name. If you saw
$ cd /boot/de

then pressed the Tab key, bash would display
$ cd /boot/develop/

Adding this character seems fairly trivial, but as you start to use
completion you will find that it saves you a lot of typing and makes your life
easier in the process.

Job Control

Running commands in the background on UNIX enables you to multitask by
letting you work actively on one thing while the machine is doing some other,
non-interactive, task. The BeOS provides the same functionality. To run a

Page%64%of%467

command in the background, simply append the ampersand (&) character to
the end of it.
Note. Both the Mac and Windows GUIs are multitasking systems,but there is no
equivalent to the UNIX and BeOS ability to start applications running in the
background without some form of intervention by the user. However, if you can
imagine starting a long, complicated macro in Word, then switching to an Excel
window to work on something else while Word churns away at your macro, you have
the idea of a background process.

Sometimes, however, you might decide in the middle of things that you
want to interrupt or suspend the current task, or even put the entire task into
the background, to enable you to type a different command. bash provides
this facility via the job control functions, which are similar to the functionality
of ksh and csh, but they are often wanted feature of sh.

Running Jobs in the Background

As already outlined, running commands in the background in the BeOS is the
same as it is in UNIX. Append an ampersand to the command line and the
process is automatically run in the background.
$ mwcc -c foo.c &
[1] 180
$

The number enclosed in the square brackets is the job number of the
background task within the current shell. The number after that is the process
ID, independent of the shell. You can use either of these to track the status of
the job. If you run another job:
$ mwcc -c bar.c &
[2] 194
$

the job number and process ID have increased, as you should expect!

Listing Running Jobs

You can list the running background jobs by using the jobs command:
$ jobs
[1]- Running mwcc -c bar.c &
[2]+ Running mwcc -c foo.c &

The job number is shown first, followed by a “+” (plus) or “-” (minus)
character signifying the previous and current job, respectively. The status is
next, showing whether the job has finished, is waiting for input or output, or
has completed. The command line is then shown for reference. If you need
the process ID numbers instead of the job numbers, you can list them by
using jobs -l.

Redirection

Page%65%of%467

Porting a new application, particularly when running a compilation process,
can cause a large number of errors. While the Terminal remembers some of
this output, it is useful to have a permanent record you can refer to later.
Sometimes it is also useful to have the input for a command come from a file
rather than from the keyboard.

Both of these situations are examples of redirecting output (and input) to
(and from) files rather than the keyboard or screen. Redirection works on the
three basic input/output streams from applications. These are

•! stdin (0), the standard input, which is usually the keyboard

•! stdout (1), the standard output, which is usually the screen or terminal
•! stderr (2), the stream dedicated to displaying error messages, which is

usually the same destination as stdout

Notice the numbers in parentheses. These are the file numbers, as used by C’s
open() command set. The use of numbers allows you to specify precisely
which stream you want to redirect to/from. If your program uses multiple
streams (beyond those listed), you can select the correct one by specifying the
number, as we will see below. However, when using redirection on the
command line, you’ll use shortcut characters (such as < and >) to indicate
which stream you’re referring to.

Redirecting Output

To redirect your output to a file you use the “>” (greater than) character
followed by a file name. The file name can be local, relative, or absolute. For
example,
$ mwcc -c -DBEOS foo.c >comp.errs

is a local redirection, as it creates the new output file in the current directory.
If the file does not exist, it is created before any output is written to the file. If
the file does exist then the entire contents are replaced with the redirected
output. This is only true if the noclobber option is not set. Setting the
noclobber option, using
$ set -o noclobber

the redirection will fail if the file already exists.

Alternatively, we could place the output in the parent directory
$ mwcc -c -DBEOS fooc >../comp.errs

An absolute example would be
$ mwcc -c -DBEOS foo.c >/boot/tmp/comp.errs

which redirects the output to a file in the /boot/tmp directory.

Redirecting Input

You can redirect input using the “<” (less than) character; for example,
$ cat <comp.errs

Page%66%of%467

Note. The cat command displays files on the screen, and
is used (with output redirection) to concatenate files
together.

would use the comp.errs file as input to the cat command instead of the
standard input (from the keyboard). Input redirection is useful in situations
where it is not possible to specify the file name as an argument to the program
itself. Most programs which do not allow you to specify the file name accept
input from standard input by default.
Note. The redirection of input and output relies on or creates a number of files. It can
often be quicker and easier to supply the same information via pipes, discussed later
in this chapter, if the files you are creating are only for temporary purposes. However,
don't let this dissuade you from using redirection when you need permanent records of
output from programs.

Appending Output to Files

You don’t always want to create a new file for each redirection command you
run. Sometimes it would be more useful to append the output to an existing
file. The >> twin redirection operator causes the output to be appended to the
specified file rather than creating or replacing the contents.
$ mwcc -c -DBEOS foo.c >comp.errs
$ mwcc -c -DBEOS bar.c >>comp.errs

Multiple Redirections

Because programs treat stdout and stderr as different streams, redirecting the
stdout to a file won’t always capture all of the information generated by a
program. Although both the program output and errors might normally go to
the screen, they‘re different output streams. To get around this division you
can redirect both stdout and stderr to files, either two different files or the
same file.

You can use the stream numbers to control which output stream is
redirected to which file. Consider the command
$ make >comp.errs

Note. You'll learn about the make command in Chapter
10.

which would send all of stdout to the file comp.errs. In the example, the
stream number sent to the file is assumed to be stream number 1. This style is
shorthand for
$ make 1>comp.errs

where the leading number before the redirection operator defines the stream
number.

Page%67%of%467

Hopefully you will have already realized that we can use the same
command, but with stream 2 instead of stream 1,
$ make 2>comp.errs

to correctly send stderr to the comp.errs file (but leave stdout for the terminal
display). If you wanted separate versions of the stdout and stderr output you
would just specify both redirections:
$ make 1>comp.out 2>comp.errs

The result is two files, one with information about what commands have
been run, the other with information about the errors produced. We can make
the output more useful by sending both stdout and stderr to the same file:
$ make 1>comp.errs 2>&1

The ampersand character followed by the stream number specifies
which existing redirection definition to redirect the output to. Note that you
don’t have to specify twin redirection operators, because you are sending two
streams to the same file, not appending to an existing file. However, if you
wanted to append to an existing file you could do it this way:
$ make 1>>comp.errs 2>&1

Using Pipes

Whilst redirecting files is a useful feature, you can sometimes find yourself
redirecting output only to view it again with another program. Consider the
following example which generates an error file which is then viewed using
less
$ make >comp.errs 2>&1
$ less comp.errs

It would be much easier to just pass the output from the command
through the comp.errs file without generating it in the first place. We can do
this using pipes.

A pipe is a logical connection between the standard output of one
command and the standard input of another command. For example
$ make >&1| less

is identical to the previous example, but it doesn’t create the file between the
two commands, which, more often than not, you will probably delete anyway.
You can chain together as many commands as you like so that a single line
reproduces the effect of a number of commands. We’ll see pipes used
throughout the rest of this chapter, and through much of the rest of the book.

The for Loop

Page%68%of%467

The for loop within bash is similar to the for loop within C. However, the loop
does not work with an increasing or decreasing numerical variable as it does
in C.

Syntax

The syntax for the for command is
for variable in words ...
do
COMMANDS
done

For each item in the list of words, the COMMANDS are processed once,
placing the word into the variable.

The list of words can be used to specify files using the file selectors (*
and ?) described above, making the for loop a good mechanism for running
the same set of commands on a specific set of files.

For a simple example, these lines would list the contents of a directory
using the for loop:
$ for file in *
> do
> echo “Filename: $file”
> done

This method is more complicated and slower than simply using the ls
command, but it demonstrates the expansion of the words (file names) and
execution of the loop.

Compilation Example

Makefiles, which we cover later in this book, provide a controlled way of
compiling an application, you can use the for loop to quickly try a different
method without having to change or write a makefile. You can compile a list
of files very quickly using the for loop, as follows:
$ for file in *.c
> do
> echo “Compiling $file:”
> mwcc -c -DBEOS $file
> done

The advantage of using a for loop is that compilation can continue even
if a particular file fails to compile because of an error. This seems backward,
but compiling as many source files as possible helps you to focus in on those
that don’t compile. This approach helps to reduce frustration, especially on
large projects.

Consider the following sequence:
$ for file in *.c
> do
> ci -l $file
> mwcc -c -DBEOS $file
> done

Page%69%of%467

which uses RCS (Revision Control System) to check in the latest version of the
file and then compile it. We will find out more about RCS in Chapter 7. More
uses of the for loop will appear throughout the remainder of the book.

Using the for Loop with Redirection

You need to approach redirection carefully when using it in combination with
the for command. Let’s revisit the above example to demonstrate how
redirection works within a loop:
$ for file in *.c
> do
> ci -l $file
> mwcc -c -DBEOS $file
> done

If you wanted to record the output of the compilation, you could change
the compilation line to
> mwcc -c -DBEOS $file >comp.errs 2>&1

But this would recreate the comp.errs file for each cycle of the loop. You
would get the last compilation results, but not the results for all of the
compilations.

A quick way to get around this is to use
> mwcc -c -DBEOS $file >>comp.errs 2>&1

instead, which will append the output to the comp.errs file for each iteration
of the loop. There is a problem with this, though: what if you need the output
from all of the programs executed within the loop. Adding the redirection to
each line would be cumbersome. A much better way of producing the results
desired is to change the entire sequence to
$ for file in *.c
> do
> ci -l $file
> mwcc -c -DBEOS $file
> done >comp.errs 2>&1

which sends the results of the entire for command to the comp.errs file,
including both stdout and stderr.

You should find that using a for loop, with or without redirection, can
save you significant amounts of time when porting applications.

Aliases

The word alias means “assumed name,” which is a good indication of
precisely what an alias is in bash. Those familiar with other UNIX shells
should have already come across the alias command. It allows you to set up
an alias or nickname for a command or command line. Ordinarily when you
enter a command at the shell, the first word of each command is checked to

Page%70%of%467

see if it matches an existing alias. If one is found, bash substitutes the alias for
the alias value.

New Aliases

The format for creating a new alias is as follows:
alias aliasname=realname

where aliasname is the nickname you want to create, and realname is the string
which will be substituted in its place. For example,
$ alias ll=‘ls -l’

allows you to shorten the command for a long directory listing. For the rest of
this shell session, you can now type ll when you want to run the command ls
-l.

Alias Expansion

Aliases are expanded so that they replace the existing command. This means
that you can specify additional options to most commands even when using
an alias. For instance, once you had made ll the alias for ls -l,
$ ll -aF

would expand to
$ ls -l -aF

Because expansion is based on the logical start of a command, we can
use aliases within any command string, including after pipes.
$ alias grbe=‘grep be’
$ cat *.c |grbe

Aliases are not expanded beyond the first word in a command string, so
$ alias ll=‘ls -lF’
$ ls ll

does not expand to ls ls -lF.

Aliasing is not recursive either, so an alias is expanded only once. If you
create an alias which replaces an existing command,
$ alias ls=‘ls -F’

the expansion doesn’t continue indefinitely until all occurrences of the alias
name have been expanded. Only full words (those separated by a space) are
expanded. Typing the command:
$ alias ll=‘ls -lF’
$ llc

won’t expand the ll component of the llc command.

You can remove an alias by using the unalias command:
$ unalias ll

and you can list the current aliases by simply running alias without any
options:
$ alias
alias l=‘ls -m’

Page%71%of%467

alias lc=‘ls *.c *.o’
alias ll=‘ls -lF’
alias which=‘whence -v’

Aliasing only substitutes a string for a single word. You cannot use
arguments within an alias; any arguments used with an alias are just passed
on to the expanded program. You cannot, therefore, use an alias to replace a
shell script. Aliases are usually used to either provide familiar names for
existing commands or make typing repetitive commands easier.
TIP. Aliases only last for a single shell session. If you find you’re making the same
aliases over and over, add them to your profile, see the section later in this chapter
for more information..

The Directory Stack

When using a command-line interface, even under a windowed environment
like the BeOS, you may want to change directories briefly and go back to the
directory you were in before. You can do this manually, but if the name of the
directory you are currently in is long, complicated, or difficult to type, moving
can be tiresome.

In bash you can get around this tedium by using the directory stack,
whose LIFO (last in, first out) model enables you to push the current directory
into the stack. Using the complementary command you can then pop the
directory and your location within it off the stack.

Pushing and Popping
The terms pushing and popping refer to the physical notion of putting

things on top of a pile. For example, imagine a pile of cards. When you a card
on the top of the file, you are pushing the card onto the stack. When you take a
card off the pile, you are popping the card off the stack.

This process is called Last In First Out (LIFO), because the last card put
on the pile will be first card you take off the pile again.

FIFO, First In First Out, simulates the same stack of cards, but this time,
when you take a card it is not taken from the top of the stack, but from the
bottom.

The two commands are:
pushd directory
popd [+ | -]

For an example, try the following:

Page%72%of%467

Tip. The pwd (print working directory) command allows
you to easily see what directory you’re in.

$ cd /boot/develop/headers/posix/sys
$ pushd /boot/system
$ pwd
/boot/system
$ popd
/boot/develop/headers/posix/sys
$ pwd
/boot/develop/headers/posix/sys

As you can see, popd pops the most recently pushed directory from the
top of the stack, and takes you there. Because you have to specify the
directory that is placed onto the stack, you could also have typed in
$ pushd /boot/develop/headers/posix/sys
$ cd /boot/system
$ popd

Usually, though, you don’t just arbitrarily change directories! Once a
directory has been placed onto the stack, you can pop it off the stack at any
time, but once it‘s popped, it’s no longer in the stack. Directories placed onto
the stack are only remembered for the period a shell is open. You can’t use
directories pushed onto the stack in an earlier session.

You can see the list of directories currently in the stack with the dirs
command. Directories are shown left to right in the order they were put into
the stack, as this example shows:
$ pushd /boot/develop/headers/posix/sys
$ cd /boot/system
$ dirs
/boot/develop/headers/posix/sys /boot/develop/headers/posix/sys
$ pushd .
$ dirs
/boot/system /boot/system /boot/develop/headers/posix/sys

If you place more than one file onto the directory stack, you can use the
popd command to select a specified directory in the list by referencing the
directories in the order they’re listed by the dirs command. For example, , +0
references the first directory put into the stack, +1 references the second, and
so on. Conversely, the -0 option to popd selects the most recent directory put
into the stack, -1 the next most recent, and so on.

Using aliases you can make the process even simpler. Set up two aliases:
alias pu=‘pushd .’
alias po=‘popd’

Now you can push and pop directories to and from the stack with only two
characters.

Shell Scripts

Page%73%of%467

Shell scripts are, like the DOS batch files, just a collection of commands which
you could ordinarily run from the command line. However, their utility
comes from the fact that the collections of commands can be run again and
again using all of the commands and functions outlined in this chapter, and
throughout the rest of the book.

To create a shell script, create a text file that contains the list of
commands you want to run. Save the file, change the file permissions so that
the text file is executable (mode 755), and your shell script is ready to use
using a command such as

$ chmod +x foo

Although the BeOS uses a different method to track whether a file is an
application, bash uses the file permissions to identify an application.

The real advantage of a shell script is that you can write a collection of
commands that are executed against a specified argument on the command
line. To use command line arguments within a script, you use the special
variable name $x where x is a number. For example, a shellscript with the
following command in it
echo $1

Would just print the first argument back to the screen. If you want to use
all the arguments, you can use the special variable $*

ls $*

We will use a variety of shell scripts throughout the rest of this book.
Although they can look daunting, often, they are simple to follow compared
to C source code!

The .profile file

Under UNIX, each shell has it’s own initialization file called a profile or login
script. This is a small shellscript file that sets up certain environment variables
at the time the user logs onto the machine.

For the Bourne shell, this file is named .profile, and under bash this is
called .bash_profile. As an extension of this facility, bash also uses a run
command file called .bashrc which is executed each time the shell is run.

Under the BeOS, the file /boot/home/.profile is used as both
the .bash_profile and .bashrc files and is executed each time an instance of the
shell is run. In general this will be each time an instance of the Terminal is
run.

Because the file is run for each bash process, it can be used to incorporate
aliases, file paths and other variables. However, be warned that any changes

Page%74%of%467

to the file will not be seen until either you read the file in again, or a new
instance of the shell is started.

You can force a read of the file by using the source command, for
example
$ source ~/.profile

The source command can also be specified using a single period:
$. ~/.profile

Grep
The search command, grep, which searches a text file for a particular string or
expression, is probably the most-used shell command (except the C compiler)
in the application porting process. It is an invaluable tool to be able to find
the context or the file in which a particular string is contained.

 When we talk about grep we’re actually talking about a collection of
commands: grep, egrep and fgrep. If you are searching for strings in a
particular file it is best to use the simpler, and generally faster fgrep. For
finding simple expressions over multiple files, use grep. When searching for a
complex regular expression search use egrep.

On its own, grep accepts a string to match and a list of file names to
search. Each line within the file or files that matches the string is output to the
screen (stdout). This output can be redirected or used with a pipe. If no file is
specified, grep accepts input on stdin via either the keyboard or a pipe.

This example would produce a list of all of the lines which match the
string “BEOS” in any file ending in .c or .h:
$ grep “BEOS” *.c *.h
foo.c: #ifdef BEOS

Because we searched on multiple files, each line will be preceded by the name
of the file the line was found in. If only one file is specified, grep just displays
the lines that contain your search string.

To list just the files that contain the string (without the lines from within
the files), use the -l option:
$ grep -l “BEOS” *.c *.h

Sometimes you’ll want to search for all occurrences of a string whether
they’re upper- or lowercase (especially when you’re porting someone else’s
code and you don’t know their capitalization style). For that functionality you
can use the -I option, which causes grep to ignore the case of the string being
searched for. For example,
$ grep -i beos *.c *.h

will find “BEOS”, “beos”, beOS, and so on.

Page%75%of%467

You may have noticed that I excluded the quotes around the search
string in the last example. You don’t need to specify the string by surrounding
it with quotes unless the string you’re looking for contains a special character
which would otherwise be interpreted by the shell. Special characters include
the space character, which would signify an end to the string argument.

Output Options

As we have already seen, you can display the results of your search in a
number of ways. By default each matching line is copied to the standard
output. If you are searching multiple files, then the appropriate file name is
prepended to each matching line. You can use the -l option to display just the
names of the files which contain the search string;. this lists each file separated
by a newline.

You can obtain the line numbers which contain the matching text by
using the -n option, which can be used in combination with an editor to go
directly to the line you are looking for.

Regular Expressions

Both grep and egrep accept regular expressions, although to varying degrees
of complication. A regular expression can be defined as a string made up of
both static characters and special characters, which together define a series of
rules. Regular expressions are often used with search tools (such as grep) to
customize the search terms. We have already seen some simple regular
expression-style strings in the file selectors used to choose a list of files.

Special Characters

The simplest regular expression is one that contains only static text. For
example, “BEOS” is an example of a regular expression, although it is so
simple as to be trivial.

Regular expressions can help with more complicated searches, such as
trying to find all the words containing three letters starting with “an”. When
selecting files at the shell we used the “?” character to match any single
character. Within a regular expression we use the “.” (period) instead. The
period matches any character except newline. The regular expression string
for our example therefore becomes “an.”.

We can use the period in conjunction with the “*” (asterisk) character.
The asterisk means “match the previous regular expression for zero or more
repetitions.” Therefore, to return to our previous example, the regular
expression an.* would match the words “an”, “ant”, or even “analysis”.

Page%76%of%467

Because the * repeats the . wildcard for zero or more repetitions, we can now
match the two-character word “an” in addition to any word starting with
“an” that has three characters or more.

The “+” (plus) character matches the previous regular expression for one
or more repetitions. In our example, an.+ would match “ant” and “analysis”,
but not “an”, because unlike the *, the + requires at least one match.

Using these special characters, we can now select some quite complex
strings. Table 4.2 offers some examples of regular expression matching that
you might find illustrative or useful.

Table 4.2

Examples of Regular Expression Matches
Expression Matches
.*tion Anything ending with “tion”
ac.+tion Anything beginning with “ac” and ending in “tion”

with one or more characters between the two; matches
“actuation” but not “action”

a..t.* Anything starting with “a” followed by any two
characters, “t”, and then any string

M.* B.* Any string starting with a capital “M”, then any
number of characters followed by a space and another
word beginning with capital “B” with any string of
characters after it

printf(.*); Any printf statement
#define .* .* Any #define statement with two or more arguments

Note: You might want to refer to the documentation on regular expressions and the
sed and grep commands for a full list of the characters and sequences used in regular
expressions.

If you want to use a special character as part of the regular expression,
you can precede it with the “\” (backslash) character. The \ forces the regular
expression to match the next character as an absolute, a process called escaping
the next character. Special characters include regular expression commands,
spaces, some punctuation marks, and any non-printable character. For
example, use the \ when you want to search for the . character itself (as in foo
\.c), rather than allowing the . to have its regular expression meaning.

Within egrep and grep you have the facility to match a regular
expression “or” another regular expression. The “|” (vertical bar) character is
used to specify the “or” option within a regular expression. An example
would be:

Note. In this example, the * character is a wildcard for the
files to search on, not part of the regular expression itself.

Page%77%of%467

$ grep “printf|scanf” *.c

which matches text strings. We could also conduct an “or” search using a
regular expression.

Square Brackets

When selecting files we found we could use square brackets ([]) to define a
range of characters to match, rather than selecting specific (static) characters
or any character at all (wildcards). The use of square brackets in file selection
is based on their use in regular expressions; they work in exactly the same
way in regular expressions as we saw previously.

For example, you could use the command
$ grep “[a-z]printf” *

to select lines which contain one of the special printf commands. You could
try a wider search by using
$ grep “[a-z]*printf” *

which would look for zero or more occurrences of the lowercase characters
appearing before the printf. You could also be more specific and use
$ grep “[sfv]printf” *

to search for just sprintf, fprintf and vprintf.

You can also combine square brackets with the * and + operators, as in
this example:
$ grep “[a-zA-Z]*” *

which looks for any word containing multiple of upper- and lowercase letters,
or basically any line containing a letter. Square brackets allow you a much
greater level of control over the strings you search for and can help you when
you want to specify words of a particular length.

The above example would match any string that contained zero or more
repetitions of upper- or lowercase characters. This is messy as you will end up
with a large number of matches. If you instead wanted to match any word
with at least four characters in it,
$ egrep “[a-zA-Z][a-z][a-z][a-z]” *

would work, but is still likely to match a lot of words. You can append an
expression which specifies that the fifth character should NOT be a letter or
number, causing the egrep command to look only for four-letter words:
$ egrep “[a-zA-Z][a-z][a-z][a-z][^a-zA-Z0-9]” *

This command terminates the regular expression search on anything that isn’t
an alphanumeric character.

Reverse Matches

Page%78%of%467

Sometimes you’ll want to select all the lines which don’t match the specified
search string, rather than those that do. You can use the -v option to select the
non-matching rather than the matching lines. The command
$ grep -v “\/*” foo.c

would match all lines that didn’t contain an opening comment string (/*).

More Regular Expressions with egrep

All of the above examples are supported by both grep and egrep, but not by
fgrep, which only searches on simple strings. You can execute more complex
regular expressions using egrep, which expands all the regular expressions
available. It is beyond the scope of this book to cover them all in detail, but
here are some examples which may be useful to you during the porting
process.

The “^” (caret or circumflex) character can be used at the beginning of a
regular expression to specify that the remainder of the expression should be
matched relative to the beginning of the line. Essentially, this means that the ^
can be translated as “if the line starts with...” For example, to match any line
that starts with a #define, followed by a word to define and the number that it
expands to, use the command
$ egrep “^#define [a-zA-z]* [0-9]*” *

A “$” (dollar sign) character has special meaning at the end of a regular
expression. This character causes the expression to be matched against the
end of a line. For example, to match the string “break;” only if it occurs at the
end of the line, use
$ egrep “break;$” *

Finally, the special characters “\<” and “\>” cause the expression to
match the beginning and end of a word, respectively (in this case, a word is
defined as a string with alphanumeric or underscore characters). This
simplifies one of our earlier examples (“printf(.*);”) to
$ egrep “\<printf\>” *

which would match any occurrence of “printf”, but not “vprintf”, “sprintf”
and so on.

Grepping Effectively

Knowing what to search for is only one part of the process of extracting the
lines of text you want. Sometimes it is necessary to do some post-processing,
or more usually post-grepping, to find what you’re looking for.

Before rushing into composing the grep command, you should first
consider precisely what it is you want to find and how specific you can be in
defining what you’re looking for. For example, say you have a number of files

Page%79%of%467

in a program you’re porting, and one of them has a problem with the variable
definition. You need to find where this variable is defined, but you don’t
know which file it’s in. It is pointless to look for “#define”, since the average
search will list far too many lines and too many files to be useful.

Selecting the Text

A much better way to look for a definition would be to use the definition text.
However, this approach has its own dangers, in that you will get all of the
lines that use the definition as well as those that define it. You might think this
is an obvious example, but many people choose the wrong item to search for
when they are looking for a specific item.

Specifying the text string correctly is very important; otherwise you will
end up with a useless list that doesn’t contain what you want, or such a large
list of entries that it is impossible to find what you are looking for.

Knowing the correct strings and regular expressions to use can help you
to select the correct text. Once it’s selected, you can use further searches to get
what you want. Going back to the example above, suppose you’re specifically
looking for the definition statement for a variable (DIR).

You could do this using grep as follows:
$ grep “#define DIR” *.h *.c

However, this example implies that the definition is specified precisely
as in the match string. Very rarely are definitions so tidily described. You
could try a regular expression match, like this:
$ egrep “^#define[]+DIR” *.h *.c

which returns nothing; so this method is still far from perfect. It still relies on
a pretty tight definition of the define command, and not everybody programs
with such precision.

Using Pipes

Rather than using regular expressions or rough approximations of the text
you’re looking for, you can use pipes to reduce the eventual output. The
reduction works by effectively sub-searching the lines output by an earlier
command.

Here’s an example of reduction using a pipe:
$ egrep “^#define” *.h *.c | grep “DIR”
fileio.c: /* #define DIRECTORY_PAGES */
ndir.h: #define IS_DIRECTORY_SEP(_c_) ((_c_) == DIRECTORY_SEP)
ndir.h: #define DIRBLKSIZ 512 /* directory block size */
…

You now get to see the matching lines, including the file names. There is
still a lot of extraneous information, though. Using the -v option you can
define your search even further to get precisely the list you want:

Page%80%of%467

$ egrep “^#define” *.h *.c | grep “DIR” |grep -v “\/*”
config.h: #define DIR “/boot/stat.config”

The final command selects everything piped to it that doesn’t contain an
opening “/*”. Note that you have to escape each of these characters so that
grep doesn’t try to parse them as a regular expression. This will strip the
comments out of the list of lines, generating a reduced list which you can use
to identify the file containing the real definition of the variable. This is the file
you need to change to complete the port.

This is a specific example, but typical enough that you should be able to
adapt the processes outlined here for your own needs.

Searching Multiple Files

Since you’ll often use grep to search for a string in a large number of files,
you’ll want to know the tricks of handling the output in these situations, and
how you can use pipes and grep’s options to make your searches fast and
refined.

Listing multiple files when using the grep commands generates a list of
matching lines with the file name prepended to the matching lines. The
following command is a good example. It quotes one line from the stat.h file
and one line from the types.h file:
$ grep uid_t *
stat.h: uid_t st_uid;
types.h:typedef unsigned int uid_t;

When looking through multiple files, you aren’t always interested in the
name of the file that contains what you’re looking for. Sometimes you just
need to see the line that contains the text.

Text without File Names

You can use grep with the -h option to produce a list of lines containing the
string you’re searching for but not the names of the files: ,
$ grep -h uid_t *
 uid_t st_uid;
typedef unsigned int uid_t;

File Names without Text

Alternatively, sometimes all you want is a quick list of the files that contain a
string. You can use this string to sub-divide and sub-search a particular range
of files. The -l option produces a list of files separated by newlines: :
$ grep -l uid_t *
stat.h
types.h

Page%81%of%467

Even if a file contains more than one occurrence of the string, this option
lists each file only once. This is a fast method, as the program stops searching
the file as soon as a suitable match has been found. When porting you should
find that you regularly use this command to quickly tell you where a
particular item of text is.

Counts

One final grep option you can use when searching multiple files is -c, which
displays a count of the number of lines containing the matching string. We
can use this feature to help give us a rough estimation of how long a port will
take and whether it would be quicker to make the individual modifications to
each file or change the compilation to automatically substitute for the
differences. Here’s an example:
$ grep -c uid_t *
dir.h:0
dirent.h:0
fcntl.h:0
file.h:0
ioctl.h:0
param.h:0
stat.h:1
sysmacros.h:0
time.h:0
times.h:0
types.h:1
utsname.h:0
wait.h:0

Rather inconveniently, this option also displays files which contain no
matches. Using pipes, you can filter this information by ignoring all “0”
entries:
$ grep -c uid_t *| grep -v “:0$”
stat.h:1
types.h:1

Using for with grep

You can use for with grep to search multiple files for a specified piece of text.
A quick example would be:
$ for file in *
> do
> grep uid_t $file
> done

This example doesn’t list the file names, but it’s easy to change the
command to display the file name before each list of matching lines:
$ for file in *
> do
> echo $file
> grep uid_t $file
> done

Both of these examples essentially recreate the behavior of grep itself,
with marginally less useful output. The second example will list all the files

Page%82%of%467

searched, not just those with matching elements. However, the real advantage
of using for to do searches is that you can do sub-processing within each cycle
of the command.

In the example below I use sed to do some processing before conducting
the search of a file. More details on sed can be found later in this chapter.
$ for file in `grep -l “#include” *.h`
> search=`echo $file|sed -e “s/\.h//g/”`
> rfilename=`echo $file|sed -e “s/\./\\\./g/”`
> grep “rfilename” *.h >>header.depend
> grep -iv “__$search__” $file >> header.define
> done

The example shows a script which checks to see which header files are
defining which other header files, sending the output to header.depend. We
also list header files that do not define the code which ensures that a header
file is not included twice. All the files selected are those which only contain a
#include line, which we can safely assume are those which have
dependencies on other include files.

Again, we have given a specific example here, but like previous
examples, you can see the pattern and adopt it for your own use.

Multiple Directories

The ability to search for a specific item of text in a range of directories is
invaluable when you port applications. It is often necessary to find a
particular definition or function, and not everybody puts all of the source
code into one folder.

As I have already mentioned, it’s not easy to search multiple directories
via the command line under the BeOS. Using one of the available find ports, it
is possible to run a search for a piece of text across a number of files and
directories using a command of the form:
$ find /boot -exec fgrep -il “string.h” {} \;

However, you can simulate this ability using a shell feature, albeit with
some loss of functionality. You may remember that in the bash section earlier
in this chapter I explained how bash, like other shells, expands the file-name
specification and passes the expanded list to the program, rather than simply
passing the specification and letting the program sort the file-name matching.

This ability to match a range of files, whether outside of or within the
current directory tree, allows you to run commands like this:
$ ls */*.h

which would list all of the files matching *.h in all the directories under the
current directory. This command doesn’t match files in the current directory,
however, so you must include an option for that too. Let’s look at the output
from within the /boot/develop/headers/posix directory:

Page%83%of%467

$ ls *.h */*.h
CPlusLib.h grp.h stdarg.h sys/time.h
alloca.h limits.h stddef.h sys/times.h
ansi_parms.h locale.h stdio.h sys/types.h
assert.h malloc.h stdlib.h sys/utsname.h
be_math.h malloc_internal.h string.h sys/wait.h
bsd_mem.h math.h sys/dir.h termios.h
ctype.h memory.h sys/dirent.h time.h
dirent.h null.h sys/fcntl.h typeinfo.h
div_t.h parsedate.h sys/file.h utime.h
errno.h pwd.h sys/ioctl.h va_list.h
exception.h setjmp.h sys/param.h wchar_t.h
float.h signal.h sys/stat.h
getopt.h size_t.h sys/sysmacros.h

By combining this listing with grep you can search all of the matching
files for a matching piece of text:
$ grep “string” *.h */*.h
malloc.h:#include <string.h>
memory.h:#include <string.h> /* they really want memcpy() and fri
parsedate.h: ascii string such as: Mon, June 10th, 1993 10:00:03 am
parsedate.h: Input: char *datestr - pointer to the string containin
parsedate.h: time_t now - the time with which the datestr
parsedate.h: Input: char *table - pointer to an array of strings co
parsedate.h:format of these strings is descri
parsedate.h: Return: char ** - pointer to the array of strings curr
parsedate.h: An example format string is:
parsedate.h: Which handles date strings such as: Mon, June 10th, 199
parsedate.h: which is the specification for strings like: 1994-01-2
stdio.h: __string_file,
string.h: * string.h
string.h:#ifndef __string__
string.h:#define __string__
string.h:/* prototypes for some useful but non-standard string routine

The */ specification only branches down one level of directories, but you
can repeat the process for as many directory levels as you require:
$ grep “string” *.h */*.h */*/*.h */*/*/*.h ...

sed
Editing files, particularly a lot of files where you are changing the same
information, can be time-consuming and frustrating. It would be much easier
if you could script the process in some way, and then run the script on all of
the files you needed to edit. The problem is finding a scripting editor that
provides a flexible enough process to do what you need.

The streams editor, sed, is such an editor. sed is based around e, ed, and
vi, all of which are editors based on the same core code. The difference
between sed and most other editors is that sed takes input from a file,
processes a number of commands taken from the command line or another
file, and outputs the results to the screen.

This means that you can use sed as that scriptable editor to make
changes to multiple files easier. What’s more, sed is scriptable from the
command line, so you can use it from the shell or within shell scripts. The best

Page%84%of%467

way to use sed is as a filter for converting, replacing, or deleting text. The
format for the sed command is:
sed [-e script] [-f sfile] [file ...]

If no files are specified, sed uses stdin for input. The script is the list of
sed commands to run on each file; or you can specify that the list of
commands comes from a script file that you prepare (sfile in the example).
Basically, sed copies the each line (separated by the newline character) into a
pattern space, then each command in the script is executed sequentially on
the pattern space. When the last command has been completed the pattern
space is written to stdout.

Commands are of the form:
function [arguments]

where function is one of the commands listed in Table 4.3. There are
many more commands than appear in the table; this are just a selection
of the commands regularly used during the porting and programming
process.
Table 4.3

Selected sed Commands
Command Function
a\

text

Append: write the pattern space, append the text, then
read the next input line

i\

text

Insert: write the text, write the pattern space, then read
the next input line

r rfile Write the pattern space, then read the contents of the file,
placing them in the output before reading the next input
line

s/re/rt/flags Substitute the replacement text rt for the regular
expression re in the pattern space

Flags are:

g – Replace all occurences in the pattern space

p - Print the pattern space if a replacement was made

w wfile - Append the pattern space to the file wfile if a
replacement was made

y/s1/s2/ Transform: replace all occurences of characters in the
string s1 with corresponding characters from s2

= Place the current line number on the standard output as
a single line

For an example of using sed, you can use the line number function to
identify the line number for each line in a file:

Page%85%of%467

$ sed -e “=“ foo.h
1
#include <stdio.h>
2

3
#define DIR “/boot”
...

The output is not as useful as it first appears, because line numbers
appear on their own lines before the lines in the file. We could get better
output by using grep to list the line numbers, but if we stick with sed, we can
combine this simple line-numbering function with more complicated searches
and replacements. The advantages of making these changes all within the
same program are that we can reduce the amount of intervention necessary
and hopefully improve the processing time.

It is important to note that when using sed you must redirect the output
to a file. sed does not support the notion of an output file and would generally
be used within a piped command line or as a filter with redirection to produce
one file from another. A simple replacement statement thus becomes part of a
shell script, since you have to redirect sed output to a new file, copying the
new file over the old file. You can see an example of such a shell script later in
this chapter.

The operation of sed with a script file is really no different from
command-line operation, although you can use some of the more complex
commands shown above as well as selective and repetitive search/replace
mechanisms. To use a script, first create the script as a text file (you can use an
editor or some quick redirection, as below):
$ cat >change.sed
s/\/\//\/*/g
s/printf(/sprintf(tempstr,/g
(Ctrl-D)

This first replaces any occurrence of ‘//’ with ‘/*’, useful for converting
C++ source code comments to C, and then it changes references to the printf
command with a version using sprintf. Once you have finished creating the
script file, run the desired sed command:
$ sed -f change.sed foo.c >foocomm.c

The process of execution is similar to running sed from the command
line, except this time the pattern space is matched and replaced each time for
each line in the script, before finally being written to stdout (and then
redirected to foocomm.c). Processing files this way requires some careful
thought, as you must ensure that the process of execution replaces the desired
strings. If you make a mistake, it will be repeated in any number of files! We
will cover some examples of this later in this chapter.

Search and Replace

Page%86%of%467

You can use sed with a regular expression to replace text in a file with some
specified other text. The regular expression is matched against the current
contents of the pattern space, then any changes or substitutions are made and
the results written back to the pattern space. You can supply multiple search
and replace commands to perform a number of replacements on the line. This
feature provides a lot of flexibility when it comes to making replacements.

A search/replace command takes the form:
s/RE/RT/[flags]

where RE is the regular expression to search for, RT is the text to replace with
(which can itself be a regular expression), and [flags] are the optional flags to
control the action of the replacement. The RE/RT expression pair is the pair of
regular expressions that defines both the text to search for and the text to
replace.

For example, a simple search/replace would be
$ echo “hello world” |sed -e “s/hello/goodbye/”

which would replace a single occurrence of “hello” with “goodbye” from
stdin, an echo command, to the screen (remember that sed by default sends
output to the screen).

Note the closing “/” character, which is required to define the end of the
replacement text. Because / is one of the special characters interpreted by the
regular expression engine, if you wanted to find a string that actually
contained a / you would need to escape it using the “\” character.

If the file had contained two instances of “hello” in a single line, only the
first occurrence would have been replaced. When you know that there will
only be one occurrence of the search text, this is not a problem. However,
when you need to control replacement over an entire line you can use the g
flag after that trailing slash mark to cause the replacement to be executed
globally on all the found instances:
$ echo “AAAAAA”|sed -e “s/A/BA/g”
BABABABABABA

The output seen here has replaced each occurrence of ““A” with “BA”.
Note that the replacement is not recursive, despite the way sed works. The g
flag causes sed to search the entire line for instances of the search text to
replace. However, once it reaches the end of the line, sed doesn’t go back and
run the search and replace command again. If you wanted to do this you
would need to specify multiple search/replace commands.

If sed did run the specified command recursively on the line, then in our
previous example, sed would be stuck in a loop forever replacing ‘A’ with
‘BA’.

Heres another example of a replacement operation, this time using a
regular expression rather than plain text:

Page%87%of%467

$ sed -e “s/[Mm][Rr]\ /Mr/” foo.txt

One common use of sed is replacing a piece of text which can be either
lower- or uppercase with a fixed-case string. For instance, in most
programming languages, the compiler is case sensitive. You can use sed to
change the case of a function, variable, or other string so that it is in the same
case throughout a file:
$ sed -e “s/[pP][rR][iI][nN][tT][fF]/printf/” foo.c

You should already be able to see that sed can be an invaluable tool for
correcting text quickly and easily, enabling you to script the changes rather
than having to use an editor.

Sending Selected Text to a New File

One sed feature that often gets overlooked is the capability to print just the
changes made to a particular file, rather than printing the entire contents of
the file including those lines where no replacement was made.

This feature is useful because you can not only extract desired text using
complex regular expressions (as you can with egrep), but also modify the
found text to create a completely new file based on the changes. For example,
consider a simple header file, foo.h:
#include <stdio.h>
#include <stdlib.h>
#include <strings.h>
#define MYDIR “/usr/local/mydir”

When porting this header file over to the BeOS you can use a sed script
to produce a file of the changed text. In the example, say you want to change
the strings.h and MYDIR definitions to the BeOS equivalents. Using the a
script file conv.sed that contains these commands:
s/strings\.h/string\.h/p
s/\/usr\/local\//\/boot\/local\//p

we can run sed on this file with the -n option (which switches off automatic
printing of the pattern space):
$ sed -n -f conv.sed foo.h

to end up with the following output:
#include “string.h”
#define MYDIR “/boot/local/mydir”

You have now produced an alternate header file that you can use to help
configure and port an application.

The Dangers of Replacing Text

You have already seen some very good examples of how sed can be used to
replace text in a file. There are some issues regarding the replacement process
that you should be aware of, however. We have covered some of the more
obvious ones, such as always redirecting output. An equally important
element is how you specify the text to be used as the search item.

Page%88%of%467

One of the problems with any search is that it is only as good as your
search terms. Computers are logical and precise about what they look for; if
you specify “hello” and the file you are searching actually contains “HELLO”,
the computer will ignore the entry because it doesn’t match.

Getting around the problem is simple in this case: you can either specify
the search string as uppercase or use square brackets to force a case
insensitive search. How about if you’re looking for the name of a function?
Logically the same rules apply, but if you extend the search criteria to find the
function definition, you start to have problems. Searching for a function name
would find more entries than you were looking for, and adding a simple
bracket doesn’t solve the problem. More significantly, functions can be
defined in a variety of different ways without affecting how the code is
compiled.

A function definition can be written as
void foo(int bar) {

or
void foo (int bar)

or
void foo(bar)
int bar;
{

Each of these declarations would match different search expression.

When using multiple search/replace expressions you need to think very
carefully about what you are replacing. Before we look into this, let’s recap
the process. First you create a file that contains a line-by-line script of the
replacements to be made. For each line in the input file, each line in the script
is executed.

The repetitive action of the script can be used to your advantage to make
recursive changes on lines of text. It can also work against you to introduce
errors into the resultant output.

Imagine the simple task of reversing the order of the following list using
sed:
bert jones
larry jones
albert jones
simon jones

The script
s/bert/simon/g
s/larry/albert/g

should do what you want; it swaps Albert with Larry and Bert with Simon.
Or does it? In fact, you end up with:
simon jones
albert jones

Page%89%of%467

alsimon jones
simon jones

Because you didn’t carefully check the information beforehand, you
have replaced all instances of “bert” with “simon”, which affects the names
Bert and Albert. In this simple example, the ramifications aren’t that great, but
in a source file these unintended changes could take hours of work to resolve.
We can’t change the file back by performing the inverse of the original script
because doing so would replace the real Simon as well as putting “bert” back
into Albert.

Avoid inadvertent changes by finding the right text in the first place. You
can use complex expression searches or careful selection of text equivalents to
do so.

More Regular Expression Characters

All of the expressions we have used so far with sed have been very similar to
those we used in grep to find text. You can define each of these regular
expressions using a standard set of recognized characters to effectively select
the level and type of search you need along with the text to search for.

Table 4.4 shows the complete list of the characters and formats you can
use when specifying regular expressions. You can also use this table to
determine which characters are special and therefore need to be escaped in a
regular expression.

Table 4.4

Regular Expressions
Expression What It Matches
. (dot) Any single character except newline
* Zero or more repeats
+ One or more repeat
[...] Any character in the set
[^ ...] Any character not in the set
^ Beginning of a line
$ End of a line
\c Escape special character c
| Alternative (“or”)
\(... \) Grouping
\n nth group (in output text)
\‘ Beginning of buffer
\’ End of buffer

Page%90%of%467

\b Word break
\B Not beginning or end of a word
\< Beginning of a word
\> End of a word
\w Any word-syntax character
\W Any non-word syntax character
\sc Character with syntax c
\Sc Character with syntax not c

Replacing Selected Elements

When using standard regular expression matching to do a search and replace
you have to be careful what you opt to search for and what you say to replace
it with. For example, lets try to change any number followed by a lower case
‘mb’ to be an upper case ‘MC’. The command
$ sed -e “s/[0-9]*[mM][bB]/99\ MB/g”

would replace any number followed by the letters “Mb” with “99 MB”. This
represents a problem, because to find the string you are looking for you need
to specify that it contains numbers. By default, sed replaces whatever text it
finds, so in this example we have accidentally replaced and therefore lost that
number information.

Grouping regular expressions into logical blocks enables you to logically
split a regular expression into a number of subdivisions. This only affects how
readable the search expression is to humans, not how it actually operates. The
format for grouping regular expressions is
\(... \)

The group can contain any number of regular expression constructs. For
example, the expressions [a-zA-Z0-9] and \([a-zA-Z0-9]\) would be
interpreted identically during the search phase.

Each new group is given a unique number. Within the replacement text
you can reference the group by its number. This allows you to use the found
group in the replacement text. Let’s use the previous example to demonstrate:
$ sed -e “s/\([0-9]*\)[mM][bB]/\1\ MB/g”

The above command would replace any number followed by “mb” with
the number found followed by “ MB”. For example, the lines
123mb
56MB
3Mb

would be converted to
123 MB
56 MB
3 MB

Page%91%of%467

The problem caused by the previous version of the search has been
solved. Not only can you make sure that you search for the correct
information at the outset, you can ensure that the entire text found won’t be
replaced with the replacement text, only the selected elements of the search
text will be replaced.

Another example of replacing selected elements would be to change all
printf commands to sprintf commands. This task requires inserting a string
name into the function specification. A text replacement won’t work, since the
arguments to the function will be different depending on the situation. Since
you can’t lose this argument information you must use grouping to find the
arguments and include them in the replacement text.

You can use grouping to find the function and change the arguments like
this:
$ sed -e “s/\(printf(\)\(.*\)\();\)/s\1tempstr,\2\3/g”

Splitting out the elements we get:

Group Search For Replace With
1 printf(sprintf
- tempstr,
2 .* Found text
3); Found text

Parsing the following text:
printf(“Hello World\n”);
printf(“Value is: %d\n”,intval);

would produce
sprintf(tempstr,“Hello World\n”);
sprintf(tempstr,“Value is: %d\n”,intval);

You should be able to see from this example how the grouping in the
search text is used to make up the replacement text.

Using sed with grep

We can use sed to do some processing before conducting the search of a file.
For example, a common part of the porting process is to find out which
header files rely on other header files. We could use the following code:
$ for file in `grep -l “#include” *.h`
> do
> search=`echo $file|sed -e “s/\.h//g/”`
> rfilename=`echo $file|sed -e “s/\./\\\./g/”`
> grep “rfilename” *.h >>header.depend
> grep -iv “__$search__” $file >> header.define
> done

The example shows a script that first generates a list of files containing
the #include statement. The script then checks to see which header files are

Page%92%of%467

defining which other header files, sending the output to header.depend. I’ve
used sed to strip the filename in the first line, and sed again to create a search
string for the dependency check. It also lists header files that do not define
code to ensure that a header file is not included twice. The files selected are
those which contain a #include line, which we can safely assume are those
which have dependencies on other include files.

From this specific example you can see the pattern and adapt it for your
own use.

Using sed with bash

Like most shell commands, sed can be used with other commands to provide
extended functionality. Combining commands can also simulate some
missing functions or facilities in the shell. The most common example is
combining sed with a built-in function, such as a for loop, to produce the
necessary effect on a number of files. A single-file problem usually already can
be solved via the available tools!

Renaming Files

One of the most frustrating omissions from the UNIX mv (move/rename) and
cp (copy) commands is the ability to rename a collection of files all at once.
For example, within DOS, it’s easy to rename all files ending in .c so that they
end in .h instead:
c:\> ren *.c *.h

Within UNIX and the BeOS, the same type of command will usually produce
an error because both the mv and cp commands expect multiple files to be
moved or copied to a single directory, not to a selection of other files. This is
because in UNIX and the BeOS, unlike DOS, the wildcards are expanded by
the shell and then passed as arguments to the program, rather than the
program being responsible for the wildcard matching.

To get around this limitation on renaming using wildcards, you can use
sed and some simple shell scripting to create the same effect:
$ for file in *.c
> do
> new=`echo $file|sed -e “s/\.c/\.h/g”`
> mv $file $new
> done

The process is very simple: for every file matching *.c, make the variable
new equal the variable file, replacing the “.c” with “.h”; then rename each file
called file to new.

Global Replacements

Page%93%of%467

Another combination of sed with bash uses a similar style to the renaming
example above. When replacing text in files, though, you have to be careful.
The safest way to use sed is to redirect the output to another file before
replacing the existing file:
$ for file in *.c
> do
> sed -e “s/printf/myprintf/g” $file >$file.out
> mv $file.out $file
> done

However, sed’s “limitation” can become an advantage in this situation:
Because you have to redirect to another file, you can easily introduce a backup
mechanism. If something goes wrong, you can go back to a previous version
and use that. For example, consider the following example, which uses the cp
command to produce a backup of the file:
$ for file in *.c
> do
> sed -e “s/printf/myprintf/g” $file >$file.out
> cp $file $file.bak
> mv $file.out $file
> done

The above example still makes the assumption that the replacement was
successful and the file produced is in the desired format. But in case there’s a
problem, the .bak backup file is still intact.

Using sed for global replacements in a number of files raises some
important issues concerning how you are conducting the port. In particular, it
is bad practice to make sweeping changes within a collection of files. Even
with the best of intentions you can introduce more errors than you hope to
solve by replacing the wrong item, or forgetting to make changes in a
particular file.

It is best therefore to make use of the other tools available to check your
search criteria and your replacement text to ensure that the desired effect is
obtained.

A real-world example can be taken from the source code for gawk. In the
gawk code, the same name, token, was used for both a structure and a union.
During compilation the compiler produced an error because there were two
entities with the same name. Using sed, the name was changed in the
required files from token to dfatoken. However, the word “token” was also
used as part of other variable names, which were also inadvertently changed.

A better plan would have been to use grep to produce a list of the lines
in which token was referenced. This list could then have been used to
generate a suitable search strategy to replace the required name.

Like most of the examples we have already seen, this case is fairly
specific and the answer seems obvious enough. In the heat of porting,

Page%94%of%467

however, the answer is rarely obvious and it is easy to spend hours on a port
and be in worse shape than when you started!

Be aware, then, of the dangers of making replacements using sed,
particularly in multiple files. Make sure you use the tools available to make
backup copies of the files before you overwite them with the versions parsed
by sed.

less
Note. Use the less command to quickly display the
contents of a file.

The less command is similar to the more standard more command found on
both UNIX and DOS, except that it allows backward as well as forward
movement through the file that it displays to the screen.

You can use less as a stand-alone command, supplying it with the name
of a file to display. For example,
$ less foo.c

will display the first screenful of information, and provide a prompt at the
bottom of the screen. You can move through the file, search for specific
strings, and select other files from this prompt, all without leaving the less
command.

You can also open multiple files at once with less:
$ less *.c

While viewing these files, you can move through them by using :n and :p for
next and previous file, respectively. In each case, less moves to the start of the
file selected.

Use the q key to exit the less program.

Movement in less

 You can move forward through an individual file page by page by using the
spacebar, ^v, the f key, or ^f. You can move forward line by line by using
either the Return key or ^n. You can move backward page by page using M-v,
the b key, or ^b, or line by line using ^p.

Like more, less can be set to move any desired number of lines; just put
the number before the command specifying the direction. You can also skip
forwards through a file by typing the number of lines to skip, followed by s’.

Searching in less

Page%95%of%467

To search for a particular pattern, precede the text to search for with the
“/”(slash) character. This automatically searches for the next occurrence of the
string in the file and advances the display to two lines before the string. That
way the string can be seen in the context of the lines around it. You can also
specify the text to search for on the command line:
$ less +/printf foo.c

You can change the search from case-sensitive to case-insensitive by
specifying -i as a command line option when starting less.

When viewing source code it is often useful to be able to match open and
close brackets. Pressing { or (when a corresponding bracket is shown on the
top line of the screen will cause less to find the next matching close bracket,)
or } as appropriate. The last line on the screen will be the line containing the
closing bracket.

The reverse is also true. When a } or) is on the bottom line and you press
that key, the corresponding open bracket will be shown on the top line of the
screen.

Other Features in less

Line numbers are sometimes useful if you want to use the reference in an
editor. The option to display line numbers before each line is -N.

The = command will show you details about the current location within
the current file (or output), including the line, percentage through the file (if
known), and file name (if known).

You can adjust the page size to display a different number of lines. The
default setting is the number of lines available on the terminal. To change this
option you use the -n option, where n is the number of lines; for example,
$ less -25 foo.c

would adjust the output to scroll backward and forward by 25 lines.

Tabs are often displayed incorrectly onscreen, but you can use another
less feature to expand individual tabs into a number of spaces. By default this
figure is eight spaces; to change it to ten, for example, specify the figure on the
command line:
$ less -x10 foo.c

Another useful feature of the less command is the ability to set a mark
within a file at particular position so that you can easily return to that
position. For example, imagine viewing a source file that references a function
used elsewhere in the file. You need to find the other occurrences of the
function name, but you want to be able to quickly jump back to the current
line. You can save the current location using the “m” character, followed by a
letter (such as “a”). This sets a mark (like a bookmark) named “a” at that

Page%96%of%467

point in the file. After you conduct a forward search through the file to find
the function; then, rather than quitting or painstakingly moving backward
through the file to your last position, type ’ (single quote) followed by the
letter you used (a) to mark the position, and less will take you straight back.

Using less with Pipes

Piping output through less is no different than piping output through the
more command. You’ll often use less with a pipe to page through the results
of some other command. For an example of this, we will use a grep command
to extract the lines of the file containing the printf function, passing the output
through less:
$ grep “printf” foo.c |less

You get all of the benefits of the less command when doing so, of course.
When viewing this output, you can page forward and back, search, match
brackets, or whatever you normally do when you call less on a file.

The more command is a symbolic link to the less command, so there
should be no need to use the less command directly.

touch
When you use make, files are compiled based on whether their modification
time is more recent than the compiled version. With most editors and editing
processes the modification time is updated correctly, but there are exceptions.
You’ll also find that even with the most comprehensive of makefiles, make
won’t always work as you expect.

Note. You'll learn all about make and makefiles in
Chapter 9.
To adjust your modification times and force make to work properly, you

can use touch to change the modification time of a file. The format of the
command is:
touch [-amc] [mmddhhmm[yy]] filename...

Where the string mmddhhmm specifies the month, day, hour and minute
with the option of also specifying the year (yy). If you don't specify a time in
this way, the current time will be used. For example, to update the
modification time to the current time you would use
$ touch foo.c bar.c

Now both of those files show that they’ve been modified recently, without
your having to open them in an editor and risk introducing errors.

Page%97%of%467

Sometimes it is useful to do the opposite and change a file’s modification
time so that it’s earlier than the current time, which you can do by specifying
the month, day, hour, minute, and if necessary year:
$ touch 0228133897 foo.c bar.c

This file now shows that it was last modified on 2/28/97, at 1:38 P.M..

One other feature of touch is useful for faking the existence of a file
when you can’t get rid of the dependency elsewhere. If the specified file that
you are touching doesn’t exist, touch will automatically create an empty file
with the current timestamp.

tr
It’s quite common to need to replace characters in files. Many programmers
find that they suddenly need to change the name of a variable because they
have duplicated the name of one that comes from elsewhere. You could use
your editor to do this or, as we’ve seen, you could use sed to make the
replacement.

But how about replacing individual characters within a file with other
characters? Using an editor would be slow and would be overkill for what
appears to be a simple task. The same could be said for sed (!); after all,
writing out those expressions to match characters is complex and time
consuming. This is even more difficult when you want to replace special
characters, especially when those special characters could include a newline,
which sed uses to separate lines.

The ideal thing would be a program that replaces (or deletes) characters
without being limited by individual lines: tr is just such a program.

The format for the tr command is:
tr [-cds] [string1 [string2]]

Without any options, tr replaces the characters in string1 with the
corresponding characters in string2. For example,
$ tr “eo” “ai”

would change “hello world” to “halli wirld”. You’ll notice that it has replaced
the first letter of the match string with the first letter of the replace string, and
the second letter of the match string with the second letter.

To specify a special character, use the \xxx notation, where xxx is the
octal number for the character; for example,
$ tr “\012” “\015”

will change an ASCII newline to a carriage return. This is quite a useful
command and often much quicker than using an editor to make the same
change.

Page%98%of%467

We can also use tr to delete characters:
$ tr -d “\012”

would strip all the newlines from a file.

Another trick is
$ tr “abcdefghijklmnopqrstuvwxyz” “ABCDEFGHIJKLMNOPQRSTUVWXYZ”

which converts all lowercase characters to uppercase. A quicker version of
this is to use the square brackets we used earlier to define the range of
characters. This shortens the above example to
$ tr “[a-z]” “[A-Z”

Note. You must use tr either as part of a pipe or with
redirection. tr only reads and writes from stdin and stdout.

uniq and sort
When you are porting it is sometimes useful to generate lists from different
sources. Take definitions, for example; we will see in Chapter 8 how #defines
can help the porting process, but it is often the case that a single application
uses a number of source files for its configuration information. To look at that
information properly, excluding all the duplicates where things have been
defined, could be a long editing process.

Instead, it would be easier to have a program remove duplicates from
the file (thus “deduping” it), which is precisely what uniq does. You need to
use uniq in tandem with sort because of how uniq works: It reads in the
input, outputs the first line, then compares each input line with the previous
one; if it matches, the line is not output again. If the list isn’t sorted in the first
place, uniq is incapable of deduping since it compares line-by-line.

Here’s an example taken from the port of perl:
$ egrep -h “^#define” *.h|sort|uniq >defines.out

This uses grep to generate a list of all the definition statements in all .h
files, then sorts those definitions so they’re in alphabetical order, then uses
uniq to strip out all the duplicates:
#define BIN "/boot/local/bin" /**/
#define CAT2(a,b)a ## b
#define CAT2(a,b)a/**/b
#define CAT3(a,b,c)a ## b ## c
#define CAT3(a,b,c)a/**/b/**/c
#define CAT4(a,b,c,d)a ## b ## c ## d
#define CAT4(a,b,c,d)a/**/b/**/c/**/d
#define CAT5(a,b,c,d,e)a ## b ## c ## d ## e
#define CAT5(a,b,c,d,e)a/**/b/**/c/**/d/**/e
#define MEM_ALIGNBYTES 8 /**/
#define STRINGIFY(a)"a"
#define _config_h_

Page%99%of%467

The result is a list of all the definitions used in the program. This list was
used to manually configure perl because the configuration script supplied
doesn’t work on the BeOS (we’ll discuss this more this in Chapter 11).

All of these tools are really compliments to, rather than replacements for,
the one tool programmers rely on the most: an editor.

Editors
There are a number of editors available on the BeOS. For those people

used to GUI style editors, the StyledEdit program is a basic editor which can
be used for most tasks. As an alternative, you can use the editor as part of the
BeIDE (Integrated Development Environment). This provides the same basic
functionality of StyledEdit, but also incorporates additional features such as
syntax styling and complex search and replace options.

For command line users, there are a number of ports of vi and similar
editors available, including vim and which is supplied with the BeOS. A
version of elvis is in production which includes the ability to syntax style
documents, in the same way as the editor that comes as part of the BeIDE.

There is also a port of emacs available as part of the GeekGadgets utility
set. If you prefer to use emacs I suggest you obtain a copy of this, details are
provided in Appendix A.

You can find many of the editors mentioned here on the BeOS CD-ROM
in the “optional” and “3rd Party Software” folders.

Page%100%of%467

Chapter 5: Sources
Once you have some familiarity with the BeOS and the programming tools it
makes available to you, you’re ready to begin the porting process.

Getting the Sources
UNIX software in general and GNU software in particular is

traditionally made available over the Internet via anonymous FTP.

Using one of the many archive sites around the world is still the
recommended way of getting software for porting. Indeed, Be Inc. supports
the use of the Internet as the preferred support mechanism for their
developers. In BeWare they have provided a simple way of listing any
software produced for the BeOS, which can be a useful place to find support
files for your own porting process.

Some of the best archive sites on the Internet and other ways of
obtaining sources and support material are described in Appendix A.

Networking is still an underdeveloped aspect of the BeOS. The BeOS
doesn’t directly support any filesharing options, so you can’t copy files off
your MacOS or PC server using a file sharing system. There is a port available
for supporting NFS to copy files from a UNIX server though. FTP is also
supported, and this should let you transfer files from just about any machine
as the Internet takes off. It has some shortcomings, as even the best programs
do. Most annoying is that if a transfer gets interrupted it is impossible (under
the BeOS) to restart a transmission midway through a file. On very large files
this can be frustrating as you try for the nth time to transfer a particular file.
There are versions of ftp which get round this by enabling you to continue a
transfer after it has broken. Look for the ncftp port from the BeWare pages
(see Appendix A for more information).

Removable Storage

You can also use floppy disks to get information onto a BeOS machine.
Putting the file on floppy requires that you format a 1.44MB disk and create a
tar archive straight onto the disk. You can do this under MacOS using suntar
and under DOS using a program such as djtar.

You can also use UNIX to write a floppy, provided the flavor of UNIX
you use supports the standard 1.44MB format. Most modern Unices do, more
to provide compatibility with DOS than anything else. However, transferring

Page%101%of%467

a file which is larger than a single floppy by creating a multiple disk tar file is
terribly unreliable.

If you created your floppies with a PC, the standard BeOS supports the
mtools interface, which enables the user to access and read files off DOS
floppies. The only problem with mtools is that it is sometimes unreliable and
doesn’t work with all disks, even those formatted on the same machine.

To use, simply insert the DOS formatted floppy disk, and then use the
commands shown in table 5.1 to access, copy and navigate your way around
the disk.

Table 5.1

Common mtools commands
Command Description
mcd MS-DOS cd (change directory)
mcopy MS-DOS copy (copy files)
mdel MS-DOS del (delete files)
mdir MS-DOS dir (directory listing)
mformat MS-DOS format (formats a disk)
mren MS-DOS ren (rename a file)

In addition, there is a newer version of the mtools interface which also
supports other media such as ZIP disks, the Windows 95 long file names and
even hard disk partitions. You can even obtain a filesystem plugin that will
mount DOS disks natively just as the BeOS mounts MacHFS disks. However,
this is currently read only.

Finally for floppy access, the BeOS supports MacHFS floppy disks of
1.44Mb, but not the older 800k format.

The latest version of the BeOS now supports the use of Mac HFS and ISO
9660 (PC/High-Sierra) formatted CD-ROMs. Transferring files is now a lot
easier, and you also have access to a wide range of source code CD-ROMs
such as the GNU Source Code CD-ROM (see Appendix A).

Working with Archives
An archive is a collection of files combined into a single file. This makes it easy
to transfer the file around, as the entire contents required to produce an
application are all in one place. Archives contain a variety of files, in the case
of UNIX, the contents are the usually the sources of the application, which are
then compiled to produce the finished product. Under Windows and MacOS,
the archives usually contain the application and support files, often with some
kind of installer to make the process easier for the lay user.

Page%102%of%467

There are two sides to working with archives, extraction and creation.
Once you have obtained the sources you require and identified (or sometimes
changed) the archive type, the next stage is to decode, decompress, and
extract the archive into the files you will need to port the application. This
process assumes that you have been able to identify the archive type by the
name. Sometimes, however, you will have to resort to trial and error to
discover what type a particular file is.

When it comes to distributing the files and your ported application to
the public, you need to collect up the files into a new archive and compress it.
Within UNIX, the tool used to do this is tar combined with gzip. Under the
BeOS, the standard is to use the Info-ZIP tools for BeOS applications because
it supports the extended attributes on the BeFS. Since most Posix style ported
applications don't use extended attributes, you can continue to use tar/gzip.
For those users used to cpio there is a version available in GeekGadgets,
details of which can be found in Appendix A.

Within this section we’ll take a look first at how to identify what type of
archive a particular file is, and then how to decode it. Also, because we are
working the BeOS in it’s UNIX like guise, we will take a look at using the tar
program to produce archives which we can distribute to other people.

Identifying Archives

Over the years different people have developed different systems for creating
archives. Some include only the files; others include the files along with the
associated directory structure. In both cases the files can be compressed to
save space and the all-important transmission time. The identification of an
archive’s type, including its compression system, is essential because without
the correct decompression software you won’t be able to read the file!

There are three levels of archiving that you will see regularly, and each
level uses its own recognized set of extensions:

•! The archive itself, which contains the files (and directory tree, if
appropriate) that make up the archive

•! The compression mechanism, which helps to reduce the size of the file.
This may, or may not, be part of the same file as the archive.

•! An optional encoding system, usually used to encode and decode binary
files for transfer over e-mail

Usually the name of the archive has a version or revision number
appended to it, followed by the extension identifying the archive type. For
example, the archive name emacs-19.29.tar tells you that this an archive
containing Emacs and that the revision number is 19.29.

Page%103%of%467

The extensions used to identify the contents are sometimes concatenated
to show the nesting of the archive, including the compression and encoding
system. Working in reverse, a package called foo-1.0.tar.gz.uue tells us the
following:

1. The package was encoded using uuencode.
2. It was compressed using gzip.
3. The archive format is tar.
4. The version number is 1.0.
5. The program is foo.

Table 6.2 lists recognized extensions and the program or method to use
to extract them. In some cases, the best method of extraction is to go back to
the platform the file originated on and recreate the archive in a format that
you can use on any platform. If you get to choose the archive format used to
pack the source code you are obtaining, the best format to look for is tar; and
if compression is required look for GZip.

Table 6.2

Recognized Extensions
Extension Method Source
.arc Created by ARC, extractable under DOS. Usually

DOS, also
Atari,
Amiga, and
some UNIX
variants.

.arj DOS arj format, extract under DOS. DOS

.cpio Created by and extract using cpio under UNIX. UNIX

.cpt Compact Pro format, extract under MacOS using
StuffIt Expander.

MacOS

.gz Created using gzip, extractable under BeOS. Any

.hqx BinHex format, extract under MacOS using StuffIt
Expander. Also extractable under BeOS using
mcvert, see Appendix A for more details.

MacOS

.lzh LHarc format, extractable under BeOS with the
xlharc tool, see Appendix A for more details.

DOS,
Windows,
Amiga,
Atari

.shar, .sh A shell archive, extractable under BeOS using bash
or unshar.

UNIX

.sit StuffIt, extract under MacOS using StuffIt
Expander.

MacOS

Page%104%of%467

.tar tar format, extractable under BeOS. Any

.uu, .uue uuencoded file, extractable under BeOS. UNIX

.Z compress format, extractable under BeOS using
gunzip.

UNIX

.z Old gzip format, extractable using gunzip. Could
also be pack format, a former alternative to
compress; extract under UNIX and recreate.

UNIX

.zip Zip format, extractable under BeOS. DOS

.zoo Zoo format; extract under DOS and recreate. DOS

While the BeOS is a new platform, and hence does not have methods for
handling every compression and archive format, new ways of extracting files
under the BeOS are appearing every day. We already have access to gzip,
lharc, zip, and tar formats.

Encoding Systems

One of the difficulties of using e-mail over the Internet is that many parts are
still working on old 7-bit technology. This use of 7 bits for transferring
messages only allows standard punctuation, letters, and numbers to be
transferred. Binary files, including those made as a result of any compression
program, are 8-bit and cannot be transferred reliably over the 7-bit e-mail
systems.

Because of this need for transferring 8-bit files over 7-bit systems a
number of encoding mechanisms were developed that converted 8-bit
characters into 7-bit compatible strings. This creates a file that is larger than its
8-bit cousin but is compatible with the 7-bit e-mail systems.

In general, the space saved by compressing the 7-bit file is significantly
more than the space used up by encoding the 8-bit version that you create
from the 7-bit. So while the use of encoding is a double-edged sword, one side
is significantly sharper than the other!

The first thing to do when working with an encoded file is to try to
determine the encoding used. If the method is not apparent from the
filename, then the first few lines of a file should identify the method. You can
identify each encoding type (UUencode, BinHex, MIME and shar) as follows:

•The first line of a uuencoded file contains begin 644, followed by the
filename enclosed in the file.

•The line of a BinHex file states the version number of BinHex to use to
decode the file, the latest version (for some time now!) is 4.0.

Page%105%of%467

•A shar file has the text ‘This is a shell archive’ in the preamble before the
encoding starts.

•A MIME file will have been referenced by specifying that the enclosure is
MIME encoded. In some cases, the email message a full description of
the location to get a program to extract the file for most platforms as part
of the header before the encoded files.

If, when you look at the header of a file, you get get a lot of weird
characters or blank spaces, then the file you are displaying is not encoded.
You need to move on to the compression section to identify the program you
need to use to decompress the archive.

uuencode

One of the most popular encoding systems on UNIX is uuencode, a system
developed to work with the uucp (UNIX to UNIX Copy) system used to
exchange e-mail. This converts 3-byte strings to 4-byte strings, creating an
increase of 35% in the size of the encoded file over the original.

To encode a file, you use the uuencode command. This reads in the
binary file, and sends the encoded version of the file to the standard output:
$ uuencode foo.tar foo.tar > foo.tar.uue

You must specify the name of the file you are encoding, and the name of
the file that you want the encoded file to bed decoded into. In this example,
I’ve just used the same name twice. If no file is specified, uuencode defaults to
using the input from stdin, and this is where the specification of the decoded
filename becomes useful. The line
$ tar cf foo.tar ./foo|gzip|uuencode foo.tar.gz >foo.tar.gz.uue

would create a file that when decoded produces a file called foo.tar.gz, which
could then be extracted using gunzip and tar in the normal way. Notice that
the uuencode command only has one filename, this is the destination name,
as the standard input was used as the source file name.

Decoding a file is just as simple, you use the uudecode command,
specifying the name of the file to decode. For example, to decode the file we
create in our last example you would use:
$ uudecode foo.tar.gz.uue

which would create the foo.tar.gz file as specified when we created the
encoded version.

shar

Files created using shar are really just shell scripts that have files incorporated
into the script, but they can function like encoded files. Like uuencoded files
they are used to transfer files over mail systems that only support 7-bit
transfers. They are slightly smaller than uuencoded files, but have the

Page%106%of%467

disadvantage of requiring a UNIX-like shell and sometimes a C compiler to
extract the contents.

To extract a shar file, strip all the information up to the line which reads:
This is a shell archive

Save the file, and then pass the filename as an argument to a shell, as follows:
$ sh foo.shar

The shell will execute the various commands in the shellscript and generate
the necessary files as it goes. In some cases, you may find more than one
source shar file, all of which must be extracted in the same way in the same
directory as the rest of the package.

This should, in theory, work without any problems. However, sometimes
the extraction will fail because of a bad line, or a problem decoding a binary
file. We can usually get round them, but let’s quickly cover the format of a
shar file before we look at ways of solving the problem. A shar file starts off
with a preamble about the contents, followed by the first file. If the file is in a
directory other than the current directory, then the full directory path is
created.

Any file incorporated into the shar file is then enclosed verbatim if the
file is text, or uuencoded if the file is binary. The enclosures are marked by the
line containing the “<<” symbol and some sort of end marker (for example,
SHAR_EOF). This method uses a shell feature which allows the standard
input to be taken from the next lines in a script up until the specified marker.

If you needed to you could manually extract files, even encoded ones, by
cutting and pasting the necessary sections from the shar into new files. This is
difficult, and prone to errors. An easier option is to locate a version of the
package in some other format or use the machine it was created on to extract
the file and regenerate the archive using tar.

While shar’s need for a UNIX-like shell does not adversely affect BeOS
users, its occasional requirement of a C compiler presents some problems.
Some versions of shar, notably HP-UX, create shar files which include the
program required to decode binary files. The shar file goes through the same
process, but the first file to be created is the source file for the decoding
program, which is then compiled and used to help extract the remainder of
the enclosed and encoded files.

This introduces extra levels of complication. Not only will you have to
contend with difficulties of extracting the files using the shell, but you may
also have to port and compile the enclosed application. If you are unable to
extract the file under BeOS, then extract it on the UNIX machine it came from
and then re-package it as a tar file.

MIME (Multipurpose Internet Mail Extensions)

Page%107%of%467

MIME files can be encoded and decoded using the mpack toolkit.
Generally, the process of encoding and decoding files into MIME documents
is performed by the email package you are using. However, not all packages
support MIME yet and sometimes it is easier to save the message as a text file,
and then extract the files using a package such as mpack. Using the package is
straightforward, much like the other encoding tools.

To decode files supplied in MIME format, use the munpack utility,
specifying the name of the save e-mail message:
$ munpack mail.mime

This will extract the files into the current directory, providing a running
commentary of the process.

split

Splitting is not really a type of encoding, but encoding is often the point at
which files are split for transmission. The split is made to make transferring
large files over mail systems easier by creating a number of smaller files from
one big one.

To rejoin split files, you need to concatenate the files before running them
through any program to decode, decompress, and extract them.

You can do this using cat to create the file:
$ cat foo.* >foo.tar.gz.uue

or using cat with pipes to join and decode in one step:
$ cat foo.* |gunzip -c |tar xf -

which achieves the same result without creating a large file in the process.

Compression Systems

There are a number of compression systems available. The most popular and
familiar are ZIP (if your background is DOS/Windows), StuffIt (if your
background is MacOS), and gzip and Compress (if your background is
UNIX). Each has its own merits and depending on the program some
compression systems not only compress but archive files, including the
directory structure, into a single file.

The two most popular systems you will find on the Internet when
considering UNIX files are gzip and compress. gzip was created by GNU
Software as a cross-platform compression system. Supplied as standard with
the BeOS, it is easy to use and allows you to use both the native gzip and
compress formats.

Using compress

Page%108%of%467

For a long time compress was the standard compression system available on
UNIX systems. Even with modern systems the standard compression package
supplied is often still compress. This makes compress the program of choice
as any UNIX flavor should be able to expand the files.

compress uses a modified version of the Lempel-Ziv algorithm identical
to that used in most compression programs. The advantage of compress is its
simplicity, which helps to make it both versatile and reliable.

Compressing a file using compress
To compress a file, use the compress command:

$ compress foo.tar

which creates a new file, foo.tar.Z, and removes the original. The new,
compressed version is only written out if the compression has saved some
space.

Decompressing a compressed file
To decompress files, use the uncompress command:

$ uncompress foo.tar.Z

If the .Z is not specified, uncompress looks for a file that matches the file
name given with the .Z appended to it. If no file name is specified, both
compress and uncompress default to reading input from stdin and sending
the output to stdout.

Using zip

Zip is the standard format for transferring files on PC’s with it’s roots firmly
in DOS, and more recently with utilities such as WinZip under Windows 95
and NT. It uses the same compression algorithm as gzip, but the difference
comes from the ability to include more than one file, and even better, a whole
directory structure of files into the file all as part of the same application. With
the latest version of the Info-ZIP tools, a free version ported to most
platforms, you have the advantage that BeOS attributes are also stored in the
archive file.

To extract a zip file, you use the unzip tool supplied with BeOS,
specifying the zipped filename on the command line:
$ unzip foo.zip

Alternatively, you can double-click on the file in the Tracker and it will
automatically be extracted.

Using gzip

gzip also uses a modified version of the Lempel-Ziv compression algorithm,
but usually produces smaller files than compress. It’s used in a very similar
way: two different programs are used to compress and decompress.

Page%109%of%467

Compressing a file using gzip
Gzip compresses a file by creating a new file of the same name with .gz

appended to it. Once the compression has been completed the original file is
removed.
$ ls
foo.tar
$ gzip foo.tar
$ ls
foo.tar.gz

Decompressing a gzip file
You can use gunzip to decompress a gzipped file back to its original form:
$ gunzip foo.tar.gz

As with compress, you can use gzip and gunzip via pipes to make
compressing and decompressing files easier. When decompressing you need
to use the -c option with gunzip to force it to output the decompressed file to
stdout instead of a file:
$ gunzip -c foo.tar.gz|tar xf -

The gzcat program is a simpler version of gunzip and is identical to the
gunzip -c command:
$ gzcat foo.tar.gz|tar xf -

Gzip is also capable of decompressing files created using compress, zip,
and pack. There are some limitations, though. The zip compatibility only
works on zip archives containing single files compressed using the
“deflation” method. If you want to decompress zip files it is better to use the
unzip utility, which has been ported to the BeOS.

The tar Archiving System

Under UNIX, tar (short for tape archiving program) is used primarily for
backing up and archiving files to tape. Actually, though, tar can be used to
create archives on tape, disk, or any other device. You can also use tar to
create a file rather than having to write to a physical device. The file created is
called a tar file and can be used to transfer an entire collection of files
(including the directory structure) into one large file.

A tar file is not compressed in any way, so once created the file can then
be compressed and optionally encoded using your preferred compression and
encoding programs. While tar is primarily a UNIX file format, compatible
programs can be found on MacOS and DOS/Windows. Most Unices now
come with tar as standard because it is such a universally accepted way of
transferring an entire directory tree as a single file.

Creating and using tar archives

Page%110%of%467

tar is easy to use once you get to know the principles and some of the
little tricks and traps of the program. There are three basic commands: c
creates new tar files; x extracts existing tar files; and t provides a table (list) of
the files contained in the archive.

So, for example, the line
$ tar t

would provide a list of files from… well, from where? Most Unices use the
first tape device as the default to read from; in the example the command
would try /dev/mt/0 or /dev/mt0. Under the BeOS, tar looks to the floppy
drive as the default device. If you try this without a floppy in the drive, or
with a floppy that does not contain a valid tar file, you will get an error:
$ tar t
tar: read error on /dev/floppy_disk : No space left on device

which is just a cryptic way of saying that tar couldn’t identify the device as
containing a valid tar file. If you had inserted a floppy disk into the floppy
drive you could use this to transfer files between the machine running the
BeOS and another machine.

You can specify a file (or other device) for tar to use with the f option:
$ tar tf foo.tar

The f option means “use the next argument as the file or device to...”.
When used with the t or x option this description completed with “read
from”. For example, the command:
$ tar tf myfile

lists the contents of myfile.tar.

When used with the c option the sentence for describing the operation
becomes “use the next argument as the file or device to write to”. This is the
most common way of using a tar file. You will have transferred it to the
machine, probably via FTP, and you need to use tar to extract the files from
the archive.

Using our example again, the resultant output will be a list of the files
(with their paths) in the order in which they are stored in the tar file.
$ tar tf foo.tar
./foo/foo.c
./foo/bar.c
./foo/foobar.h
./foo/Makefile

I will cover the path and order issue shortly, but looking at the list you’ll
see that it doesn’t really contain any useful information. You can use the v
option to provide more verbose (detailed) output about the files.
$ tar tvf foo.tar
drwxrwxrwx 1/1 0 Feb 6 12:13 1995 ./foo/
-rwxrwxrwx 1/1 2257 Feb 6 12:18 1995 ./foo/foo.c
-rwxrwxrwx 1/1 629 Feb 6 12:18 1995 ./foo/bar.c
-rwxrwxrwx 1/1 463 Feb 6 12:18 1995 ./foo/foobar.h
-rwxrwxrwx 1/1 8194 Feb 6 12:18 1995 ./foo/Makefile

Page%111%of%467

An extra line has appeared at the top of the archive. This is because it is
now showing not only the files, but also the directories which go to make up
the archive. Using the verbose option it lists the directory in addition to any
files within the directory, showing the same permission, size and date
information.

The specification of the directory in the archive is important. When it
comes time to extract the archive, tar needs the directory information to create
the directory before it creates the contents.

When creating tar files you should always specify files or, preferably,
entire directories from their parent:
$ tar cf foo.tar ./foo

This helps to keep all of the files that you are including in one place, so that
when they are extracted they will be extracted into a new directory called foo.

Extracting files from tar archives

When you’re extracting files using the x option to tar, the path of the
directories and files is important. Consider the following example:
$ tar xf bar.tar
/usr/local/contrib/bar/bar.c

The leading / (slash) would force most UNIX versions of tar to extract
the file to the absolute directory. This would create the directories if they
didn’t exist and overwrite any existing files in the process. Under the BeOS
we use GNU tar, which automatically strips the leading slash and extracts the
archive within the current directory. For example, the above archive would be
extracted to ./usr/local/contrib/bar.

Not all archives follow this model, and it is a good idea to get into the
habit of listing the contents of a tar file before extracting it, or better still just
looking at the first few lines using the head command:
$ tar tf foo.tar|head

By default, head lists the first ten lines of any piped output. If you need
to, you can create a directory, change to it, and then extract the archive:
$ tar tf foo.tar |head
./foo.c
./bar.c
./foobar.h
./Makefile
$ mkdir foo
$ cd foo
$ tar xf ../foo.tar

You can extract a particular file from an archive by specifying it on the
command line. The only caveat is that the file specification must be relative to
the archive directory structure.

In the previous example, you could have extracted the file using
$ tar xf bar.tar /usr/local/contrib/bar/bar.c

Page%112%of%467

which would still extract it to the absolute directory. The line
$ tar xf bar.tar bar.c

wouldn’t have worked, though, because there is no file matching that path in
the archive.

During extraction the directories and files in the archive are created in
the order in which they were added to the archive. This can cause problems if
files have been added to the archive which would supersede earlier entries.

When dealing with compressed files, you can pipe the output through
tar to decompress and extract the archive contents without requiring an
intermediary file:
$ gunzip -c foo.tar.gz| tar xf -

The single “-” character causes stdin to be used as the file and can be
used in the same way during the archive-creation process to create a ready-
compressed tar archive:
$ tar cf - ./foo|gzip > foo.tar.gz

Alternatively for compressing and decompressing archives, you can use
the z option. This automatically compresses the file using gzip or uncompress
it using ungzip. This shortens the creation of the above compressed tar file to
$ tar zcf foo.tar.gz ./foo

To uncompress and extract the archive, the command is shortened to
$ tar zxf foo.tar.gz

Listing the contents is also much quicker, using the command
$ tar ztf foo.tar.gz

Archive Contents
Once you have extracted an archive it is useful to be able to identify the
contents. There is no general standard for what an archive should contain, but
usually it is made up of a series of source files, documentation, and text files.
In some cases, you may also find that the package includes binaries and
libraries, along with other support files such as graphics and databases.

Sources

You might think it is easy to identify the source files in an archive. Usually it
is—you should find a lot of the familiar .c and .h files—but there are
exceptions. Depending on the source of the archive, you can sometimes find
sources in the root directory, and sometimes in other subdirectories.

In addition to the sources, you need to find the mechanism you’ll use to
build them into a package. Invariably this is the Makefile, but some packages

Page%113%of%467

use different methods to configure and build the package, create the
necessary scripts and/or Makefiles, and then finally build the package. We’ll
cover this in more detail Part 2 of this book.

Let’s look at the root directory of GNU Emacs:
$ ls -F
BUGS configure.in mkinstalldirs*
ChangeLog cpp/ move-if-change*
GETTING.GNU.SOFTWARE etc/ msdos/
INSTALL info/ nt/
Makefile.in install.sh oldXMenu/
PROBLEMS lib-src/ site-lisp
README lisp/ src/
config.bat lock/ update-subdirs*
config.guess* lwlib/ vms/
config.sub* make-dist* vpath.sed*
configure* man/

There are a number of subdirectories combined with text files and scripts
at the top level. It would be safe to assume that most of the directories contain
the source, and the obvious one is src, which in the case of Emacs contains
nearly all of the source required to build the entire package.

The Makefile isn’t apparent, but you can see a Makefile.in. This file is a
template file which will be filled in by some configuration program
(configure, in this case) to generate the real Makefile that will be used during
the build process. We will look closer at how to recognize build types and
configuration systems in Part 2 of this book. If you can’t see either a Makefile
or some form of template to produce a a Makefile, then you need to read the
documentation!

In fact, the .in suffix indicates that the file is a template and will be used
to generate any sort of file. Emacs and other GNU packages use template files
as the basis for the automatic configuration program, which we take a close
look at in Chapter 10.

Documentation

There are a number of conventions, but again no general standards, about the
documentation that should be supplied with an archive. Usually, however,
you will find a number of files whose names are all-uppercase or start with an
initial capital letter. This causes the files to stand out in a UNIX-style directory
listing, since files are listed in ASCII (not dictionary alphabetical) order.

The most obvious documentation file is README, which includes
information about the archive itself and what programs it provides. Before
you start porting or working on any package you should read the README
file to ensure that you know the package and its limitations.

Page%114%of%467

Some archives will contain a README file for each platform; for
example, README.SYSV would explain any specifics for porting the package
to UNIX System V.
Note: SYSV is usually a good sign, as POSIX (the functions and header files used to
support the UNIX part of the BeOS) was largely based on the SYSV OS.

The next file you should acquaint yourself with is the INSTALL file,
which contains information about how to configure, compile, and install the
program. This should provide you with some useful pointers about the
difficulties you might face when porting the package. The BeOS is based on
POSIX, a standard which uses elements of the two main UNIX OS, BSD and
System V. This support, combined with the use of the GNU utilities as the
base utility package, can make the porting process easier.

In some packages you may find that a directory has been created to hold
the different versions of the README and INSTALL files for the different
operating systems. In these cases of multiple files you should look, at least
briefly, at each one just so you know what tricks and traps other porters have
found while working on the package.

You may not find a README or INSTALL file in every archive or
package you wish to port. In these cases your next step is to look for some
documentation about how to use the package.

man

Documentation can be found in a number of forms. The most popular form
for UNIX-based packages is the man format. man is a program available on
nearly all UNIX variants which provides online documentation about all
aspects of the OS. This includes everything from introductory information to
command-line programs, function and procedure calls, and even file formats.
It is therefore common to find one or more man files in a package.

There are some problems with man. It was never designed to be a
complete manual for the OS but it is frequently treated as such. Descriptions
are often short and cryptic, or worse. Examples are sometimes included to
show you how at least some of the features described work, but they rarely go
into enough detail to teach you much about the item you’re reading about.

The man files are viewed using nroff, which converts the codes in the file
into a format that can be viewed onscreen, including underlining and bold if
the terminal device supports it. The nroff formatting is sometimes simple
enough to be ignored when you view the files in an editor, providing you
don’t mind consciously filtering out the formatting commands.
Note: There is a port of the GNU groff utility package which supports the nroff style
formatting. See Appendix A for more information.

Page%115%of%467

A man page can be identified in a number of different ways. Invariably it
has a name ending in .man or ending in a number and optional letter. This
numbering system corresponds to the different sections within the man
system. Each section deals with a different element of the operating system.
You can see the section numbers and the corresponding section titles for
System V Unices in Table 6.3. Other variants of UNIX have similar, but not
identical, structures. For example, man section 1 always means command-line
programs, but SunOS uses section 8 for maintenance commands while System
V uses section 1m.

Table 6.3

man Sections
Section Number Description
1 Basic commands (programs)
1m Maintenance (superuser) commands
2 System (kernel) calls
3 Library functions
4 Special files, file formats
5 Conventions, file formats and miscellaneous information
6 Games
7 Macro packages

Under UNIX, documentation is supplied as source files which are
installed then accessed using the man command. The man program finds the
document in the tree structure and then uses nroff to display the formatted
version onscreen. The documentation supplied with the BeOS is formatted in
HTML and can be viewed using the NetPositive web browser. This fact
doesn’t help though when most supplied software will use the man formatted
documents. The nroff tool doesn’t exist on the BeOS, but a groff tool (the GNU
version) is available as part of GeekGadgets.

GNU has a package called groff which provides all the functionality of
both nroff and troff (the program used to print man files). You can use groff to
view man files onscreen using the following command:
groff -eptsR foo.man|more

You can also use the groff package to create PostScript files which can
then be printed on a printer, or, as you will see shortly, viewed onscreen.

Info and TeX

Another format often used, particularly by GNU projects, is the info file.. Info
files can be viewed onscreen and also can be used to produce documentation
in hard-copy format using the TeX package.

Page%116%of%467

TeX files (identified by their trailing .tex) can be formatted using the TeX
formatting system into printable documentation. TeX is really a typesetting
system, and the details of its operation are beyond the scope of this book.
Despite the fact that TeX has been around for a good many years, it is still one
of the most difficult programs to use.

If you own a Mac and find that you are using a lot of TeX files, it might
be worth obtaining a copy of OzTex, which is a complete package of software
that can process TeX files and display them onscreen, convert them into DVI
files for transfer elsewhere, or even print them out to any valid printer
attached to the machine.

On the BeOS, Fred Fish has ported the UnixTex package, which can
create the necessary DVI files or PostScript files from TeX source.

Using makeinfo it is possible to convert the texinfo files into info format.
Info is a menu-driven browser. It follows a basic tree structure, and individual
pages within the tree are called nodes. You can view the pages within Emacs
(useful when you are programming) or use a stand-alone browser to access
the information.

If one is available, you should use an info file in preference to a man
page. Info files allow you to read the contents and also to use the cross-
referencing mechanism to view references in other info files, a facility not
found in man pages. This provides much greater flexibility and as a result info
files usually contain more information.

Preformatted Documentation

If you are lucky enough to come across preformatted documentation, such as
PostScript or DVI files, it is probably easiest to print these out. There are a
number of programs which convert DVI files into files suitable for printing on
a number of printer types, including PostScript.

Alternatively, you can use the ghostscript package to view PostScript
files onscreen. ghostscript can also be used to print PostScript files on non-
PostScript devices such as inkjet and even dot-matrix printers.

With all these different formats for supplying documentation for a
package it is amazing to think that anybody ever uses any program. It is often
easier to convert it to a format that can be printed out than to attempt to view
it onscreen.

Text Files

Page%117%of%467

Beyond the introductory files such as README and INSTALL and the
documentation there are a number of other files which you will often see
included in an archive. Looking at a typical GNU package again, you will
remember that Emacs had the following layout:
$ ls -F
BUGS configure.in mkinstalldirs*
ChangeLog cpp/ move-if-change*
GETTING.GNU.SOFTWARE etc/ msdos/
INSTALL info/ nt/
Makefile.in install.sh oldXMenu/
PROBLEMS lib-src/ site-lisp
README lisp/ src/
config.bat lock/ update-subdirs*
config.guess* lwlib/ vms/
config.sub* make-dist* vpath.sed*
configure* man/

The BUGS file is used to describe the method for submitting bugs to the
author. Submitting bugs to the original provider of a package helps ensure
that the bug will be eliminated. Even better is supplying the fix for the bug.
We’ll discuss this further in Appendix B, “Releasing the Software.”

In GNU packages there is always a ChangeLog file which contains a list
of all the changes made to the package. These include adding new
functionality, fixing bugs, and so on. Information is provided about what was
changed, who changed it, and when the change was made. During the
porting process it is useful to read this file, as it may provide pointers to any
known bugs, problems, or difficulties.

The ChangeLog file can also help you when you port the next revision
of a piece of software by listing the things that have changed, including some
of the fixes you need to complete your port.

We have already covered the INSTALL file and its uses, but to recap it is
the first thing you should read before you start to port the software. Many
packages have very simple rules for their build processes; others, like GCC for
example, are very complicated. Porting a piece of software to a new platform
without knowing how it is supposed to build and install on another platform
should be futile.

The PROBLEMS file contains a list of known problems that have been
encountered when building, compiling, and testing the package on different
platforms. This file is another piece of essential reading, as it provides more
pointers on how well the porting process might go on a new OS.

In the Emacs package there is a special etc directory which contains a lot
of the ancillary documentation. On other packages these files can often be
found at the root level of the package directory.

MANIFEST is a list and description of all of the files included in a
package, and can be used to test the integrity of a package you have just
received. It is not included in larger packages such as Emacs and gcc because

Page%118%of%467

the list would be too long to make it practical. A simple script to check the
contents of the package against the MANIFEST file would look like this::
$ for file in `cut -f1 MANIFEST`
> do
> if [! -f $file]
> then
> echo Cant find $file
> fi
> done

Occasionally a package will include a Todo file, which is just a list of
everything the author would like to include in the features of the program.

The Copying file is supplied with most packages, especially those from
GNU. While all software is free from GNU (which is part of the Free Software
Foundation), they use a rights license for legal reasons to protect themselves
against misuse or misrepresentation and from legal proceedings following the
use of the program.

The Copying file should always be included in a port of a package, as it
outlines all of the details of how to distribute the program and what
restrictions there are on its distribution. It is a good idea to get to know the
contents of this file, but it’s not essential as long as you remember to include it
in any ports you provide to other people.

You should be able to see from this that there is more to a package than
just the source files. It makes sense to look around at least the first package
you are going to port to get to know the files and formats. Once you know the
basics, getting to know new packages should not be a problem. Knowing the
contents and identifying their use should be your first priority in all cases.

Page%119%of%467

Chapter 6: Revisions and Backups
When writing an application it is often useful, and sometimes vital, to be able
to go back to an old version; usually this is done to return to a more stable
version of the software. For this you need to use a revision system which
keeps individual versions of sources and the changes between, combined
with notes about the changes for yourself and other programmers.
Sometimes, however, nothing will do but a complete and verified backup
copy. Backups are discussed at the end of this chapter.

Revision Control System (RCS)
The Revision Control System (RCS) is an easy-to-use package that automates
the storing and retrieval of revisions. Its capabilities include adding logging
and identification information to the revision files. It is suited to text rather
than object files and so can be used on all elements of a package, from the
source code to the documentation.
Note: RCS is incapable of storing revisions of binary files. However, since it stores the
source files that go to make up a binary, this isn’t usually a problem.

You can use RCS at two levels, basic and advanced. The basic level only
requires simple knowledge of two commands, ci and co. These two
commands use (or create) RCS files which contain an archive of the revisions
made. The “check in” command, ci, adds a file revision to an RCS archive. co
“checks out” a revision from an RCS archive.

For the more advanced user there are a variety of programs which
enable you to control and manage the revisions you create. We will learn both
levels in this section.

Checking In/Out

The process of recording a revision is called checking in. For this we use ci,
which compares the file you are checking in against the last version recorded.
The changes are recorded in an RCS file which contains the original source,
the changes, and any description or logging information attached to each
version. Each version you check in automatically increments the version
number by 0.1 units after the main revision. When the counter gets to 1.9, the
next revision becomes 1.10, rather than 2.0.

For example, a revision checked in when the revision version is currently
1.2 will be incremented to 1.3. It is possible to manually change the revision.

Page%120%of%467

The name used for an RCS file is usually the name of the source file followed
by ,v.We will use the following directory for our examples in this section:
total 11
-rw-rw-rw- 0 elvis 1 464 Nov 30 14:10 Makefile
-rw-rw-rw- 0 elvis 1 4190 Nov 30 14:10 calc.y
-rw-rw-rw- 0 elvis 1 86 Nov 30 14:10 const.c
-rw-rw-rw- 0 elvis 1 628 Nov 30 14:10 fmath.c
-rw-rw-rw- 0 elvis 1 1087 Nov 30 14:10 lex.l
-rw-rw-rw- 0 elvis 1 345 Nov 30 14:11 tmath.c

If an RCS file doesn’t already exist, one will be created. Let’s check in the
tmath.c file:
$ ci tmath.c
tmath.c,v <-- tmath.c
enter description, terminated with single ‘.’ Or end of file:
NOTE: This is NOT the log message!
>> Text text based math library for in-line calculator
>> .
initial revision: 1.1
done

The first line describes the process about to be executed. The file tmath.c
will be added to the RCS file tmath.c,v. You are then asked for a description
for this revision. This should really be just a short description of what you
have changed. In this case, since it is the first revision, I’ve given a description
of what the file contains. Once you have entered your description you end the
entry using a single “.” as the first character of a line. ci then tells you the
revision number and finishes.

You have just added revision 1.1 of the tmath.c file to the RCS file. If you
now look at the directory again, the original tmath.c file has disappeared and
a RCS file is there in its place.:
total 11
-rw-rw-rw- 0 elvis 1 464 Nov 30 14:10 Makefile
-rw-rw-rw- 0 elvis 1 4190 Nov 30 14:10 calc.y
-rw-rw-rw- 0 elvis 1 86 Nov 30 14:10 const.c
-rw-rw-rw- 0 elvis 1 628 Nov 30 14:10 fmath.c
-rw-rw-rw- 0 elvis 1 1087 Nov 30 14:10 lex.l
-r-------- 0 elvis 1 345 Mar 16 07:43 tmath.c,v

What has happened to the original file? By default, ci assumes that you
are permanently adding the file you are checking in as part of the revision
process.

Checking out extracts either the latest or the specified revision from the
RCS file and recreates the source file by processing all of the changes between
the original revision (1.1) and the version you requested. To get the latest
revision (1.1) of the file back you need to use the co command to check out the
current revision back into a file you can compile:
$ co tmath.c
tmath.c,v --> tmath.c
revision 1.1
done

Page%121%of%467

which automatically recovers the last revision (the revision with the highest
version number) from the RCS file into the genuine source file.

To speed up the process of checking a file in and out we can use -u option to ci
to check in a revision and immediately check it back out again for further
editing:
$ ci -u tmath.c
tmath.c,v <-- tmath.c
new revision: 1.2; previous revision: 1.1
enter log message, terminated with a single ‘.’ Or end of file:
>> Added bincplx() function.
>> .
done

If you now update the file and check it in again, the revision number will
have been updated automatically to 1.2:
$ ci tmath.c
tmath.c,v <-- tmath.c
ci: tmath.c,v: no lock set by elvis

The check in process has returned an error because the file was not
checked out properly. When you check out a file without any options the file
created is simply a copy of the latest version. The RCS system doesn’t expect
you to make modifications to the file, because thats not what you asked for.
Then, when you try to check a new revision in, it returns an error because it
wasn’t expecting any updates.

What you need to do when working with revisions is to lock the
revision. This places a logical lock on the revision file that allows you, as an
individual user, to update and resubmit a later version. The reason for
requiring the lock is that without it, anybody checking out a revision could
potentially update it and check it back in again. With a single user working
with source code this isn’t a problem, but if two people checked out a
revision, worked on it, and then submitted the changes back, you would end
up with two additional versions of the file, and both would probably conflict
with each other. Whilst the lock is in place, it is impossible for anybody except
the user who checked out and locked the revision to check in another version.

To lock a file, you can check it in as normal, then check out a locked
version:
$ co -l tmath.c

or at the point of checking in you can automatically check out a locked
version by specifying the -l option:
$ ci -l tmath.c

This command also provides you with an editable version of the file.

If you do make the mistake of not locking a revision when you check it
in or out, you can use the rcs command to lock the current revision:
$ rcs -l tmath.c
RCS file: tmath.c,v
1.1 locked

Page%122%of%467

done

Now try checking in the modified version of tmath.c again:
$ ci -l tmath.c
tmath.c,v <-- tmath.c
new revision: 1.2; previous revision: 1.1
enter log message, terminated with a single ‘.’ Or end of file:
>> Added the bintodec function
>> .
done

This time you are prompted for the log message for the revision. This
should be a description of the changes you have made to the file. You will see
later how to view the contents of the revision log.

Using ci with make

This method of checking a file out from a locked version is what enables you
to control revisions. Ideally, you should be using ci and co every time you
modify the file. That way you can go back to any revision you like at any
point.

Perhaps the best way of doing this is to make the check-in and check-out
process part of the build process for the application. We’ll cover the use of
make in more detail in Chapter 9. To use the ci program with make, you just
need to add a line similar to the previous example before the compilation line
for the source file:
.c.o:
 @ci -l $<
 $(CC) $(CFLAGS) -c $< -o $@

which will prompt you for the log information for each version.

Backing Out a Revision

Using a simple extension to the basic commands, you can either specify a
revision to add to the RCS file during check-in, or check out a particular
revision. This is useful if you need to go back to an earlier version, or if you
want to specify a new revision sequence. For example:
$ ci -l2.0 tmath.c

would lock version 2.0 of tmath.c into the RCS file rather than allowing RCS
to choose the next revision number. To check out an earlier version,
$ co -l1.1 tmath.c

would create a file containing version 1.1 of tmath.c.

This has effectively overwritten the existing file, replacing it with the
previous version. The newer version still resides in the RCS file. The easiest
way to supersede this with the previous version is to check in the old version
with a new revision number. This has the added advantage of allowing you to
return to the additions or changes you made if you want to do so.

Page%123%of%467

Checking the Contents

We can check the contents and log entries of an RCS file using the rlog
program. The name suggests that it just prints out the contents of the log, but
in fact the program can provide a number of useful reports on the status of
RCS files.

To view the revision log for a file, just specify the file on the command
line:
$ rlog tmath.c |less

RCS file: tmath.c,v
Working file: tmath.c
head: 1.2
branch:
locks:
access list:
symbolic names:
keyword substitution: kv
total revisions: 2; selected revisions: 2
description:
First version of the text based math library

revision 1.2
date: 1997/03/18 20:37:33; author: elvis; state: Exp; lines: +5 -0
Added the dectobin function

revision 1.1
date: 1997/03/18 20:30:19; author: elvis; state: Exp;
Initial revision
==

As you can see, this provides a lot of information about the file itself,
including its current state, along with details of all the revisions and
modifications made to the file (in the form of the log messages entered when
the different versions were checked in).

Merging Revisions

You can use the rcsmerge program to create a new source file based on two (or
more) revisions of the source file from the RCS file. This provides a way to list
the source code modifications to a file across more than one revision number.
For example, you could create a new version (v2.0) of a source file for which
someone has supplied you updates to a previous version (v1.0). Using the file
supplied you can update the source, taking into account your revisions from
the old version to the new version in addition to those supplied.

To do this, put the supplied revisions in the live source file, then run the
command
$ rcsmerge -p -r1.0 -r2.0 tmath.c >tmath.out.c

Page%124%of%467

The -p option tells rcsmerge to output the final file to stdout, which will then
be redirected to a new file.

rcsmerge also allows you to reverse changes made to files by specifying
the revisions in reverse order. For instance,
$ rcsmerge -r2.0 -r1.0 tmath.c

would change the current tmath.c from version 2.0 to version 1.0.

Cleaning a Revision

During the RCS process you can create a number of files that you don’t need,
or keep locked and unlocked versions of source files in the source tree.
Sometimes you need these files, but you should ensure that any changes you
make are recorded in the RCS files. Checking in a revision every time you
make a modification ensures that the RCS files contain the source tree and
that any source files can be recreated from their parent RCS files.

To get around this problem, you can use the rcsclean program to remove
any source files from the current directory which are not locked or which do
not contain any changes between the current and the previous version.

For each file you specify, rcsclean tries to check in the file, any file which
cannot be checked in (because it is not a locked version), or any file which
during the check in does not create a new revision number is deleted.

For example,
$ rcsclean *.c

would remove all files which hadn’t been changed since they were last
checked out.
Warning: rcsclean can be a dangerous command. Many people find they have made
the mistake of not locking out a revision. Then, when they use rcsclean it deletes the
file that they have been making changes to. Care should be taken to ensure that the
files you specify are safe to be deleted.

Creating a Complete Source Tree

Once you have made all your modifications to the source and checked
them all in, you now need to generate the full set of files for the package
based on the contents of the RCS files. The files create during the process will
make up the source tree for the package, which should include all the files
necessary to build the entire package.

Creating a complete source tree using RCS can be complex, although the
principles are very simple. The first step is to check out the required revision
of the source files into a new directory. You can then use the new directory to
generate the source tree for the complete package.

Page%125%of%467

A simple script to do this is
$ mkdir tmath
$ cd tmath
$ for file in ../tmath.build/*,v
> do
> co -l $file
> done

This checks out the latest file from the RCS files contained in the tmath.build
directory.

Once the files have been generated, the only thing left to do is to check
the compilation, package the files up, and release them. These steps are
described in Chapter 16.

Concurrent Version System (CVS)
The Concurrent Version System (CVS) is a front end to the RCS system. In
essence it has extended the revision control of RCS which uses a single RCS
file in a single directory to refer to a number of revisions to a single file. The
extensions use a hierarchical structure of files and directories for storing
multiple revisions to a single file. The hierarchical structure allows different
people to work on a file simultaneously, expanding the usability of the RCS
system.

RCS was designed to enable a single person to work on a single source
file. While that source file was locked, nobody else could edit the file, and
therefore it provided the security required to ensure that multiple edits didn’t
supersede or override each other.

Unfortunately, it is precisely this locking mechanism that stops more
than one person from working on the same source file. CVS allows multiple
users to edit the same file via complex branching. They can all then add their
revisions to the CVS file, which in turn creates a final version suitable for
compilation.

The process still needs some manual management; two people making
modifications to the same part of the file would of course cause a problem.
The method used is branching. This allows an individual to create a branch
from the main revision source and update the parts of the program.
Meanwhile, other users create their own branches and make the
modifications. Using the multiple branches the source can then merged back
up the revision tree by comparing the differences at different levels to create
the new final version.

Many would argue that the simpler RCS model is the better of the two,
since it forces programmers to use multiple files for a single project. This style
of programming is not a bad way to work, and in fact most people naturally

Page%126%of%467

use different files for different areas of programming. These files can turn out
to be quite large, though. In Perl, for example, the utility source file (util.c) is
35K and it contains hundreds of different functions. Two people could not
work on the file with RCS, even to update two different functions. With CVS
you can still use multiple files, but you can also accommodate multiple
programmers.

Beyond the multiple-user model, in its basic operation CVS is the same
as RCS. You still have to go through the same checking in and checking out
procedure, although this time it is via a set of utilities and interfaces to the
base RCS package.

Using Multiple Files
When developing a new piece of software, even a relatively small project is
usually made up of a number of separate functions. As the project grows, a
single source file will increase in size, and every time you make a
modification the whole file needs to be recompiled just to create the
application. If you separate the file out into a number of smaller files, then
each time you make a change to the source, only the file you changed needs to
be recompiled, speeding up the compilation process.

When working with a revision system, the advantages of using separate
files are even more marked. It allows different people to work on different
parts of the entire application at the same time. However, in the case of some
packages, the individual files for the different areas turn out to be quite large,
and this makes using RCS impossible, you need to work with a more suitable
revision system such as CVS.

There are some other features notable in CVS.

You can use CVS to track third-party sources, and also local
modifications to those sources. This allows you to work on a contributed
archive such as Perl without affecting the original source code. Even if the
source is contained on CD-ROM, you can extend the modifications by storing
them on a local hard drive, whilst still using the sources on the CD-ROM as
the base source code to which the different revisions are related.

The logs which are appended to each revision can be recorded either in
the CVS revision file, a separate notes file or even a Usenet news database.
This is useful in a public source situation or in a large cooperative project. For
example, the ChangeLog file which is supplied with most GNU packages
could be created by logging the changes for individual revisions directly into
the file.

Page%127%of%467

You can create tags that mark a set of revisions in a number of source
files. You can then use CVS to release, at any time, a single version of a
software package based on the different revisions of the individual source
files. This is true even when files and directories have been added or removed
between revisions. Alternatively a specific date can be used to identify a
similar package version release.

CVS can directly create a patch file between two revisions, again across
multiple files and directories if necessary. This is similar to the rcsdiff
command, except for the range of files and directories on which it operates.

CVS over RCS

CVS is really just an extension to the RCS system using a collection of scripts
and programs to make better use of the core RCS engine. There are no
differences at core level between the operation of the two systems, but there
are some differences in how the two systems should be used.

If you are the only person working on a project and you are happy to
produce static versions and revisions of software, then the simpler and easier-
to-use RCS is probably the right solution for you.

If, however, you are managing a larger project with many source files,
multiple source files spread across a number of subdirectories, or you are
collaborating with other people working on the same project at the same time,
then you should consider using CVS.

CVS should also be the revision system of choice if you are doing
collaborative work over the Internet, where the ease with which you can work
on the same file and produce final revisions based on all of the changes will
save you hours of manual labor. This can be done directly over a TCP/IP link
or you can use the ability to produce patch files of any revision. Using CVS in
this way will help you communicate with the other programmers working on
the package, enabling you to send updates easily and keep the download
times as short as possible.

Using diff for revisions
You can create a list of the differences between two files using the diff
command. The file created by the process is called a diff file, and the format of
this file depends on the type of diff you create. You can use a diff file to create
one version of a file from another, but usually diff is used to record the
changes between the current and previous versions of a source file. The
process of updating a source file is called “patching” and will be covered it
later in this chapter.

Page%128%of%467

diff compares two files and outputs a concise list of the differences
between them. Each difference is grouped into a collection of hunks. A hunk is
a collection of differences which are within a specified number of lines of each
other, otherwise known as relatively local differences. There are a number of
different formats that diff can output to, and it is useful to be able to identify
them in case you need to make manual modifications to files. There is an
easier way, of course, which we will see later in this chapter.

For the examples we will compare the following file (A):
This is the first line in both files A and B. However, the next line
only appears in file A. You won't find it in B at all. The third line
is the second line of file B, but the third of file A. We can
show the difference between these two files in context.

 This is the start of paragraph two in both files. This paragraph
is exactly the same in both files across all the lines except the
last. In file A we finish with this line.

With this file (B):
 This is the first line in both files A and B. However, the next
line
is the second line of file B, but the third of file A. We can
also put a line in B that does not appear in A. The diff command will
show the difference between these two files in context.

 This is the start of paragraph two in both files. This paragraph
is exactly the same in both files across all the lines except the
last. In file B, we make the change even more prominent by also
adding a fourth line to this second paragraph.

Standard diffs

A standard diff file is produced when you run the command without any
arguments:
$ diff file.a file.b

2d1
< only appears in file A. You won't find it in B at all. The third
line
4c3,4
< show the difference between these two files in context.

> also put a line in B that does not appear in A. The diff command
will
> show the difference between these two files in context.
8,9c8,9
< last. In file A we finish with this line.
<

> last. In file B, we make the change even more prominent by also
> adding a fourth line to this second paragraph.

The first line specifies the location of the first modification. The line is of the
form:
x[,y]{acd}i[,j]

Here, x specifies the start line and y the optional end line. The characters a, c,
and d specify that lines have been added, changed, or deleted. The numbers

Page%129%of%467

following show for how many lines in file B the change should occur, or
alternatively the line range.

In the above example, therefore, line 2 in file A should be deleted. The
next line shows the line to be deleted for reference purposes. The leading “<”
character indicates the removal of the quoted line from the first file.

The second hunk in the file specifies that line 4 in file A should be
replaced with lines 3 to 4 of file B. This is followed by the line to change in file
A, a divider (---), and the replacement lines preceded by the “>” character.
Finally, lines 8 and 9 in file A are replaced with 8 and 9 from file B.

The resultant file shows all the changes required to make file A match file
B.

ed Format diffs

An ed format diff creates a script that can be used by the editor ed to produce
file B from file A. You can produce this file by using the -e option with diff:
$ diff -e file.a file.b
8,9c
last. In file B, we make the change even more prominent by also
adding a fourth line to this second paragraph.
.
4c
also put a line in B that does not appear in A. The diff command will
show the difference between these two files in context.
.
2d

While this appears to be a good idea, ed is not a reliable program and is
not supported on every platform. The diff file produced doesn’t contain any
information about the previous contents of the file and so it impossible to
check, even manually, that the replacement text is being inserted in the right
place.

Context diffs

As the name suggests, a context diff contains the changes to the file with
context information. This can be used by patch or a programmer to verify that
the changes are being made to the correct part of the file.

To create a context diff use the -c option:
$ diff -c file.a file.b
*** file.a Wed Mar 19 21:20:00 1997
--- file.b Wed Mar 19 21:19:25 1997

*** 1,9 ****
 This is the first line in both files A and B. However, the next
line
- only appears in file A. You won't find it in B at all. The third
line

Page%130%of%467

 is the second line of file B, but the third of file A. We can
! show the difference between these two files in context.

 This is the start of paragraph two in both files. This paragraph
 is exactly the same in both files across all the lines except the
! last. In file A we finish with this line.
!
--- 1,9 ----
 This is the first line in both files A and B. However, the next
line
 is the second line of file B, but the third of file A. We can
! also put a line in B that does not appear in A. The diff command
will
! show the difference between these two files in context.

 This is the start of paragraph two in both files. This paragraph
 is exactly the same in both files across all the lines except the
! last. In file B, we make the change even more prominent by also
! adding a fourth line to this second paragraph.

Here we are given significantly more information than in a standard diff
file. The first two lines show the names and date/time stamps of the files in
question. These provide a backup reference point to the base files. Note the ***
by the first file, and the corresponding --- by the second file. These denote the
files to reference as each hunk is processed.

The next line is a separator, followed by the first hunk. This shows,
because of the surrounding asterisk characters, that this is a change to the first
file from lines 1 to 9. The following lines in the diff file show which lines
should be changed, including some additional lines used only for context
purposes (to ensure that even if the line numbers are not correct we can still
find the correct place in file A to make the changes). By default, diff uses two
lines of context information on either side of any changes, although this can
be changed if you desire.

Each line preceded by a minus sign (-) is a line to be deleted from the
source file. An exclamation point (!) signifies a change to the quoted line. The
next section shows the replacement text to be added to file B. This is denoted
by the “---” characters around the line reference. Exclamation points again
denote which lines to modify. A plus sign (+) denotes a line that should be
added to the destination file.

Overall, a context diff is much more reliable than the previous two
formats because of the context information. You should try to use a context
diff wherever possible. If you can, it’s even better to use a unified context diff.

Unified diffs

A unified context diff is similar to the context diff format and is created using
the -u option:
$ diff -u file.a file.b
--- file.a Wed Mar 19 21:20:00 1997
+++ file.b Wed Mar 19 21:19:25 1997
@@ -1,9 +1,9 @@

Page%131%of%467

 This is the first line in both files A and B. However, the next
line
-only appears in file A. You won't find it in B at all. The third line
 is the second line of file B, but the third of file A. We can
-show the difference between these two files in context.
+also put a line in B that does not appear in A. The diff command will
+show the difference between these two files in context.

 This is the start of paragraph two in both files. This paragraph
 is exactly the same in both files across all the lines except the
-last. In file A we finish with this line.
-
+last. In file B, we make the change even more prominent by also
+adding a fourth line to this second paragraph.

As you can see, the format is almost identical. The difference is that
changes made between the two files are noted next to each line. These can be
interpreted simply as “remove the lines prefixed by the minus sign and
replace them with the lines preceded by the plus signs.”

If you are in the position of passing the files to a human, rather than a
program such as patch, most people prefer to “read” context diffs, largely
because the text can be cut and pasted between the difference file and the
source file. Unified context diffs are more difficult to use manually because
the leading character needs to be stripped.

Preparing for patch

The purpose of the patch command is to use the output of the diff command
to make the necessary changes to one version of a source tree to get it to
match a newer version. patch can accept a number of formats, but the most
reliable is a unified context diff.

Obviously, you don’t want to run the diff command on each file
individually. diff provides a way around this by allowing you to select two
directories to compare rather than two files:
$ diff -u emacs-19.34 bemacs-1.0 >bemacs.diff

This will create a full list of differences between the two directories, but
only for those files immediately inside the two directories. To do it recursively
throughout the entire source tree you need to specify the -r option:
$ diff -ru emacs-19.34 bemacs-1.0 >bemacs.diff

This produces a single file containing everything you would need to change
the basic Emacs source tree into the BeOS-compatible source tree. Next, you’ll
see how to use patch to do this.

patch
To minimize time-consuming downloads, you will often have the option

of downloading diff or patch files from the same location as the full packages.

Page%132%of%467

The files usually contain the string “diff” or “patch” and specify which
version the patch updates and what version you will end with. These patch
files contain the output of the diff command and detail the differences
between versions of a program. These files are much smaller than whole
packages and therefore quicker to download. Once you have the diff files you
can read them and patch the files manually, but it would be much easier if a
program existed which did the patching of the files from the diff contents for
you. This is what patch does.

Patching Packages

patch processes a diff file and performs the following processes before finally
making the changes detailed in the file:

6.1.! Checks for and ignores any irrelevant header information in the file. If
it can, it uses what information it can from the header to identify the type of
diff used in the patch file.
7.2.! Renames the old file, adding a suffix to the name (by default, .orig).
8.3.! Produces a new file with the name of the old file, incorporating the

patches from the patch file directly into this new file.

The precise method used by patch depends on the type of diff contained
in the patch file. As we have already seen, the most reliable type of diff is the
unified context diff, in which both the line numbers and the text are
referenced and patch can check these two items against the file to patch. A
“fuzz factor” is used when the line numbers and text don’t match, and patch
can usually make corrections even when extra lines have been added or
dummy lines removed.

ed-style diffs are the most dangerous, as changes are made to the file
irrespective of the existing contents. For example, an ed-style diff could
specify that line 12 was to be replaced. If additional lines had been inserted
into the file, patch would still replace line 12, even if that line was now line 15.
At all costs, ed-style diffs should be avoided..

If, under any circumstance, patch is unable to identify a place in the old
file where it is supposed to make a patch, it will report an error. The entire
hunk is then written out to a corresponding .rej file which will contain all the
rejected hunks.

To perform the patching process, you usually move to the top of the
package’s source tree, the collection of files and directories that go towards
making up the entire package. The easiest way to find out at which point
within the package to apply the patch is to check the header information

Page%133%of%467

usually included with the patch file. Let’s have a look at the header for the
bash patch from version 1.14.5 to 1.14.6:
$ gunzip -c bash-1.14.5-1.14.6.diff.gz | more
diff -Nrc2 bash-1.14.5/.patchlevel bash-1.14.6/.patchlevel
*** bash-1.14.5/.patchlevel Sat May 20 15:24:57 1995
--- bash-1.14.6/.patchlevel Mon Oct 9 14:42:45 1995

*** 1 ****
! 5
--- 1 ----
! 6
diff -Nrc2 bash-1.14.5/NEWS bash-1.14.6/NEWS
*** bash-1.14.5/NEWS Wed Jul 12 10:08:44 1995
--- bash-1.14.6/NEWS Tue Nov 28 13:21:17 1995

*** 1,64 ****
! This file documents the bugs fixed between this release,
bash-1.14.5,
! and the last public bash release, 1.14.4.

In this example, the patch file isn’t very helpful because it doesn’t tell
you where to apply the patch from. But what you can see from the header
information of the diff file is what files it expects to change. The file in
question is bash-1.14.5/.patchlevel. If you don’t specify any options to patch
the preceding path information, bash-1.14.5 is skipped.

Let’s try patching the file:
$ cd bash-1.14.5
$ gunzip -c ../bash-1.14.5-1.14.6.diff.gz |patch
Hmm... Looks like a new-style context diff to me...
The text leading up to this was:

|diff -Nrc2 bash-1.14.5/.patchlevel bash-1.14.6/.patchlevel
|*** bash-1.14.5/.patchlevel Sat May 20 15:24:57 1995
--- bash-1.14.6/.patchlevel Mon Oct 9 14:42:45 1995
Patching file .patchlevel using Plan A

patch proceeds to patch the file using the information provided:
Hunk #1 succeeded at 1.

patch will continue through the file making modifications to all of the
necessary files until it either hits a problem it can’t get around or reaches the
end of the patch file.

You can reduce the amount of information provided by specifying the -s
option. This still allows patch to describe what it is doing, but not in as much
detail as before.

Better still, you can redirect the output to a file:
$ gunzip -c ../bash-1.14.5-1.14.6.diff.gz |patch -s >patch.log

Sometimes, it is useful to strip the subdirectories specified in the patch
file. This is especially useful if you’ve changed the directory name of the
package. The -pn (where n specifies the number) option enables you to
specify how many directories to strip off each individual file:
$ gunzip -c ../bash-1.14.5-1.14.6.diff.gz |patch -s -p1 >patch.log

Page%134%of%467

This would strip the first directory off the name of any of the files being
patched.Problems

While using patch appears straightforward, there are a number of tricks and
traps that can catch you out and cause more problems than patch is designed
to solve.

If you cancel a patch process partway through you can cause problems
because some of the files will already have been patched, while others are yet
to be patched. If patch identifies that it has already patched the file, it will ask
you if you want to reverse (or roll-back) the patch or ignore the patch changes
and continue on to the next file.

The best solution to this problem is to quit the patch process again and
check the log from the first patch procedure you ran. By checking the log you
will be able to identify any problems (or successes!) in the first patch process.
You can then opt to skip over the patches or reverse the patches previously
applied as required.

For bad hunks (those that fail during the patch process) it is probably
easier to study the log file for the rejected pieces and manually patch the files.
Use the previous sections on diff to help you identify the sections that need to
be modified. Hopefully, the patches will be in context or unified context style
diffs which are much easier to work with.

Occasionally you will come across these lines when patching a file:
$ gunzip -c ../bash-1.14.5-1.14.6.diff.gz |patch -p
Enter the name of the file to patch:

The cause of this is usually a mismatch between the file name of the current
file and the name expected in the patch file. This is common when you change
the name in order to fix a problem during the porting process or if you have
started the patch process from the wrong directory.

If you are in the parent directory of the package you are porting you can
specify the -p option to force patch to use the directory name included in the
patch file.

Sometimes you may run the patch process on what appears to be a patch
file but get a message like this:
$ patch <foo.diffs
Hmm... I can’t seem to find a patch in there anywhere

You can assume from this that the file isn’t a patch file at all. In UNIX
this usually points to an outdated version of the patch program (older
versions don’t support the more modern unified context diffs). In the BeOS
this shouldn’t be a problem.

Page%135%of%467

Backups
Any programmer knows about the importance of keeping backups, but many
people fail to back up their files often enough. Sometimes they end up doing
it only once in the course of a project—halfway through, or worse, only at the
end. Such backups are not always useful, though. By their very nature,
backups are static, snapshots in time.

Revision systems do form a basic backup system by keeping a copy of
your files in another place. That way if you accidentally delete a file you can
recover the last revision you checked in. However, what if you delete the
directory? Worse, what happens when your hard disk drive dies? What
happens when your entire machine fails? While the latter examples sound
dramatic, they do happen, and usually it’s just before a deadline. A revision
system won’t help you; you need a full-scale backup.

When making a backup you need to decide what you want to back up,
and what you are going to back up to. For most situations backing up the
entire directory tree of the application you are porting is a good idea. This is
wasteful of space, but it does ensure that you can go back to an exact point in
time when your sources and object files matched.

If you want to conserve space, you can get away with just backing up the
source files. In theory these should contain the information required to create
any object or application files, but you should ensure that you back up
everything you need. Always remember to include any Makefiles, scripts,
configuration files, and so on.

Once you have decided what you want to back up, decide on the
medium you are going to back up to. At the worst you can consider backing
up to another folder on the same drive as your source, but ideally you should
consider backing up to a different drive, floppy disk, or even tape. The BeOS
supports removable mass-storage devices like Jaz and Zip cartridges, and
these are a quick and easy medium to back up onto.

If the size of the backup is small you could consider using floppy disks.
These don’t store much (1.44Mb per disk) but still might be adequate for the
sources of a small program. Using tar you can also backup onto multiple
floppy disks. For example, the command
$ tar cM ./foo

will back up the directory foo to as many floppies as are required. The GNU
tar program handles the disk labeling and ensures that files can be retrieved
off the disks again providing they are inserted in the correct order. The disks
need to formatted, as tar is unable to format the disks itself. Use the command
$ tar xM

to restore from multiple floppies.

Page%136%of%467

If you use another disk or removable media of some kind, you can back
up to a file using tar. The advantage of using tar over simply copying files to
other directories is that tar is usually more reliable, makes it easier to extract a
single file from an archive, and often uses less space. Also, when using a tar
file with a compression program like compress, zip or gzip you will get a
better compression ratio than if you compressed individual files.

To back up an entire directory to another directory, use the following
command:
$ tar cf - ./foo| gzip - /boot/backups/foo-backup.tar

This example would create a gzipped tar file on the backups directory of the
boot disk.

One other advantage of the GNU tar command is that you can specify
that only files which have been modified since a particular date should be
backed up. Using this feature you can do incremental backups, which use less
space, allowing you to perform backups on different days.

Backup levels
Backups can be separated into a number of levels. The top level is a Full

backup, this backs up all files, directories regardless of the date they were
created. Subsequent backups are then classed as incremental. There are many
different definitions of incremental. At it’s most basic level, an incremental
backup backs up all files which have changed since the last full backup. This
is an efficient model, and is the one used by most backup systems. However,
as you change more files, the longer the period between the full and the
incremental backup, the larger the number of files that will be stored.

GNU tar uses a modified version of the incremental backup which
allows you to back up all the files which have changed since a specific date.
This model allows you to backup files based on the last time any backup was
run, rather than just the last full backup.

An extension to the incremental model is to use different level numbers
for each incremental backup. A level 1 incremental backup backs up all files
since the last level 1 or full backup was performed. A level 5 backup only
records files that have changed since the last level 5, or higher (1-4, including
full) backup has taken place. The higher backup supersedes the lower backup,
recording all the files that have changed since the last backup of the same or
higher number. These different levels can be combined to make an efficient
system for incrementally backing up files.

For example, lets say you do a full backup every Friday. On Monday,
you perform a level 5 incremental backup, which backs up all the files

Page%137%of%467

changed since the full backup on Friday. On Tuesday, you do another level 5
incremental backup which only records the files that have changed since
Mondays level 5 backup.

On Wednesday, you do a level 3 backup, this backs up all the files
changed since the full backup on Friday, including those files that were
backed up on Monday and Tuesday. On Thursday you do a level 5 backup
again, but this time, it only records the changes since Wednesdays level 3
backup. On Friday, you perform a full backup, and the whole process repeats
again.

Using this model, you have a full backup and a half week backup safely
stored in a safe or offsite. You can also use the different levels to back up files
throughout the day (using, for example level 9), then have a tape back up all
the files changed throughout the day during the night (using level 5), and
then repeat the model outlined above.

Finally, the last level is “x”. An x level incremental or true incremental
backup is similar to a standard incremental. However, the guide time for the
file is not the last full backup, nor is it measured against whether the file has
changed since a specified date. Instead, the file is only backed up if it has been
modified since the last time the file was backed up.

I use the script below to back up my files (stored in /MCCe/Projects/
InProgress). You can modify this script for your own backups, or write your
own.
#!/boot/bin/sh
bdir=“/MCCe/Projects/InProgress”
date=`date|sed -e “s/\ .*//” |sed -e “s/\//./g”`
bdate=$1
bhead=“/MCCe/Backups/Projects”
cd $bdir
bref=1
bfile=“$bhead.$date.$bref.tar.gz”
while [-f $bfile]
do
 bref=`expr $bref + 1`
 bfile=“$bhead.$date.$bref.tar.gz”
done
tar cfN - $bdate ./*|gzip - >$bfile

To use this script, adjust the directories you want to back up from and to
(specified in bdir and bhead), and then run the command
$ backup mmddyy

where mmddyy is a date you specify in month-day-year format with no
punctuation). All files modified after that date will be backed up.

The script should be easy to follow. It automatically creates an
incremental backup to a different disk drive, compressing the archive and
labeling the file with the date of the backup. An incremental number is also

Page%138%of%467

attached to ensure that multiple backups on the same day do not overwrite
each other.

Page%139%of%467

Chapter 7: Getting Started
Once you understand the basics of the tools available on the BeOS, you can
start porting your chosen application.

The steps involved depend largely on the package you are porting and
the complexity of the source code. Preparation is the key to success: make
sure that you understand the steps involved in configuring and installing the
package. Every package, even those supplied by GNU, is installed a different
way. Reading the documentation should be your first step; this should
provide you with all the information you need to start the porting process.

Reading the Documentation
The well-used acronym RTFM (Read the “Fine” Manual) applies as much to
programmers as it does to users, and probably more. User applications are
usually supplied precompiled, with the configuration for a specific machine
already worked out. The most difficult decision required during installation is
which disk and which directory to install the software into. This is to protect
the user from what is (behind the scenes at least) a complicated process.

Programmers, porters, and system administrators are expected to be
more knowledgeable about the machines and the packages they are installing.
In the case of UNIX software, source files are supplied and the person
installing is expected to have a basic knowledge of the build process. This is
true for many programs, from free software distributed by organizations like
GNU to Oracle database products.

You must read the documentation supplied with a software package
before you do anything else. I don’t mean the entire documentation; CVS, for
instance, has almost a thousand pages of documentation, including the user
manual and sample guides.

Key elements typically are installation guides and the “Read me” files
found in most packages. In Chapter 5 we looked at the contents of a typical
package directory. Lets have another look at the base directory for Emacs.
What we are looking for is a file called README or INSTALL:
$ ls -F
BUGS configure.in mkinstalldirs*
ChangeLog cpp/ move-if-change*
GETTING.GNU.SOFTWARE etc/ msdos/
INSTALL info/ nt/
Makefile.in install.sh* oldXMenu/
PROBLEMS lib-src/ site-lisp/
README lisp/ src/
config.bat lock/ update-subdirs*

Page%140%of%467

config.guess* lwlib/ vms/
config.sub* make-dist* vpath.sed
configure* man/

Emacs has grown from an advanced editor to something which almost
resembles an entire operating system. This makes the sources large. Version
19.34b of Emacs is 10.5Mb even when compressed; uncompressed it is almost
40Mb. Part of this is the base package itself: the elisp files, the documentation,
and the core source code. A sizable amount, though, is composed of the
compatibility files which make Emacs work on a number of different
platforms.

As with all GNU software, and most other supplied packages, the
INSTALL file should be the place to start looking for information about how
to configure and install the package. Let’s have a look at the start of the
INSTALL file supplied with Emacs:
$ more INSTALL
GNU Emacs Installation Guide
Copyright (c) 1992, 1994 Free software Foundation, Inc.

 Permission is granted to anyone to make or distribute verbatim
copies
 of this document as received, in any medium, provided that the
 copyright notice and permission notice are preserved,
 and that the distributor grants the recipient permission
 for further redistribution as permitted by this notice.

 Permission is granted to distribute modified versions
 of this document, or of portions of it,
 under the above conditions, provided also that they
 carry prominent notices stating who last changed them,
 and that any new or changed statements about the activities
 of the Free Software Foundation are approved by the Foundation.

BUILDING AND INSTALLATION:

(This is for a Unix or Unix-like system. For MSDOS, see below; search
for MSDOG. For Windows NT or Windows 95, see the file nt/INSTALL.)

 1) Make sure your system has enough swapping space allocated to
handle
a program whose pure code is 900k bytes and whose data area is at
least 400k and can reach 8Mb or more. If the swapping space is
insufficient, you will get an error in the command `temacs -batch -l
loadup dump', found in `./src/Makefile.in', or possibly when
running the final dumped Emacs.

Building Emacs requires about 70 Mb of disk space (including the Emacs
sources). Once installed, Emacs occupies about 35 Mb in the file
system where it is installed; this includes the executable files, Lisp
libraries, miscellaneous data files, and on-line documentation. If
the building and installation take place in different directories,
then the installation procedure momentarily requires 70+35 Mb.

After the initial copyright notice and excerpt from the GNU General
Public License, we leap straight into the installation process, starting with
requirements and prerequisites. Let’s continue through the file for another
page:
2) Consult `./etc/MACHINES' to see what configuration name you should

Page%141%of%467

give to the `configure' program. That file offers hints for
getting around some possible installation problems.

3) In the top directory of the Emacs distribution, run the program
`configure' as follows:

 ./configure CONFIGURATION-NAME [--OPTION[=VALUE]] ...

The CONFIGURATION-NAME argument should be a configuration name given
in `./etc/MACHINES'. If omitted, `configure' will try to guess your
system type; if it cannot, you must find the appropriate configuration
name in `./etc/MACHINES' and specify it explicitly.

If you don't want X support, specify `--with-x=no'. If you omit this
option, `configure' will try to figure out for itself whether your
system has X, and arrange to use it if present.

The `--x-includes=DIR' and `--x-libraries=DIR' options tell the build
process where the compiler should look for the include files and
object libraries used with the X Window System. Normally, `configure'
is able to find them; these options are necessary if you have your X
Window System files installed in unusual places. These options also
accept a list of directories, separated with colons.

Step 2 tells us to check the ./etc/MACHINES file for more information
on the platforms Emacs has been ported to. Step 3 tells us how to configure
the package, which must be done before we can build it. In this case it
describes how to run the configure program, something we’ll look at in more
detail in Chapter 10.

Let’s look at a different INSTALL file, this time from the wu-ftpd
package:
INSTALLATION INSTRUCTIONS

1. edit src/pathnames.h to conform to your needs.

 _PATH_FTPUSERS "/etc/ftpusers"
 The file that lists users that can never ftp in. Usually
contains
 root and all usernames not connected to a real person (eg.
bin, sync,
 nobody, etc.)
 _PATH_FTPACCESS "/usr/local/etc/ftpaccess"
 The configuration file for the server.
 _PATH_FTPHOSTS "/etc/ftphosts"
 The individual user access configuration file.
** _PATH_EXECPATH "/bin/ftp-exec"
 The directory that contains additional binaries for use with
the
 SITE EXEC command.
 _PATH_PIDNAMES "/usr/local/daemon/ftpd/ftp.pids-%s"
 The filename template for pid files. The %s gets
automagically
 replaced by the proper classname. There will be as many pid
files
 as there are classes in your ftpaccess.
 _PATH_CVT "/usr/local/etc/ftpconversions"
 The file that contains the conversion (file -> file.Z, etc)
 configuration. See ftpconversions.5 for a description of the
format.

This time we launch straight into the configuration information. This is
less useful than the Emacs file; there are no notes about installation

Page%142%of%467

requirements, or details on how to find out what platforms this software has
already been installed on.

If the INSTALL file is not available try the README, which is sometimes
used to describe the installation process. You might also find that some
packages use different installation instructions for different platforms, and
these details can be found in files with the OS name appended to either
README or INSTALL. In all cases you should read all the files completely
and make sure that you understand what is involved.

In general, you should try to identify the following key elements:

•! What is required to compile the package. This includes prerequisite
items. For example, RCS requires that diff and diff3 be installed. Other
packages may rely on specific libraries to function, such as dbm or the
GNU readline library. It also includes any other pertinent information,
such as the space required to build and install the package.

•! How to configure the package. Beyond using a configuration script,
many options are specified in one or more header files. In particular, the
config.h and paths.h files contain the bulk of such information and are
common to most packages. You should also be aware of any changes
that may be required to the Makefile.

•! What steps are required to compile and build the package. After
configuration, you must know the process for actually compiling the
source code. For most packages this is a simple case of running make; for
others it may require more complex steps. GCC, for example, requires at
least three steps after configuration just to compile the base product. This
process is deliberately not automated to ensure that the compilation
proceeds correctly.

•! How to install the package. This is often as simple as typing make
install, but some packages have special steps and processes in addition
to, or instead of, the make command.

You can use this checklist to help you decide if you are prepared to compile a
package.

If the application hasn’t already been ported to the BeOS you should also
be looking for any references to:

•! POSIX compliance. The BeOS is mostly POSIX-compliant, and any
package that supports POSIX commands will probably be easier to port.

•! SVR4 or SYSV compatibility. SVR4 (System V Release 4) forms the basis
of many UNIX OSs, including Sun Solaris and HP-UX. Although the
BeOS isn’t SVR4-compliant, a lot of SVR4 code is actually POSIX-
compliant.

Page%143%of%467

•! AIX compatibility. Usually this only matters with applications that are
affected by the processor type you are running on. Compilers are a good
example. AIX is the most stable of the UNIX flavors which are supported
on PowerPC equipment.

•! Linux compatibility. Because the BeOS is also available on the Intel
platform, Linux is the obvious choice for Intel based BeOS porting and
should help to alleviate some of the difficulties experienced when the
processor type is required by the package being ported. Linux is also
very close to the POSIX specification. Since the BeOS is also POSIX
compatible it should be a good platform to start from.

Identifying the Build Type
If you’re lucky, reading the package’s installation instructions will provide
you with all the information you need. Unfortunately, not everybody is as
diligent as the GNU team in describing the processes required to build a
package. If an installation guide is enclosed it will sometimes be incomplete.
There are even some packages that don’t come with any documentation at all,
in which case you need to use other methods to reveal the build type.

There are many different ways to build an application, but there are four
main steps common to each:

9.1.! Configure the package for your OS (often automatic). This usually
includes making decisions about the libraries to use, the header files to
use, and the definitions required to compile the source correctly.
Although I’ve described this as configuring for your OS, it can
sometimes be machine-specific depending on the additional programs
and libraries you might have installed.

10.2.!Configure the package for your machine (often manual). This should
include information like the location of your libraries, where to install
the completed package, and so on. Often this level of configuration only
requires specifying a few directories, but sometimes it includes more
detailed information such as host names and network types. This isn’t
the same as the user configuration; the information you supply here will
be hard-coded into the program and won’t constitute part of the
configuration files once the package is installed.

11.3.!Build the package. Building is usually controlled by a make program or
a clever compilation script that does the work for you. make-based
builds are easiest to understand; scripts aren’t always so easy to follow.
In all cases, what you’re looking for is a program which runs the
compiler that builds the software.

Page%144%of%467

12.4.!Install the package. This is usually relatively straightforward and is

often handled by the same system (Makefile or a script) as the build

process. In other cases you need to manually install the software and

support files.

Depending on the package, different programmers will have implemented
these steps in different ways.

To identify the build type you need to start by looking at the package
directory again. Let’s assume that Emacs doesn’t come with any
documentation describing how to go about installing and configuring the
package. You should be able to spot some things automatically. There are a
number of scripts (denoted by the trailing asterisk) which are probably
involved in at least one part of the process. There is also a Makefile, and
although it doesn’t have the normal name, the trailing suffix denotes that it
will probably be used during the configuration process.
$ ls -F
BUGS configure.in mkinstalldirs*
ChangeLog cpp/ move-if-change*
GETTING.GNU.SOFTWARE etc/ msdos/
INSTALL info/ nt/
Makefile.in install.sh* oldXMenu/
PROBLEMS lib-src/ site-lisp/
README lisp/ src/
config.bat lock/ update-subdirs*
config.guess* lwlib/ vms/
config.sub* make-dist* vpath.sed
configure* man/

Tip: The -F option displays a trailing asterisk (*) for executable files and a slash (/)
for directories.

This is a fairly typical example from the GNU project; nearly all GNU
software follows the same general idea and is supported by a configure script
generated by the autoconf package, also from GNU. We’ll cover configuration
scripts in more detail in Chapter 10.

Even perl follows the same basic idea, albeit with different file names.
Here’s the directory of v4.036:
$ ls -F
Artistic cflags.SH h2ph.SH perly.fixer
Configure* client h2pl/ perly.y
Copying cmd.c handy.h regcomp.c
EXTERN.h cmd.h hash.c regcomp.h
INTERN.h config.H hash.h regexec.c
MANIFEST config_h.SH hints/ regexp.h
Makefile.SH cons.c installperl server
PACKINGLIST@36 consarg.c ioctl.pl spat.h
README doSH lib/ stab.c
README.ncr doarg.c makedepend.SH stab.h
README.uport doio.c makedir.SH str.c
README.xenix dolist.c malloc.c str.h
Wishlist dump.c msdos/ t/
arg.h eg/ os2/ toke.c

Page%145%of%467

array.c emacs/ patchlevel.h usersub.c
array.h eval.c perl.c usub/
atarist/ form.c perl.h util.c
c2ph.SH form.h perl.man util.h
c2ph.doc gettest perlsh x2p/

Instead of the lowercase configure script, we have a single Configure
script with a number of non-executable shell scripts (config_h.SH and
makedepend.SH, for example) supporting the main one.

Not all applications have a configuration script. For some you will need
to manually configure a file with information about both the OS you are using
and the individual setup of your machine. In these cases you need to look for
a header file which is common to the majority of the source files. Usually this
is called config.h, or there will be a header file whose name matches the name
of the package, as in the case of the Apache Web server software, where the
configuration file is called httpd.h.

There are also some applications which don’t have a configuration file of
any sort. Often the entire build is controlled by a single Makefile which
includes information about the configuration in the form of define options to
the compiler. We’ll look at these in some detail in Chapter 9.

For a short period of time many packages were configured using imake.
This was an attempt to standardize the configuration information required to
build X applications using a number of OS-specific files which, when
processed with the supplied imakefile using the C preprocessor, produced a
normal Makefile which was then used to build the package. A BeOS version is
now available as part of the X Windows port. If you want to avoid using
imake, you can usually use make because most packages were also supplied
with a traditional Makefile.

Identifying the Build Process
You may be under the impression that once you have identified the build
type, the build process is the same. This should be true for most applications.
If you find a Makefile it’s reasonable to assume that the build process requires
you to run the make command. However, many porting exercises involve
other programs, scripts, and processes behind the scenes. In these situations
you need to be able to identify what happens when you type make, or what
happens during the configuration process.

This may sound like reverse logic. Surely if the INSTALL file says to run
configure, followed by typing make, then this is the build process, right?
Wrong! For some packages typing make does nothing more than execute a
script which in turn builds the package. In other cases, a script is wrapped
around an execution of make.

Page%146%of%467

Knowing what goes on behind the scenes is vital if you need to identify
why the build failed. Not all problems are caused by a fault with the source
files. In the case of the BeOS some shell scripts fail because of
incompatibilities in the shell itself, or because programs that the script expects
to find are missing. There are also some packages that supply a Makefile
which actually does nothing more than tell you how to configure and build
the package.

 The best course of action in any situation where you can’t decipher the
build process is to actually read the Makefile, configuration scripts, and any
other files that are obviously not source-related. This is time-consuming, but
sometimes necessary.

Page%147%of%467

Chapter 8: Configuring the Package
We saw in the last chapter how we can identify the build type by looking at
the document and the files that are supplied with the package. The build type
will be one of three distinct options. Either the configuration is automatic,
coupled with a Makefile or build script; the configuration is interactive,
coupled with a Makefile or build script; or the configuration needs to be
performed manually, combined with either a Makefile or build script.

Once you have identified the build type, you should be in a position to
start the porting process. Different packages have different build types, but
there are some common elements in all packages which you will have to
modify or find workarounds for in order to proceed.

In this chapter we will take a closer look at the options you will need to
change to help port the package, including the the tools, directory locations
and other information. We will also investigate the use of #include and #ifdef
to control the configuration of the package.

Preparation
We have already covered in Part 1 the different tools you will need to use
whilst porting, including editors, revision systems, and backup systems. The
previous chapter should have helped you to identify the build type and the
build process. All of this is in preparation for the final assault, as it were, on
the actual process of porting.

If you’ve gotten this far, the package should by now be unpacked, and
you should be in the base directory eager to start. In Chapter 6 I explained
how best to go about making backups. Before you even start a port, make
backup copies of the configuration scripts, files, Makefiles, and anything else
which you feel you may need to refer to at some later stage.

You will always find during the course of a port that you suddenly need
to refer to a file that you have modified. This is a problem if you have
modified the file so much that the configuration no longer works; you may
have to back out that revision and go back a version or two. If you aren’t
using a revision system then you will need to return to the original supplied
version of the file, or perhaps even the original package.

If we take a look at one of my build directories where I keep some of my
current porting projects you can see that I keep multiple copies of each
package (in this case perl) and each one is in a different stage of development.
$ ls
drwxrwxrwx 0 elvis 1 0 Dec 11 15:29 beperl5.8.1/
drwxrwxrwx 0 elvis 1 0 Dec 11 15:29 beperl5.8.1-src/

Page%148%of%467

drwxrwxrwx 0 elvis 1 0 Dec 11 15:32 beperl5.8.1-
src.bak/
drwxrwxrwx 0 elvis 1 336403 Dec 11 15:35
beperl5.8.1.tar.gz
drwxrwxrwx 0 elvis 1 0 Dec 11 15:35 beperl5.8.2-src/
drwxrwxrwx 0 elvis 1 0 Dec 11 15:38 beperl5.8.3-src/
drwxrwxrwx 0 elvis 1 0 Dec 3 14:16 beperlm/
drwxrwxrwx 0 elvis 1 0 Dec 11 17:41 perl-5.003/

One directory, perl-5.003, is the directory created by extracting the GNU
package. The other perl directories, those starting with beperl, show the
different versions I have in production. If at any time I need to return to the
original files as supplied then I can simply open the version in the perl-5.003
directory.

This is wasteful on space, but ultimately more useful than only keeping a
few of the files. I don’t make any changes to the default directory; any
modifications during the build process are made in the corresponding build
directory, keeping the packaged versions fresh.

The first version I worked on was v5.001. I had completed this port
when I decided to do a test port of v5.003, contained in the beperl5.8.2-src
directory. I then progressed to do a full version, which is contained the
beperl5.8.3-src directory. Finally, the beperlm directory is a reference directory,
this time from a build on a Sun SPARCstation running Solaris 2.4. This is an
extensive set of directories for a package which has a very complicated build
process, and so the different versions become a vital reference throughout the
life cycle of the port.

If you do not have much disk space (and remember to ensure you have
enough space the build the package) then you can make copies of just the
most important files. Check the documentation, but a good starting list is:

•! Makefile

•! Makefile.in

•! config.h
•! configh.in

I tend to use a suffix of .supp to show that the copy is the “supplied”
version of the file. Alternatively, you may decide to check in the supplied
versions using RCS. Remember, however, that you cannot easily then refer to
the file if you need to without checking in the current version and checking
out the first revision. This can be a problem if you need to make comparisons
between versions of the file.

The final step before proceeding is to check the documentation again. I
really can’t stress enough the importance of reading the README, INSTALL,
and other relevant files before proceeding to do a port. Without the
information supplied in these files, knowing how to configure the package

Page%149%of%467

and what to change to configure it properly will be difficult at best,
impossible at worst.

Take time to double-check that you have everything you need:

•! The extracted package in suitable directory on your hard drive

•! A backup copy of the important files, or better still of the entire package

•! Paper and pen, to make notes whilst you are working
•! Coffee, tea, or your preferred beverage!

Now you are ready to proceed.

Expect to Change
Even in well-ported and well-configured packages, such as those from GNU,
you can expect to change at least some basic items during the process of a
port. Your typical software package includes a number of elements that
stipulate how the program should be compiled, including the libraries, library
locations, and header file locations required during the build process.

The changes to these vital pieces of information may be in header files or
configuration files, may be entered during an interactive configuration script,
or may even be in a Makefile. What is important is not where the change takes
place, but that you must change the information for the package to be built
and configured correctly.

Whatever the method of configuration, there are three core items you
will need to change:

•! Directories. You’ll need to specify directories for header paths,
configuration information, and the final installation destinations.

•! Tools. The BeOS doesn’t support all of the tools supported by UNIX, and
those it does support may have different names. For example, lex been
replaced by the GNU version, called flex.

•! Libraries. Different machines have different libraries, and usually
different library locations

Directories

Though there are many standards in the UNIX community there is no
adhered-to standard for the location of anything. In particular, supplied
software can be, and often is, installed in a variety of places.

You therefore need to be prepared to modify the directories used for the
installation and any hard-coded configuration information used by the

Page%150%of%467

package. If you have a look at the extract below of the httpd.h header file,
taken from the Apache WWW server package, you can see the directory
specification required for the root installation directory of the httpd
application.
#ifdef __EMX__
/* Set default for the OS/2 file system */
#define HTTPD_ROOT “/os2httpd”
#else
#define HTTPD_ROOT “/usr/local/etc/httpd”
#endif

This information is hard-coded, using C definitions, into the source code
because there is no accepted location for a preferences directory. We will see
the effect of defines and how they are used later in this chapter.

You will also find that you need to change the definitions for the
installation directory. A typical GNU package uses a standard system under
the /usr/local directory. Within this directory the model then follows the
basic layout of the UNIX file system, with /usr/local/etc used for
configuration information, /usr/local/bin used for the executables and /usr/
local/lib used for the library and support files.

Check the directory specifications of any tools used during the build
process. GNU make uses the PATH environment variable to search for any
tools required. Some packages specify the tools with absolute directory
references, which will cause a problem under the BeOS because it is not like a
standard UNIX system. For example, specify that the C compiler should be /
usr/bin/cc will cause problems because not only does the directory not exist,
but the compiler is called mwcc not cc. Although a script called cc will allow
you to use the cc in place of mwcc, it is probably a good idea to change the
entries to mwcc anyway. If you do make the change, you will need to specify
some additional search directories for the header files. As standard, mwcc
does not include the current directory for header file files, so you need to
include -I- -I. in the compiler definition.

Finally, check the directory specification of any header files or library
paths. This is particularly important if you are using any third-party-supplied
libraries. It is not uncommon to come across a line like this:
CFLAGS = -O -g -I/usr/local/include -L/usr/local/lib

You should double-check to make sure the specified directories exist, and if
they don’t, either change the references or remove them altogether.
Warning: Removing directory references can cause more problems trhan it solves.
This is particularly the case when it comes to testing. Not having a directory that the
package deems vital could cause it to fail for some unknown reason, and you then
spend hours trying to identify the bug in the code!

Tools

Page%151%of%467

In some of the earlier chapters I explained about some of the tools that are
missing in the BeOS and described ways of producing similar, if not identical,
results. During the build process you will usually find that some tools either
do not exist or don’t work in the desired fashion.

The most commonly missing tool is the C compiler, which is called cc
under most UNIX variants. Some packages specify that you should use the
GNU C compiler, rather than the vendor-supplied compiler. This is gcc, a port
of which for the BeOS has recently been completed by Fred Fish (see
Appendix A for more information).

The specification of gcc by a package usually signifies that it relies on
gcc’s compiler features. gcc supports the concurrent use of debugging
symbols and optimization;, the two are mutually exclusive on most C
compilers. Under some OSs gcc is known to be more reliable or to produce
better code. For example, under the SunOS the alloca() library function is
notoriously unreliable; gcc, however, includes its own version of alloca(),
resolving the problem quickly and easily. In addition, gcc supports non-
standard C expressions, such as variable length array declarations such as
void foo(int a)
{
 int bar[a];
}

These types of expression will need to modified under the BeOS, as
mwcc doesn’t support this option.

Under the BeOS, the C compiler is mwcc, short for Metrowerks C
compiler. All of the basic options for C compilers are supported by mwcc and
we will learn more about the specifics of mwcc in Chapter 13. Using any C
compiler you can therefore simply change the cc specified to mwcc, or gcc if
you have it.

A close second in the missing tool list is the linker. Under UNIX this is
usually ld, although most C compilers will act as an interface to the linker.
Under the BeOS, the same tool is mwld, and a script called ld is also supplied,
but unless the linker is specifically required you can usually replace ld with
mwcc.

When you’re building libraries, there is no ar command for assembling
them but there is an ar script which emulates the functionality. It is not ideal,
and because of some of the limitations of using mwcc as a replacement for ar
not all of the features are supported. We will have a look at an alternative
version of the ar script later in this book. A POSIX version of ar that is BeOS
compatible has also been released by Chris Herborth, and details are available
in Appendix A for how to obtain this application.

The ranlib command doens’t convert libraries into the random library
format required either. Most UNIX flavors don't use the ranlib command

Page%152%of%467

either, and the BeOS is supplied with a script that does nothing to aid in the
build process. Instead of using ar and ranlib you need to use an option with
the C compiler to produce either a static or dynamic library; we’ll see what
command to replace these two commands with in Chapter 13.

The tools yacc, the source code generator for compilers, and lex, the
lexical analyzer, do not exist in the BeOS either, but we do have their GNU
equivalents, bison (in fact, you use bison -y) and flex. There are some
differences in the operation of these two commands compared to the standard
UNIX versions, but usually you can simply substitute the commands without
causing too many difficulties. Chapter 12 covers these differences in greater
detail.

Most other commands used during the build process—cp, install and
others—have BeOS equivalents. However, it is worth familiarizing yourself
with the commands found on the BeOS so that you can quickly identify the
commands a package is asking for, and the probably equivalent and it’s
location.

Libraries

While it is unlikely that you will need to change the actual names of libraries
required during the build process, there are some differences in the libraries
available and the directories in which they can be found.

The standard BeOS library locations are specified by the BELIBRARIES
environment variable, which by default points to the system libraries in /
boot/beos/system/lib and the developer libraries which come as part of the
C compiler in /boot/develop/lib. These libraries contain most of the core
functions in just a few files. It is especially important to note that, unlike in
some UNIX variants, you do not need to include extra libraries for access to
networking and other OS extensions.

Unlike Solaris, where a typical command to compile a network tool
would contain all of the libraries:
$ cc nettool.o -o nettool -lsocket -lnsl

we can get away under the BeOS with just
$ mwcc nettool.o -o nettool

without causing too many difficulties. Of course, this relies on the functions
existing and working correctly, something we’ll cover in the last part of this
book.

We do still need to specify utility libraries such as the lex library (-lfl)
The full list of utility libraries is as follows:
Library Name	 Description

Page%153%of%467

libdll.a! Glue code, startup functions and dynamically loadable library
support

libfl.a! ! Flex support library

libtermcap.a! Termcap (see Chapter 21)

Using #include in the Configuration Process
Header files, or include files, help to provide the necessary data structures,
definitions, and function prototypes for OS, utility, and library functions.
They are split into well-defined groups, and beyond some standard C header
files, each UNIX variant (even those based on the same major variant of BSD
and USG versions of UNIX) has a different name for essentially the same file.

This can cause a number of problems during the porting process. The
BeOS is POSIX compliant which makes our lives significantly easier. The
names of the different header files, and the contents of those files have been
standardized.

The most likely way of modifying this information is to change a
configuration option to cause a different header file to be included. In extreme
circumstances, you may need to change the header files actually referenced in
the source code. Most packages use the identity of the OS to automatically
select the required include file, but knowing the available header files should
help you to spot any problems before they occur.

BeOS Headers

BeOS header files are stored in the /boot/develop/headers directory. This is
subdivided into three further directories: be, which contains the files used by
the Be C++/GUI environment; gnu, which contains the supplied GNU utility
headers; and finally posix, which contains all of the POSIX headers. This last
directory is the one we are most interested in as it contains the files
responsible for the POSIX-compatible layer, the closest thing to UNIX-style
header files we can get.

The full list of files in the Preview Release of the BeOS is as follows:
-r--r--r-- 1 baron users 4056 Jun 28 03:13 CPlusLib.h
-r--r--r-- 1 baron users 157 Jun 28 03:13 alloca.h
-r--r--r-- 1 baron users 1281 Jun 28 03:13 ansi_parms.h
-r--r--r-- 1 baron users 737 Jun 28 03:13 assert.h
-r--r--r-- 1 baron users 1211 Jun 28 03:13 be_math.h
-r--r--r-- 1 baron users 532 Jun 28 03:13 bsd_mem.h
-r--r--r-- 1 baron users 3406 Jun 28 03:13 ctype.h
-r--r--r-- 1 baron users 671 Jun 28 03:13 dirent.h
-r--r--r-- 1 baron users 359 Jun 28 03:13 div_t.h
-r--r--r-- 1 baron users 1666 Jun 28 03:13 errno.h
-r--r--r-- 1 baron users 1699 Jun 28 03:13 fcntl.h

Page%154%of%467

-r--r--r-- 1 baron users 4099 Jun 28 03:13 float.h
-r--r--r-- 1 baron users 4762 Jun 28 03:13 getopt.h
-r--r--r-- 1 baron users 458 Jun 28 03:13 grp.h
-r--r--r-- 1 baron users 1031 Jun 28 03:13 limits.be.h
-r--r--r-- 1 baron users 1134 Jun 28 03:13 limits.h
-r--r--r-- 1 baron users 1157 Jun 28 03:13 locale.h
-r--r--r-- 1 baron users 5206 Jun 28 03:13 malloc.h
-r--r--r-- 1 baron users 6256 Jun 28 03:13
malloc_internal.h
-r--r--r-- 1 baron users 2361 Jun 28 03:13 math.be.h
-r--r--r-- 1 baron users 11274 Jun 28 03:13 math.h
-r--r--r-- 1 baron users 133 Jun 28 03:13 memory.h
-r--r--r-- 1 baron users 239 Jun 28 03:13 null.h
-r--r--r-- 1 baron users 3452 Jun 28 03:13 parsedate.h
-r--r--r-- 1 baron users 522 Jun 28 03:13 pwd.h
-r--r--r-- 1 baron users 1534 Jun 28 03:13 setjmp.h
-r--r--r-- 1 baron users 5406 Jun 28 03:13 signal.be.h
-r--r--r-- 1 baron users 940 Jun 28 03:13 signal.h
-r--r--r-- 1 baron users 453 Jun 28 03:13 size_t.h
-r--r--r-- 1 baron users 1130 Jun 28 03:13 stdarg.h
-r--r--r-- 1 baron users 540 Jun 28 03:13 stddef.h
-r--r--r-- 1 baron users 6724 Jun 28 03:13 stdio.h
-r--r--r-- 1 baron users 3074 Jun 28 03:13 stdlib.h
-r--r--r-- 1 baron users 671 Jun 28 03:13 string.be.h
-r--r--r-- 1 baron users 5340 Jun 28 03:13 string.h
drwxr-xr-x 1 baron users 2048 Jul 20 10:33 sys
-r--r--r-- 1 baron users 6623 Jun 28 03:13 termios.h
-r--r--r-- 1 baron users 3181 Jun 28 03:13 time.h
-r--r--r-- 1 baron users 4448 Jun 28 03:13 unistd.h
-r--r--r-- 1 baron users 243 Jun 28 03:13 utime.h
-r--r--r-- 1 baron users 279 Jun 28 03:13 va_list.h
-r--r--r-- 1 baron users 560 Jun 28 03:13 wchar_t.h

with the contents of the sys subdirectory being
drwxr-xr-x 1 baron users 2048 Jul 20 10:33 .
drwxr-xr-x 1 baron users 2048 Jul 20 10:33 ..
-r--r--r-- 1 baron users 319 Jun 28 03:13 dir.h
-r--r--r-- 1 baron users 289 Jun 28 03:13 dirent.h
-r--r--r-- 1 baron users 92 Jun 28 03:13 fcntl.h
-r--r--r-- 1 baron users 68 Jun 28 03:13 file.h
-r--r--r-- 1 baron users 129 Jun 28 03:13 ioctl.h
-r--r--r-- 1 baron users 161 Jun 28 03:13 param.h
-r--r--r-- 1 baron users 130 Jun 28 03:13 socket.h
-r--r--r-- 1 baron users 3480 Jun 28 03:13 stat.h
-r--r--r-- 1 baron users 358 Jun 28 03:13 sysmacros.h
-r--r--r-- 1 baron users 793 Jun 28 03:13 time.h
-r--r--r-- 1 baron users 502 Jun 28 03:13 times.h
-r--r--r-- 1 baron users 959 Jun 28 03:13 types.h
-r--r--r-- 1 baron users 300 Jun 28 03:13 utsname.h
-r--r--r-- 1 baron users 649 Jun 28 03:13 wait.h

This directory structure matches most UNIX variants, in particular the SVR4
layout, very closely. This is due, as we have already noted, because of the
POSIX style support.

You will notice that a number of the files seem excessively small. sys/
fcntl.h is only 92 bytes. This is the file that normally contains information
about the file modes and file locks, and other file-control information. In this
case the contents of the file just include the file fcntl.h, which is taken from
the /boot/develop/header/be/kernel/fcntl.h file.

Because of the two styles of programming on the BeOS many of the files
in the be subdirectory are cross-linked via #include statements to the POSIX

Page%155%of%467

directory and vice versa. This can make finding a specific definition or a
specific file complicated. The definition of the search path for include files
under the BeOS is handled by the environment variable BEINCLUDES.

BeOS Priorities

When you use header files there are always some dependencies where certain
header files rely on the contents of another header file. Most OSs, including
the BeOS, include any dependent header files as part of the header file
contents.

The priorities of header files are important, as they can affect the overall
build process. Most errors that occur during the compilation will occur either
because the wrong header file has been included, or because a required
header file is missing or included at the wrong point.

The most common missing files are those that have to do with setting
default variable types and structure definitions. These are:

•! ansi_parms.h, which specifies the ANSI C parameter macros

•! ctype.h, which is used to specify character types, and to define the
macros which support type recognition, isalpha, islower and so on

•! limits.h, which is used to define the upper and lower limits for the core
variable types

•! stddef.h, which defines, via a number of other include files, pointer
types, and the NULL macro

•! sys/types.h, which defines many of the standard datatypes used
throughout the header files

Not all of these are required in all situations, but it often doesn’t hurt to
include these files as part of the configuration process to ensure that the
information is being picked up correctly.

Using Header Files to Control the Configuration

When you configure a package you must supply the configuration
information to the sources. The configuration process uses a number of
different ways to pass this information on to the package source code. There
are in fact two ways of supplying the information; both rely on the use of
macro definitions and header files, but they are supplied to the C compiler in
two very different ways.

The first method relies on the use of complex and often very long
compiler commands specifying the various definitions and options required

Page%156%of%467

to build the package. This information is usually supplied and configured by
the CFLAGS variable in a Makefile. For example, we might use the following
C command to specify the default news host for a package:
$ mwcc -DNEWS=news.usenet.net reader.c -o reader

While this is not a bad method for configuring a package, it does make
the process of tracking bugs and making changes to the configuration very
difficult. You can appreciate that a complex configuration may be made up of
a number of these definitions. A complex definition could take up multiple
lines for the command which makes it difficult to follow and even more
difficult to track problems. Some packages help by splitting up the CFLAGS
variable into a number of separate lines, but the information is still difficult to
track. You also run the risk of changing an option which causes the package
not to be rebuilt properly, a problem we will cover in the next chapter.

An easier and now more widely accepted method for passing
configuration information to the package sources is the configuration header
file (config file for short). A config file uses the combination of the macro
definitions, which I’ll discuss in following section of this chapter, and the
header files to configure and set up the base information required by the rest
of the package. Essentially, it is doing nothing more than the CFLAGS
variable in a Makefile. Because the configuration information is stored in a
header file, it is often surrounded by extensive notes in the form of comments,
making the options easier to understand and select.

Usually the config file is easy to spot. GNU packages use the file
config.h, while others use header files matching the name of the package, like
the httpd.h file used by the Apache WWW server. The example below comes
from a ready-configured Emacs config.h file.
#ifndef EMACS_CONFIG_H
#define EMACS_CONFIG_H

#define POSIX_SIGNALS

#define EMACS_CONFIG_OPTIONS "BEOS_DR8_BASIC"

#define SIGTRAP 5

/* These are all defined in the top-level Makefile by configure.
 They're here only for reference. */

/* Define LISP_FLOAT_TYPE if you want emacs to support floating-point
 numbers. */
#define LISP_FLOAT_TYPE

/* Define GNU_MALLOC if you want to use the *new* GNU memory
allocator. */
#define GNU_MALLOC

/* Define REL_ALLOC if you want to use the relocating allocator for
 buffer space. */
#define REL_ALLOC

Page%157%of%467

Selecting the different options is as easy as commenting or
uncommenting the various options in the header file. The entire configuration
of the package can now be controlled from this single file. Updating the
configuration is as easy as changing the config file, and then recompiling the
source code.

Throughout the config file itself, and the source files which use the
config file it is often necessary to make selections based on the different
configuration options. This is handled by the #ifdef macro in the source code,
which is itself parsed during the compilation process. Lets take a closer look
at how this process works, and how it aids the configuration.

Using the #ifdef macro
In addition to the #include preprocessor directive which incorporates header
files into source code, there is also the #define directive. You should already
be aware of macro definitions; they are used to specify constant information
in C programs. The substitution is made at the preprocessing stage of
compilation. This means that the information is effectively hard-coded into
the source before the actual process of compilation, in much the same way
that header files are included into the source during compilation.

Definitions can also be used to describe the abilities or inabilities of a
particular platform. Using the #ifdef preprocessor command you can test for
different definitions and provide different code samples based on the
existence or nonexistence of a specific definition.

The Principles of #ifdef

The #ifdef command is used to test whether a specified definition exists. It is
not possible to test the contents of a definition; you can only test whether the
definition exists or not. The information is processed at the time of
preprocessing, the first stage of any compilation. The format of the command
is
#ifdef definition
program source
#else
program source
#endif

If the specified definition exists, then the test returns true and the text
immediately after the command is included in the preprocessor output. You
can then optionally specify some text to be included if the test returns false,
after the #else line. Finally, you must terminate an #ifdef statement with a
corresponding #endif.

Page%158%of%467

To demonstrate this, let’s have a look at a simple example. The source
file below prints a message on the screen. The message printed depends on
the status of the MESSAGE definition:
main()
{
#ifdef MESSAGE
 printf(“Hello!\n”);
#else
 printf(“Goodbye!\n”);
#endif
}

If you run this program through the C preprocessor (using mwcc -e) you get
the following output:
$ mwcc -e foo.c
main()
{
printf(“Goodbye!\n”);
}

This version of the program was produced because MESSAGE has not
been defined anywhere. If MESSAGE had been defined you’d get
$ mwcc -e -DMESSAGE foo.c
main()
{
 printf(“Hello!\n”);
}

This very simple demonstration shows how most configuration systems
work. The defines, either on the command line or in a header file, determine
what functions and program sequences are required. The C compiler in the
preprocessing stage then, using the #ifdef command, selects which source
code to use. The resultant compiled file should be in the correct format, with
the correct function names, programming sequences, and data for the
configured system.

You can nest #ifdef tests, and it is normal practice to include a reference
to the original test as a comment when continuing or closing the command, as
can be seen in this example from Emacs:
#ifdef MSDOS
#include “msdos.h”
#include <time.h>
#else /* NOT MSDOS */
#ifndef VMS
#include <sys/ioctl.h>
#endif
#endif /* NOT MSDOS */

This example also shows the #ifndef command. This works in exactly the
same way, but the test returns true when the definition does not exist.

When using Standard C, which is supported by the Metrowerks
compiler, one final format definition is also accepted. This is a more C-like
style which supports the same options as #ifdef, and also allows you to

Page%159%of%467

combine definitions using bitwise operators, as shown in this example from
unzip:
#if (defined(ultrix) || defined(bsd4_2) || defined(sub)
if (!defined(BSD) && !defined(SYSV))
define BSD
endif
#endif

You can also see that you can use indentation to make the tests more readable.

The process of using definitions is, as you have seen, very simple. The
complicated part is knowing which definitions to use and what effect they
have on compilation.

Standard Defines

The use of definitions for controlling the build type used to be based on the
combination of the OS and the hardware on which you were porting the
package. For example, to compile a package under Solaris on a Sun
workstation you would define both the operating system, sunos5, and the
hardware architecture, sparc.

This presents us a number of problems:

•! As we move into a more heterogeneous network environment, the
specification of the hardware and OS alone is often not enough. It is a
fairly broad assumption to say that a particular machine is running, for
example, the i386 architecture. The i386 has been superseded by the i486
and, more recently, by the Pentium and Pentium MMX chips. In the case
of the BeOS, it currently runs on PowerPC and Intel.

•! Despite the title of this section, there really are no standard definitions.
There are some regularly used definitions, but you can hardly call
something that is regularly used a standard!

•! The definition name doesn’t always reflect the true features of the OS.
This is particularly true in the case of System V, where the differences
between R3 and R4 are fairly fundamental. Some OSs are still based on
the older SVR3 core code combined with some SVR4 additional
functions. What do you specify as the supported platform? Using SVR3
may prevent you from building the package, or may just cause old, slow
code to be created to make an SVR3-compatible version. Alternatively,
specifying SVR4 may cause the build to fail because you are missing
functions that the package expects to find.

•! Functions used in packages are often assumed to be part of the OS. It
should already be apparent that in the UNIX community the term
“standard tool” just doesn’t apply. The same goes for functions. There is
a great difference between kernel functionality and the functionality

Page%160%of%467

provided by a C library. Solaris no longer comes with a standard C
compiler or any libraries to support it. Porting a piece of software to
Solaris therefore requires a C compiler, which will probably also require
a set of C library functions which are supplied as part of the standard OS
installation. Alternatively, you could use a public library such as the
GNU libc. This provides many functions not found in the kernel that a
simple solaris definition may not pick up.

This last item causes tremendous difficulty as programmers struggle
with the different OSs missing functions that their packages rely on. In the
case of Emacs, the sysdep.c file contains versions of hundreds of “standard”
functions, each of which can be included in the object file using a specific
definition.

Rather than making wildly inaccurate assumptions about which OS has
which function, many programmers have moved toward a model where each
function required is specified within its own definition. In this instance,
specifying the OS does also define those functions that are known to exist.
Others can be added in by defining each present function using a
HAS_FUNCTION macro definition. For example, you could define the
existence of the printf command by placing the code definition in to the
configuration file:

#define HAS_PRINTF

Then, whenever you wanted to use the printf command you could use
an #ifdef directive in the source code.

Most programmers, including GNU, are moving toward this model.
Indeed, the GNU autoconf system uses this style of definition as a much more
reliable way of configuring a package on multiple OSs.

Under the BeOS we don’t have any of the advantages of the other OSs;
we can’t make assumptions about the previous versions because there haven’t
been any. We can, though, base our code on other UNIX flavors if we know
what functions each flavor supports. We already know what functions the
BeOS supports (see Part 3 of this book); all we need to do is match the two, or
more, versions together to achieve what we want. We can also use the POSIX
support as a starting point for selecting which functions are available.

With my earlier comments in mind, let’s have a look at some of the
regularly used definitions and their overall effect when porting to the BeOS.
More precise information about the functions the BeOS supports is contained
in Part 3.

•SVR4. Short for System V Release 4, the basis for a number of UNIX OSs
including Solaris from Sun and UnixWare from Novell. You may also
find it defined as SYSV and on older packages USG (for UNIX Systems

Page%161%of%467

Group, the original AT&T and now Novell-based team of developers).
SVR4 affects a number of functions, most notably the string handling.
The header file is string.h and uses strchr/strrchr instead of the
BSDindex/rindex supported by the strings.h. This is a good choice for
BeOS porting as many parts of POSIX standard are based on the SVR4
standard. The BeOS also supports an SVR4-based dirent structure.

•BSD. Short for Berkeley Systems Division, this defines the other thread of
UNIX development. The string functions are different (see above) and
are supported by the strings.h header file. The BeOS currently supports a
BSD-like time system, although SVR4 should work in most instances.
The BeOS supports some BSD-style memory functions using the
bsd_mem.h header file, which also includes versions of index/rindex.

•UNIX. Usually specified to describe the OS type rather than specifying the
actual OS. Specifying SVR4 or BSD should cause UNIX to be
automatically defined.

•POSIX. Not as frequently seen as the others, this is the ideal definition to use
if it is supported by the package. The BeOS’s POSIX support, although
not complete, is close enough to the full specification for most packages
to compile without difficulty.

Double Definitions

When using and selecting definitions you should be very careful about which
ones you use and when you use them. Because definitions can be specified in
a number of places—on the command, in a header file, or even in the source
file—it is necessary to double-check that a definition is not being specified
more than is needed. Usually the compiler will fail during a compilation if the
same definition is used twice.

This code example produces just such an error:
#include <stdio.h>
#include <stdlib.h>

main()
{
#define HELLO "hello"
printf("%s\n",HELLO);
#define HELLO "bonjour"
printf("%s\n",HELLO);
}

The error message looks like this:
mwcc Compiler Error:
#define HELLO "bonjour"
^
macro 'HELLO' redefined
#--
File "/MCBe/t.c"; Line 8
#--

Page%162%of%467

errors caused tool to abort

We can get around this by undefining HELLO using the #undef
directive. This particular problem only occurs when you are specifying a
definition for a value. The code fragment
#define BEOS
#define BEOS

does not cause the compiler to fail. This doesn’t mean that you should ignore
double definitions of this type.

A double definition can have the undesired effect of compiling one piece
of source code one way, and another piece of source code in a different,
incompatible way. It is always advisable to check for double definitions,
particularly if you are defining options in a package like Emacs, which relies
on the config.h file to be correct. Normally a double definition error will be
highlighted very quickly, and if you ensure that modifications only go into the
specified configuration file then the Makefile should handle any
dependencies.

The Effects of the Config File on Compilation

You have already seen how a definition and a corresponding definition
test can be used to switch a particular section of source code on or off as it
were in a source file. During compilation these tests and definitions are
parsed by the preprocessor. This is the first stage of compilation and so no
sanity, function lookup, or language syntax checks have been carried out.
Because of this the process can lead you to one of two conclusions. The first is
that the configuration is a success, and so therefore this method provides you
with a way to configure and construct a multi-platform application with
relative ease. The second conclusion is that a bad configuration file can
produce the wrong code, or such badly formatted code that the compiler is
unable to compile the source at all. This latter “feature” can often provide you
with more problems than any other single element of the porting process.

The configuration process therefore relies on a very flexible, but
ultimately unstable method for controlling the code that is produced. Getting
the configuration right ultimately affects the way the file is compiled, and this
in turn affects whether the package is built correctly and without any bugs.

However, you can use the same principles your advantage without any
of the risks. By commenting out code using #ifdef we can avoid enclosing
large sections of source code in a C comment, which is generally considered to
be bad practice.

Page%163%of%467

The process of including header files often uses this technique to stop the
header file being included more than once. If you take a look at any standard
header file you should see something like this:
#ifndef __stdio__
#define __stdio__

During the course of a port it is good practice to use a specific definition
to comment out code. I use a definition of BEOS to comment out or select
code that I need to use in a source file. This is precisely how other platforms
select their different source snippets. The BeOS has a special built in
definition, __BEOS__, which we can use to comment out code for the BeOS
without affecting other platforms.

Page%164%of%467

Chapter 9. - Makefiles
As programs become more and more complex the complexity of the process
which builds the application increases. In large packages, keeping tabs on
which files need to be compiled, and more importantly, which files rely on the
existence or contents of other files in order to compile correctly. The make
program provides a method for maintaining the status of a package by using
a file called a Makefile.

The Makefile has been a standard way of building applications for many
years. The make system was designed to ease the execution of the build
process. By using a set of rules defined in the Makefile make can produce and
compile any file by following the defined ruleset. It automatically checks the
status of the component files and rebuilds those required to produce the
desired target file. This saves you from manually compiling and building a
project; the rules have been set up, and all you need to do is type make.

Principles of a Makefile
The Makefile is simply a text file which contains a number of definitions

and rules about how to build a particular package. Some packages rely on the
use of a configuration script which identifies the necessary options and then
builds the Makefile, which is then used to build the application. Most GNU
packages follow this model using the autoconf package. The Makefile is
simply the file used by make to intelligently run the C compiler, linker and
other tools to build the package.

For other packages the Makefile, through a series of defines and other
options which are then passed to the C compiler, helps to define and
configure the package. In this instance, the Makefile is much more than just a
set of rules which build the package, it also defines how the package is
configured.

Whether you edit a Makefile or not is entirely up to you. If you feel
comfortable modifying the contents, it may be the easiest way to achieve your
goal.. However, as I have already explained, some Makefiles are produced
automatically by a configuration program and you may choose to follow the
advice given at the top of the file:
Makefile automagically generated by Configure - do not edit!

Generated Makefiles are typically difficult to read and follow. Even if you can
understand the Makefile and then make suitable modifications to it, it is
sometimes comforting to know that if you make a mistake they can be rebuilt
by running the configuration script again.

Page%165%of%467

If you decide to use the skeleton Makefile that is used during the
configuration process it is often not too difficult to follow the format. The
GNU autoconf package uses the m4 processing system to generate the real
Makefile from Makefile.in, a file which is not dissimilar to the final version.
The m4 program is really only doing variable substitution from the skeleton
file to the final version using the information obtained during the
configuration process.

Whether the Makefile is supplied or is produced during the
configuration process, it is useful to know the format and layout of a Makefile
and how this relates to the build process and the execution sequence.
Additionally, just in case something goes wrong, we will take a look at some
common problems encountered when using Makefiles.

Anatomy of a Makefile
A Makefile has two parts. The first part defines the various sources and
variables to use throughout the rest of the Makefile. The second part describes
the targets, their dependencies (the elements required to produce the target)
and the rules and processes required to produce them.

You should be careful when editing a Makefile, as the format of the lines
is important. Different make programs from different UNIX flavors have a
number of little traps. Under the BeOS the make program is from the GNU
project, which is generally more tolerant, but should still be handled carefully.

At the basic level, a Makefile follows the standard format of all UNIX
files. Comments can be included by preceding them with the “#” sign and
lines can be extended by appending the “\” character to the end of the line.
We will see in the final section of this chapter how strict the make program is
about the format of the file.

Variables

Variables are used in a Makefile in much the same way as in a program. They
help to define information that is used in the rest of the Makefile. In general,
the variables are used to list the source files, object files, libraries and even the
commands used to build the package. In fact, you can define any piece of
information in a variable.

A variable definition in a Makefile is of the form:
NAME = definition

The definition starts from the first non-whitespace character after the
equal sign and continues until the end of the line. You may continue the line
by using the backslash (\) as the last character. Defines must be specified at

Page%166%of%467

the top the file, before you start using them in the target specifications. The
following are valid macro definitions:
CFLAGS = -g
SRCS = calc.tab.c lex.yy.c fmath.c const.cLIBS =

You should have noticed that in the above example, we also specified a
list of file against one of the variables, SRCS. This is a useful feature of the
variable system within the Makefile, and it allows us to specify the files to use
during the build. Depending on the situation, these files will be used
individually, in sequence, or as a complete list of files supplied to a particular
command. We’ll see how this is used in the next section of this chapter.

A definition without a suitable value is treated as null, or empty. There
are also some standard definitions that will be overridden if they are specified
in the Makefile, some of which are listed below:
AR=ar
ARFLAGS=-rv
CC=cc
CFLAGS=-O
LEX=lex
LD=ld
LDFLAGS=
MAKE-make
YACC=yacc

Finally, you can also specify definitions on the command line, so the
command
$ make CC=mwcc

will supersede any definition in the Makefile.

To use a definition, you use the format $(NAME). A definition can be
used anywhere within the Makefile, including in command lines, target
definitions, and dependency lists. Defines are used in the same way as
variables, collecting groups of files and commonly used strings together into
one file.

In an extension of the earlier example, you can see below how the
definitions are used to help specify the a variety of information to the
remainder of the Makefile:
PROGRAM = calc
OBJS = calc.tab.o lex.yy.o fmath.o const.o
SRCS = calc.tab.c lex.yy.c fmath.c const.c
CC = mwcc
CFLAGS = -O -c
LDFLAGS = -O -s
LIBS = -lm -lfl
all: $(PROGRAM)
.c.o: $(SRCS)
 $(CC) $(CFLAGS) $*.c -o $@
calc.tab.c: calc.y
 bison -dv calc.y
lex.yy.c: lex.l
 flex lex.l
calc: $(OBJS)
 $(CC) $(OBJS) $(LDFLAGS) $(LIBS) -o calc

Page%167%of%467

For example, the $(PROGRAM) variable, which we have set as calc
becomes the dependent item for the target all. Meanwhile, the SRCS variable
is used to list the sources that need to be compiled. This list is duplicated,
albeit with the .c changed to .o in OBJS to reflect the list of objects required to
build the final application, calc. We will look at targets and dependencies in
the next section.

Using Variables for Configurations

When using the Makefile as the configuration system, you will
commonly find the different operating systems listed. You must then
comment them out, or create new definition lines based on the build
requirements. The example below shows an extract from the Apache Web
server source.
AUX_CFLAGS are system-specific control flags.
NOTE: IF YOU DO NOT CHOOSE ONE OF THESE, EDIT httpd.h AND CHOOSE
SETTINGS FOR THE SYSTEM FLAGS. IF YOU DON'T, BAD THINGS WILL HAPPEN.

For SunOS 4
#AUX_CFLAGS= -DSUNOS4
For Solaris 2.
#AUX_CFLAGS= -DSOLARIS2
#AUX_LIBS= -lsocket -lnsl
For SGI IRIX. Use the AUX_LIBS line if you're using NIS and want
user-supported directories
#AUX_CFLAGS= -DIRIX
#AUX_LIBS= -lsun
For HP-UX n.b. if you use the paid-for HP CC compiler, use
flag -Ae
#AUX_CFLAGS= -DHPUX
For AIX
#AUX_CFLAGS= -DAIX -U__STR__
For Ultrix
#AUX_CFLAGS= -DULTRIX
For DEC OSF/1
#AUX_CFLAGS= -DOSF1

Because the specification of the code to compile is defined by the variables in
the Makefile you could easily set up the Makefile to produce Solaris code.
Merely by uncommenting the AUX_CFLAGS and AUX_LIBS definitions
under the Solaris 2 comment.

Directories

You can specify directories within target definitions, but it is better to specify
these directories relatively than to use absolute references. For example, the
following target specification automatically builds the application using the
source from the subdirectory:
calc: src/calc.o
 mwcc -o calc src/calc.o

It is rare to come across a target specification which specifies a subdirectory;
the use of subdirectories within a source tree usually involves using sub-

Page%168%of%467

Makefiles. This is a more complex process, as it involves an individual
Makefile for each sub directory within the main package directory tree.

However, it is quite normal to find header files in subdirectories.
However a complication can arise that is related to the dependencies of the
files being compiled requiring the header files contained in the sub-
directories.. Dependencies can also be specified using absolute file references
rather than the relative references. This causes additional problems during the
build process if the files in the dependency list cannot be found. As
mentioned elsewhere in this chapter, dependencies can cause more problems
than they hope to solve.

Targets

Although the variables can be used to define some useful information, they
are not a necessary part of the Makefile. The important part is the target
definitions.

The basic operation of make is to update a target file by ensuring that all
files on which the target file depends exist and are up to date. The target file is
recreated if the files on which it depends have a more recent modification
time than the target file. The make program relies on three pieces of
information in order to update a a target:

•! The Makefile which contains user-defined rules

•! Date and Time stamps of the files
•! Built-in rules on how to update certain types of files

The target definitions in the Makefile specify the target name, the files
which are required to produce the target (the dependents) and the commands
required to produce the target. Further target specifications define how the
dependent files are created, and so on. The make program then works
recursively through the list of targets and dependents to produce the specified
target.

As an example, consider the application foobar which is made up of the
object files foo.o and bar.o. The foobar application is dependent on these two
files for it’s creation, and we might use a command like:
$ mwcc -o foobar foo.o bar.o

to produce the target application, foobar.

In addition, to generate the two files object files we need to specify
targets that describe how to produce them from the C source code.

Format

The format of a target, called a rule, is as follows:

Page%169%of%467

target: dependencies
 commands

Warning: The character before the second line MUST be a TAB!

Using our example, the rule to build the target foobar is composed of the
dependency list of object files (specified by the variable $(OBJS)) and the
compiler command line used to build it
OBJS = foo.o bar.o
foobar: $(OBJS)
 mwcc -o foobar $(OBJS)

As we have already seen, rules are executed recursively until all the
dependencies are resolved. Using our previous example again, the rule which
builds the object files from the source files could be:
foo.o: foo.c
 mwcc -c foo.c
bar.o: bar.c
 mwcc -c bar.c

In fact, there is an easier way of specifying the rule for compiling C
source into object files. We can use a special rule which is identified by the
make program:
.c.o: foo.c bar.c
 mwcc -c $<

The $< is a special type of variable which refers to the target dependencies,
which in this case are the source files. In this example, make would expand
this variable and run two commands as follows:
mwcc -c foo.c
mwcc -c bar.c

producing the two object files we require to build foobar.

We will take a look at the entire execution process of make later in this chapters.
Dependencies

The dependency list in a target specification lists the files which are required
in order to build the specified target. The target is dependent on this list of
files, and make uses this list to make decisions about how to build the target..

When you ask make to build a target, the dependency list is used to
check the following:

•! If a dependency file does not exist on the file system, the list of available
targets is checked to see if a rule exists which will build the file. This
happens recursively until all the dependent files are produced, or make
is unable to find a rule to build a particular file. In the first instance, the
specified target is built using the specified commands. In the second
instance, make will fail.

•! If the date/time stamp of a dependent file (or a component of the
dependent file) is later than that of the target, the target is rebuilt using

Page%170%of%467

the same recursion rules. This recursion happens forward, as well as
backward; so if a source file is modified, the object file will be rebuilt,
and therefore the program will also be rebuilt.

For example, in the Makefile below, which builds a calculator program
written using flex and bison, a change to the file lex.l will cause the lex.yy.c
file to be rebuilt (using flex). The new source file produce by flex will be
compiled, and the object file will be used to generate a version of calc.
PROGRAM = calc
OBJS = calc.tab.o lex.yy.o fmath.o const.o
SRCS = calc.tab.c lex.yy.c fmath.c const.c
all: $(PROGRAM)
.c.o: $(SRCS)
 mwcc -c $*.c
calc.tab.c: calc.y
 bison -dv calc.y
lex.yy.c: lex.l
 flex lex.l
calc: $(OBJS)
 mwcc $(OBJS) -o calc -lfl

The use of dependencies is essential to the way make works. It helps to
define the rules which are used to decide which files to rebuild and which
files to ignore. However, they can also help to cause a number of problems.
The wrong dependencies will cause the wrong files to be rebuilt, or in some
extreme cases the entire file to be rebuilt.

Making the Makefile a dependent
In ideal situations changes to the Makefile should cause the package to

be rebuilt. After all, the Makefile is as much a part of the source as any other
file, and changes to it could cause files to be rebuilt differently.

 For example, imagine changing the compiler used to generate the source
code. Making such a change would mean that the entire package would need
to be rebuilt, otherwise the code produced might not be optimized or
produced correctly.

However, imagine simply adding a source file to a dependency list. In
this case, we don't need the entire package rebuilt, we just need the source file
compiled and then incorporated into the rest of the application.

In both of these examples, we have made changes to the Makefile but
only in the former do we really need the package to be rebuilt.If you do make
a significant change to the Makefile it is best to do a make clean and rebuild
the package again. This is especially true if the Makefile is the method used to
configure the package.

Running Commands

Page%171%of%467

Once the dependencies for the target have been resolved, the make command
goes on to produce the target using the specified commands. In our basic
example, the commands include those that build the sources from the lex and
yacc tools, as well as the compiler commands that compile the source files.

A command can be anything you can type in on the command line
within the shell. You can use as many lines as you like for the commands; the
Makefile continues to execute commands until the next target specification.
As well as running specific commands, you also have the option to
incorporate a number of variables, including those you specify in the
Makefile. For example, you might specify the options you give to the compiler
using a variable within the Makefile:
CFLAGS = -c -I. -I..
all: $(OBJS)
 mwcc $(CFLAGS) $(OBJS) -o calc

Notice that the variable is used by specifying the variable name within
parentheses, precede by the dollar sign.

By default, each line is echoed to the screen after expansion of any
variables his is useful as it provides us with a running commentary of the
commands make is running. You can switch off command line echo on an
individual line basis by preceding the command line with the “@” character.
For example, using the following Makefile section:
.c.o: calc.c tmath.c
 mwcc -c $< -o $@ -O

calc: calc.o tmath.o
 mwcc -o $@ calc.o tmath.o
 @echo Build is complete

the output from a make command would be:
$ make calc
mwcc -c calc.c -o calc.o -O
mwcc -c tmath.c -o tmath.o -O
mwcc -o calc calc.o
Build is complete

In addition to the variables which you define in a Makefile, there are
some special variable names which have special meaning. The $@ in the
example target definition refers to the target name. This is expanded each
time the command is run, so in the definition for compiling the two source
files the expansion worked for both, correctly specifying the object equivalent.
The $< variable expands to the target file on which the command is currently
being executed. In our example this equated to calc.c and then tmath.c.

There are occasions when you want a specific targets to execute
commands without any dependencies. To do this, you can just leave the
section blank:
clean:
 rm -f *.o $(PROGRAM)

Page%172%of%467

or you can insert a semicolon into the target definition, as in the example
below:
clean:; rm -f *.o $(PROGRAM)

Common Targets

There are some standard, well-recognized targets which you should find
in most Makefiles. They don’t appear in all Makefiles however, and it is
important to remember that the programmer has complete control over the
targets and their specification in the Makefile. The typical targets are depend,
all, and install.

depend

The depend target creates a list of dependencies for the packages source tree.
Most of the time this is produced by running the makedepend command on
the source and header files. You can find a script supplied with some GNU
packages, but these are usually tailored to the package in question.
Note: The makedepend command does not exist under the BeOS, but the C compiler is
capable of emulating this functionality. We’ll take a closer look at this in Chapter 13.

Ideally, depend should be the first target made, as it helps in the
production of the rest of the package by ensuring that all the necessary files
exist and that any modifications to dependent files update the corresponding
object file.

Unfortunately, as useful as the depend target is, it doesn’t always work
as well as you might like. Sometimes the process itself fails even though the
package may build correctly. Often this is caused by nonstandard directories
(and therefore unfound files), or by the incorrect configuration of the package.
In all cases, you should be cautious using the depend target and only use it if
the package specifies it as part of the build process. While it can often
highlight problems before you get to the build stage, it can also cause errors
that become difficult to track.

all

The all target is the usual way to perform a build. Different packages may set
this up as the first target, and therefore the default target during the build
process. In these cases you simply need to type make. Most packages also use
this target only for building the package; installation is handled by the next
target, install.

install

Installation is typically handled by the Makefile to aid in the single point of
reference for package builds. Installation is carried out based on the

Page%173%of%467

directories specified in the Makefile during the configuration process. It may,
optionally, also try to install the documentation, but some packages include a
separate install-doc target for this process. Others may expand on this idea
and also specify install-all to do a complete installation, and install-bin to
install the binaries only. Check the documentation and/or the Makefile before
using this target.

clean

The clean target is used to clean the source tree of all the files produced
during the build process. This should include everything from executables
and object files to header and source files produced during the process.
Unfortunately, like many other parts of supplied packages, there is no
standard for the contents of the make clean process. Therefore you should
treat it with care; some clean targets remove more items than they should;
others don’t remove enough.

Ideally, make clean should remove everything that can be recreated by
running make all without removing configuration files. Check the rm
commands used in the target to double-check what happens. Some packages
include multiple clean targets, from mostly-clean to extra-clean. Avoid using
these in preference to the standard clean target unless you are sure that you
want the listed files removed.

Execution Sequence
The execution sequence of make, parts of which we have touched on already,
is fairly simple:

1.! Find the rule to build the target specified, or use the default (first) rule if
no target is specified.

2.! Check the dependencies, recursively; any files that have changed should
be built using the appropriate target rule.

3.! For each target, when all the dependencies have been resolved, use the
commands to build the file until all the rules have been resolved.

4.! Repeat as necessary!

This looks, and is, fairly simple. However, as with all good sequences, there
are some special cases and some tricks that can make the process run more
smoothly.

Because of the way the rule system within make works, there is no
execution order as such; the program simply resolves the required
dependencies before building the current target. However, it is useful to be
aware of the practical order in which files should be built during the process.

Page%174%of%467

lex and yacc

The lex program is used for the lexical analysis of text. yacc is a rule-based
system which is often used to analyze or process the output from lex. yacc
actually stands for “yet another compiler compiler,” as it is often used for
processing program source into assembly language. We’ll cover the GNU
equivalents, flex and bison, in greater detail in Chapter 12.

Note: A lexical analyser processes text by words or
recognised patterns, rather than by individual characters.
The important detail about both programs when used within a Makefile

is that they take the input of a specified file and produce a C source file and
optionally a header file.If the two programs are used together (and they
usually are) yacc should be run first; if it needs to generate a header file, it will
be needed by the source file generated by lex.

Headers

Any header files must be generated or built before they are required by the C
source. This can be handled under make by a dependency and a suitable rule.

With most packages the header files should already exist, except where a
configuration program creates them based on your specific system. A
dependency that relies on a preexisting header file may cause problems.

It is best to run a make depend if the depend target is supplied after any
reconfiguration. You should also run the dependency check after you have
made any modifications to the source files or the Makefile which may have
affected the header files you need.

With pre-supplied Makefiles you can sometimes run into problems with
the file specifications of “standard” header files. For example, under the BeOS,
the directory /usr/include does not exist, and the dependency will fail,
causing the entire build to fail. In these situations, just delete the dependency
section of the Makefile.

Source Code

Sources can appear in a number of forms, not all of which may be obvious
during the build process. The bulk of the source code will have come with the
package, and in some cases it will be generated by other programs. We have
already covered the production of source files using the lex and yacc tools.

Other tools which create source code directly include any rapid
development tools, scripting languages, and utility functions such as the

Page%175%of%467

rpcgen program. While rpcgen currently doesn’t exist under the BeOS, it is a
good example of a code-generating tool similar to yacc.

Some packages create source code dynamically based on the
configuration options. Perl 5 is a good example. As part of the build process a
shell script called writemain.SH creates the source code based on the current
configuration. In fact, in the case of Perl things are a little more complicated.
After you run the Configure script, typing make first builds the miniperl
program, a smaller and less feature-rich version of Perl. The miniperl
program is then used to help configure and create the final version of the
source.

The way Perl is built is unusual, but by no means unique. The GCC
compiler uses a similar system to help create the core functions used by the
preprocessor, and later, the compiler itself. I don’t recommend that anybody
attempt to build the GCC tool by hand: the Makefile and associated scripts go
through some very complicated steps to reach the eventual goal. Even with all
its automation, GCC still requires some user intervention, but luckily this is
reduced to just typing in a few commands.

Some other programs use a preprocessor or formatter to modify the code
before compilation. John Bradley’s xv program is a good example; code is
parsed by a formatter which converts his ANSI-style C code into Kernighan-
and Ritchie-formatted C for use on older (non-ANSI) compilers. This gets
round the problem of allowing ANSI compilers to use the stricter code whilst
retaining compatibility with the older compilers on some systems.

How a package and its source files are produced is entirely dependent
on the programmer and the complexity of the program. I can assure you that
for most tools, the sources are already supplied.

Libraries

Once the sources have been compiled into object files, the next step is to
generate any libraries. The reason for using libraries can vary from package to
package. On the whole, libraries are used to make the build process easier,
rather than having any specific role in the build process. In other cases, the
library which is produced is the package. For example, the GNU dbm library
package produces libraries as the default option.

In the case of Emacs and sed, the readline and regex libraries
respectively have now become packages in their own right.

Because of the command-line length limit, some packages use libraries
as a way to reduce the overall size of a command line. A command line itself
consists of the command, arguments, any file expansions, and also the
environment variables. The environment variables alone can make up more

Page%176%of%467

than half of the overall command-line length. Creating a library and including
the library instead makes for a much shorter command line which therefore is
less prone to errors.

The method for creating libraries under the BeOS is very different from
that used under most UNIX flavors. Under most versions of UNIX the ar
command produces a library archive. For example:
$ ar cs libmine.a *.o

Instead, under the BeOS you use the mwcc command with the library
command-line option, like this:
$ mwcc -xml -o libmine.a *.o

There are several different types of library that can be created with
mwcc, including the default library type, which is an application. We’ll cover
the different library types and how best to make the libraries in Chapter 12.

Executables

Once make has finished building all the required elements to compile an
object and resolved all of the dependencies required to build the default
target(including any libraries), make goes on to create the executable. This
step is probably the shortest of the entire process as it requires nothing more
than collecting all the required elements together into the final target.

Once the make process has completed, you can usually consider the
basic build process to have been finished. make has achieved its aim of
building the default target by resolving each dependency and producing the
final item.

For most packages the final command during the build is the last
compiler/linker line, which builds the final application. Other packages may
decide to do some post-processing. For example, during the build of Emacs
the application generated is called temacs. temacs is then executed and loads
up all of the Emacs lisp functions, including any site configuration files. Once
the entire contents have been loaded it dumps itself (creates an executable of
the current memory image) to a new executable file. This final file is called
Emacs.

Documentation

Documentation, as we have already seen, makes for one of the most
complicated parts of the build process. The process of producing
documentation is dependent on the package and the author, but the process is
usually easily identified in the Makefile and therefore easy to reproduce
should you decide to do it manually.

Page%177%of%467

Caution: Some packages add a dependency to the install target that the
documentation be created, generated or otherwise processed. This may
hinder the installation process because the make command will be trying to
run software required to make the documentation that doesn’t exist on the
BeOS.

If you can’t generate the documentation (and this may well be the case
on the BeOS) then you can get around it by generating the dependency files
using the touch command. We’ll look at this workaround in more detail in
Chapter 15. Since make only checks the existence and date/time stamp of the
dependent files, this should be enough to bypass the process and move on to
the installation.

We looked at documentation and how best to read it in Chapter 5.

Installation

The final stage is normally the installation. This usually relies on creating a
number of directories and copying the required files over, including the
documentation. The dependencies usually consist of the final executables, any
libraries or header files required for installation, and sometimes the
documentation.

To perform a manual installation for most packages, you just need to
know where to copy the files and what file permissions to give them. During
an automatic installation this is often executed by an install script or program.
This program copies the file, including setting the permissions and owners,
and can also perform some basic processing options, such as stripping
executables.

Stripping a file of its debug and symbol table information does not affect
the execution of a file. The resultant file is usually smaller, and therefore takes
up less disk space, but there is no change to the load time or optimization.
Once stripped, though, a file cannot be symbolically debugged (because
you’ve stripped the symbolic debugging information). Not all files should be
stripped; for instance, debuggers, compilers, and other programs which
directly access or use their symbol tables should not be stripped. In the case of
the BeOS, the debugging symbols are stored in separate files, so installation
without such information is a simply a case of not copying the symbol files
(those ending in .xMAP and .xSYM). But the installation script will require
modification.

As I said at the start of this section, there is no simple order in which
make attempts to build an application. It is entirely up to the Makefile
contents, the dependencies, and the commands used to build different files
which control the execution of the make command. With this rough guide,

Page%178%of%467

though, you should have a better idea of the requirements and stages in a
typical build, if there can be said to be such a thing.

Coping with Errors
While make should usually run smoothly, there will be times when you will
have some difficulties with running the program. You may encounter a
variety of problems including:

•! A missing Makefile

•! The Makefile exists, but make doesn’t do anything

•! A badly formatted Makefile that make can’t understand
•! Missing sources required for the build

•! make rebuilds everything
Even with a correctly formatted Makefile, you may find that make still

complains, producing obscure error messages. We’ll take a look at some
examples and how to cope with all these errors in the next section.

Missing Makefile

make is a temperamental application at the best of times. The most frustrating
thing about make is that it is overly literal. If you try building all you may get
an error of the form:
$ make all
make: *** No rule to make target ‘all’. Stop.

If you try running the command without specifying a target,
$ make
make: *** No targets specified and no makefile found. Stop.

you’ll find that you get a much more sensible message. make can’t find a
Makefile to work with. By default, make looks for a file called makefile
(lowercase) first, followed by the uppercase equivalent Makefile.

If you look at the directory contents and can’t find a suitable Makefile,
try looking for system-specific Makefiles, and then check the documentation
(README or INSTALL) to find out how to build the package. For example, a
SVR4 Makefile may be called Makefile.sysv, and it can be compiled by
specifying it on the command line to make with the addition of the -f option:
$ make -f Makefile.sysv

Chances are the Makefile doesn’t exist for of one of the following
reasons:

•! The package uses system-specific files such as Makefile.sysv or
Makefile.bsd. Check the directory contents again.

Page%179%of%467

•! You need to run a configure program. When porting a GNU package, the
Makefile.in file is the skeleton file used to generate the real thing. Return
to Chapter 7 for details on identifying the build type.

•! The directory you’re in doesn’t require a Makefile. In some larger
packages the root of the source tree contains a Makefile which builds the
files in the subdirectory by specifying them absolutely.

•! There is no Makefile. Different authors have different feelings about
Makefiles and the build process may be done by a shell script. Look for a
script named build or configure, or read the supplied documentation.

Some programmers prefer to build the package by hand. For simple
programs this isn’t a problem; you can probably continue to build the
package manually. For larger programs, or to help make your life easier, you
may decide that a Makefile is a good idea and write your own. Here is a
simple Makefile:
PROGRAM =
SRCS =
OBJS =
all: $(PROGRAM)
.c.o: $(SRCS)
 mwcc -c $*.c

$(PROGRAM): $(OBJS)
 mwcc $(OBJS) -o $(PROGRAM)

clean:; rm -f $(OBJS) core *~ \#* $(PROGRAM)

You should be able to fill in the gaps with you own information.

Nothing Happens

One of the most heartrending moments during a port is when you type:
$ make all

and nothing happens. This can be frustrating at the beginning of the porting
process and even more annoying during the porting process. There are two
likely causes for this: either it is a problem with the dependencies for the
specified target, or there are no commands to be run for the specified target. It
is not uncommon to find that the default target is specified like this:
all:;

which of course does nothing. make is not aware of any problem; you have
asked to build a target based on a specified rule, but the specified rule does
nothing. As far as make is concerned its job is done.

If you are at the beginning of the porting process, check the Makefile to
ensure that it includes the necessary rules required to build the target. Some
packages deliberately require you to specify the target you want to build. This
is often used where Makefiles include the information and define requires to
build the package.

Page%180%of%467

Often, though, you will get a message telling you how to build the
package, as in the example below taken from the unzip package:
$ make
 If you're not sure about the characteristics of your system, try
typing
 "make generic". If the compiler barfs and says something unpleasant
 about "timezone redefined," try typing "make clean" followed by
"make
 generic2".
 If, on the other hand, it complains about an undefined symbol
_ftime, try
 typing "make clean" followed by "make generic3". One of these
actions
 should produce a working copy of unzip on most Unix systems. If you
know
 a bit more about the machine on which you work, you might try "make
list"
 for a list of the specific systems supported herein. (Many of them
do
 exactly the same thing, so don't agonize too much over which to pick
if
 two or more sound equally likely.) Also check out the INSTALL file
for
 notes on compiling various targets. As a last resort, feel free to
read
 the numerous comments within the Makefile itself. Note that to
compile
 the decryption version of UnZip, you must obtain the full versions
of
 crypt.c and crypt.h (see the "Where" file for ftp and mail-server
sites).
 Have a mostly pretty good day.

During the port, after you have configured and perhaps semi-compiled
the package, you need to check the dependencies for the files you have
changed. It is probably easier to do a make clean and then a make to rebuild
the package than to try to modify the Makefile. This should rebuild the
package without requiring any further intervention.

Badly Formed Lines

make is not always able to understand the Makefile. Although the GNU make
is more tolerant than some UNIX versions, you still need to be careful about
the formatting of the lines. Spaces, tabs, and other characters can all
contribute to problems and they are often difficult to track down.

One common error looks like this:
$ make
Makefile:24: *** missing separator. Stop

This cryptic message is reporting a problem with a specific line, placing
the problem with a missing character that it expected to see on the line.
Checking the line, there doesn’t appear to be anything wrong:
tmath: tmath.o fmath.o
 mwcc tmath.o fmath.o -o tmath

Page%181%of%467

What the message is actually trying tell you is that the command line has
leading spaces, when it should have a leading tab character.

When dealing with definitions, the format of the definition needs to be
adhered to exactly. GNU make is quite tolerant of leading and trailing spaces
(except in the previous example), but it is good practice not to include spaces
after definitions.

When spreading information over multiple lines you must remember to
include the backslash character and ensure that it is the last character on a
particular line. Conversely, also ensure that you do not use a continuation
character when it is not required. make will always interpret the next line as a
continuation line.

This can be particularly prevalent when you are commenting out lines.
For example, in the following extract from a Makefile, I need to comment out
the second line:
OBJS = calc.o tmath.o fmath.o decmath.o \
sunmath.o sunfix.o lexpatch.o \
 hexmath.o octmath.o

Unfortunately, during the build process this has the effect of
commenting out the third line as well. The backslash character on the
comment line (2) forces the next line to be interpreted as a continuation of the
comment, and so the next line is completely ignored.

Missing Sources

The number of files accessed and controlled by the make process during its
execution is very large. Dependencies, definitions, and even commands use
files throughout the build process. Sometimes the files genuinely don’t exist,
in other cases, the opposite is true and make is referencing files which do
exist, but you cannot find.In these latter situations you need to do a search for
the file in question, or modify the command lines to show what the
commands are doing.

In the former case, there are a number of possibilities:

•! Incorrect dependencies. It is not uncommon to get an error like this:
$ make all
make: *** No rule to make target ‘/usr/include/stdio.h’. Stop.

which is caused by a bad dependency reference. make cannot find the
file or a rule describing how to make it. Ensure that the dependencies are
correct for a given file; particularly check those generated by a make
depend, especially if they were supplied with the Makefile. Run make
depend again to recreate them, or simply remove them altogether.

Page%182%of%467

•! The specified program doesn’t exist. The definitions at the top of a
Makefile are often used to describe the tools required to build the
program, for example:

MAKE = /usr/local/bin/make
CC = /usr/local/bin/cc
LD = /usr/local/bin/ld

If you haven’t already checked the tools listed exist, double-check the
tool names. Use the information provided in the previous chapter to help
you identify the tools and their possible replacement. You will also find
that some tools are specified absolutely. Particularly in the case of make,
it is normal to specify which version to use, either the standard UNIX
version or the GNU version.

•! Package has not been configured. Make sure you have run the
configuration program. If the missing file is a header file, create an
empty file (using touch) and try the build again. If it fails because of a
compilation error, use the information provided in Chapter 15 to track
down the problem.

It Rebuilds Everything

Check that you are using the correct Makefile. You may sometimes build a
package which goes through and compiles the various files until the package
is built. You then run a make install and the whole package is rebuilt again
before finally being installed.

Often, as most make problems, the fault lies with a dependency. You
need to check that a stamp file, used to mark the progress of a build, is not
being checked for and then updated. This would cause a circular rebuild,
whereby every time the package is built, the file which causes the rebuild
automatically has a time later than the target.

For example, the Makefile fragment below checks for the existence of a
file called stamp-done, but also updates the file in the process:
calc: stamp-done calc.c
 mwcc -o calc calc.c
 touch stamp-done

stamp-done:;

In other cases, it may simply be that you have updated a file which is
used by all the other source files. A good example is a configuration header
file, such as config.h.

Some Makefiles are merely the vehicles for a complex build process.
None of the selective intelligence of the Makefile is made use of, and so
running make just reruns the build script, which is likely to rebuild
everything.

Page%183%of%467

Finally, the package may have a number of different Makefiles.
Remember that the lowercase makefile is used by default, even though the
capitalized Makefile is the normal one supplied with most packages. Check
the documentation to figure out the correct Makefile. You can specify a
different file to use on the command line using the -f option:
$ make -f MAKEFILE

Page%184%of%467

Chapter 10: Configuration Scripts
One of the problems encountered by people developing software on the
various UNIX platforms was that the different flavors used different names
for various elements of the OS, including functions and header files.

We have already seen how the use of macro definitions in C can help to
filter out sections of source code and provide alternatives when porting under
different OSs. The problem, as I explained in Chapter 8. is that knowing what
defines to choose and what files are required is the real task at hand when
porting software.

To make the process easier, people have developed a number of ways in
which the configuration information and the configuration files can be
generated. The most common is the configuration script, a shell script which
either checks the system automatically to produce the files or asks the
operator for some basic information.

Most GNU packages use the autoconf configuration system, which uses
the former method. Perl, which is also a GNU package, uses the latter
method. Unfortunately, the BeOS is not as UNIX-compatible as it needs to be
to run the configuration scripts properly. In this chapter I will demonstrate
some ways of getting around this problem.

Running under the BeOS
The BeOS sometimes has trouble running shell scripts because of missing
elements and bugs in the shell program itself, and also because of missing
support software. The directory layout and structure are also different, which
can cause problems when the scripts are looking for specific header files and
libraries. Some scripts get around this by trying to compile a file containing an
include statement, with success or failure determining whether the file exists
or not.

In this section, we will take a look at three different configuration scripts,
the fully automatic configuration, the walk through configuration, and a
combination of the two which uses supplied files and the responses to
configuration questions to configure the package.. All come from the GNU
project, but each has its own way of tackling the problem of configuration,
and its own list of problems which occur during execution.

Let’s look first at the GNU configure program supplied with Emacs. This
same configuration script is used by many of the GNU tools that have specific
needs, most notably Emacs, gcc, and binutils, all of which need specific

Page%185%of%467

information about which platform they are being compiled on. The script
follows this basic strategy:

5.1.! Identify the OS. If the OS is recognized, use a pre-created machine and
OS header file to set defaults. If the OS isn’t recognized, quit.

6.2.! Identify the C compiler, linker, and any additional programs required for
the build (ranlib, install, bison and so on). Test the compiler switch
compatibility.

7.3.! Find the headers and libraries, and identify the functions recognized by
this specific installation of the OS.

8.4.! Identify the location for the installed files.
9.5.! Write a configuration file, config.h, containing the necessary defines, and

produce a corresponding Makefile which can be used to build the

package.

This process covers everything required to build the package based on
the pre-configured header files supplied and the additional information
required for this specific installation. It should be relatively painless to run
under the BeOS:
$ configure
creating cache ./config.cache
checking host system type... ./dummy: ./dummy: No such file or
directory
rm: dummy: No such file or directory
Configuration name missing.
Usage: /MCCe/Projects/InProgress/emacs-19.34/config.sub CPU-MFR-OPSYS
or /MCCe/Projects/InProgress/emacs-19.34/config.sub ALIAS
where ALIAS is a recognized configuration type.
Configure: error: Emacs hasn’t been ported to ‘’ systems.
Check ‘etc/MACHINES’ for recognized configuration names.

The second-to-last line is the important one. It tells us that configure is
not aware what this system is, and so cannot continue. The information is
actually gleaned by running another script that uses the UNIX uname
command to identify the system. With this release of emacs, the configuration
files stored in src/s and src/m do not exist for the BeOS, which is why the
configuration script can’t identify the machine, and therefore continue the
process. Before we look at how we can get around this particular problem,
let’s have a look at a different problem, this time with the configuration script
for perl.

The configure process is slightly different from Emacs, although the
basic principles are the same. For perl the configuration is interactive after an
initial set of checks for some required programs. The sequence of execution is:

10.1.!Check the operating environment, including support for the tools
required for the configuration process.

Page%186%of%467

11.2.!Identify the OS currently running. If the OS is recognized, set default
options to match the OS. If the OS isn’t recognized, set all defaults to
blank.

12.3.!Check for supported libraries, functions, variables, and other
information, confirming the information with the user if necessary.

13.4.!Create the header files and Makefile which go to make up the

configuration files

As you can see, the sequence follows the same basic path as the autoconf
system, and is fairly typical of other packages which are not supported by
GNU, such as INN, the Usenet news server software. Lets try running the
script:
$ Configure
(I see you are using the Korn shell. Some ksh's blow up on Configure,
especially on exotic machines. If yours does, try the Bourne shell
instead.)

This is our first warning that something may be wrong. Although we are
actually using bash, which is based on the Bourne-shell, the fact that it
supports Korn shell-style commands means it is identified incorrectly. This
doesn’t affect this configuration script because bash is also Korn shell
compatible, but other configuration scripts may be more specific about what
they like to be executed under.
Beginning of configuration questions for perl5.

Checking echo to see how to suppress newlines...
...using -n.
The star should be here-->*

First let's make sure your kit is complete. Checking...
Looks good...

Would you like to see the instructions? [n]
Checking your sh to see if it knows about # comments...
Your sh handles # comments correctly.

Okay, let's see if #! works on this system...
It does.

Checking out how to guarantee sh startup...
Let's see if '#!/bin/sh' works...
Yup, it does.

Locating common programs...
awk is in /boot/bin/awk.
cat is in /boot/bin/cat.
comm is in /boot/bin/comm.
cp is in /boot/bin/cp.
echo is in /boot/bin/echo.
expr is in /boot/bin/expr.
I don't know where 'find' is, and my life depends on it.
Go find a public domain implementation or fix your PATH setting!

The script has now failed one of its own checks and quit. The fact that
the find command is missing has been classed as fatal; you need to install a

Page%187%of%467

version of the command or provide a workaround. Let’s continue examining
the script assuming you have used the replacement find command:

Note: See Appendix A for details on GeekGadgets, which
includes a version of the find command.

find is in /boot/bin/find.
grep is in /boot/bin/grep.
I don't know where 'ln' is, and my life depends on it.
Go find a public domain implementation or fix your PATH setting!

Now you’ve found another application that the Configure script
requires, or rather you haven’t found it. What you need to do is somehow fool
the configure script into thinking the application it needs is available after all.
In actual fact, this is a fake insert, since the ln command does exist under the
BeOS. What it does is demonstrate the problems you are likely to come across.
We will cover this and the previous problem in more detail in the next section.

Once you have worked your way around these two problems, you
should continue to monitor the script for any unexpected behavior. You may
be able to solve the problems using techniques similar to those above, or you
may even decide to modify the script in an attempt to solve the problems.
Common things to look out for are:

•! File permissions, particularly on scripts created by the configuration
script during the configuration process. Some automatically expect files
to be marked with the execute permissions, others set the execute
permission but then fail when they can’t delete the file. Check the
permissions are set absolutely (using mode 777).

•! Any temporary files generated by the configuration script created either
in the wrong place or with the wrong names. Often these files have
names with tmp or temp in them somewhere. If you can’t find the files,
then search for all files created ‘today’ and try to identify the files that
way.

•! Unexpected results from running other programs and applications.
Passing the wrong code, text string, or command to an application can
produce either the wrong result, or simply an error, neither of which the
average script will know how to deal with.

Try running the script specifying the -x and/or -v options:
$ sh -xv configure

These options echo the commands as they are read and the commands as they
are executed respectively, showing the commands, options, and any file
names used during the script’s execution.

Let’s look at our final example of the GNU configure script, this time
from the gawk package. Although the configuration system is still based on
autoconf, the sequence follows the perl steps:

Page%188%of%467

14.1.!Check the operating environment, including support for the tools
required for the configuration process.

15.2.!Check for supported libraries, functions, variables, and other
information, confirming with user if necessary.

16.3.!Create the header files and Makefile which go to make up the

configuration files.

The big difference is that rather than identifying the OS, the configure
process instead attempts to identify the functions and tools supported. This
has the advantage of being completely OS independent As long as the script
executes without error and finds what it needs it is not concerned with the OS
it runs on. If you run the script under the BeOS however, you run into
problems straight away:
$ configure
creating cache ./config.cache
checking for bison... bison -y
checking whether ln -s works... yes
checking for gcc... no
checking for cc... yes
configure: error: no acceptable cc found in $PATH

Lets take a look at that last line. It says that the C compiler is cc, and that
it’s managed to correctly identify and find it. In fact, cc is a script which
points to the mwcc C compiler. It incorporates some basic command line
options which help the porting process by making the environment that
mwcc uses more compatible with the cc found on most UNIX systems. We’ll
take a look at this script later in the book when we come to the build process.

As an alternative,, you could modify the configuration script. By default,
the autoconf process looks for two C compilers: one is cc, the standard C
compiler supplied with most UNIX OSs, and the other is gcc, the GNU C
compiler. Although the BeOS (via the script) supports the cc compiler, you
could do a search in the configuration file for gcc, replacing it with mwcc. This
second workaround is messy; I don’t like modifying supplied scripts unless
absolutely necessary, and in this instance the cleaner is just to use the cc that
does exist. Modifying a re-creatable Makefile after fooling the configuration
script is a much safer option however. Alternatively, we could use a feature of
the GNU configuration script which allows you to specify the compiler. Use
the following line to use mwcc instead of cc:
$ CC=mwcc ./configure --without-gcc

With all the GNU scripts you have the ability to set various options for
the packages when you run the configuration script. A full list of the
appropriate options for the package you are installing is usually contained in
the documentation. These options are used to control the settings,
applications and directory locations but do not normally include settings for

Page%189%of%467

alternative compilers or other support software. For example, to set the
default installation directory you use the --prefix option:
$ configure --prefix=/boot/local

This is a quicker solution than manually editing a Makefile after the
configuration script has completed execution.

If you are familiar with the GNU autoconf program, a port is available
that gets round most of the problems on configuring software. It even gets
round the normal configuration tricks of checking for supported functions.
The mwcc compiler will ignore the function in code like this
int main()
{
 return 0;
}
int test_function()
{
 function_to_test(1);
 return 0;
}

because it spots that the function you are testing the existence of is never
called.

Faking Options
In order to get past some of the problems created by missing applications and
files you need to fake their existence. If you can, you should replace missing
applications with a working version, because if the script tries to run the
application and nothing happens, you could end up in even greater
difficulties.

You can fake applications by creating mini scripts that are run in the
place of the real thing, by substituting a similar application (such as bison for
yacc), or by modifying the script itself. In the case of the gawk configure
script, we could have substituted the cc command with mwcc. You can do this
with a script, the example below is the one supplied with the BeOS
#!/bin/sh
exec mwcc -I- -I. $*

. If you use this method there is a final step which we’ll cover in the next
section: manual adjustments.

Sometimes a script will fail because of a missing file. It may be not be
anything important; it could just be a test file, or a progress file that the script
is checking for but can’t find. In these cases it is often possible to create an
empty file using the touch command to fool the script into thinking the file
exists.

Page%190%of%467

Creating empty files
To create an empty file using touch just specify the filename after the

command. For example, to create an empty file called myfile:
$ touch myfile

For more information on touch see Chapter 4.

It is dangerous and definitely not recommended to simulate the
existence of header files in this way. Header files are used by the configuration
process to identify supported functions and facilities, so faking their existence
can lead to further problems.

In the case of our first example (Emacs) the missing element was a
recognizable identification of the machine and OS. In Emacs the GNU
autoconf program is looking for two files: one specifies information about the
hardware platform, and the other specifies information about the OS. These
are stored in the m and s directories respectively, which in turn are contained
in the src directory.

The way to identify the machine and OS is to run the uname command,
which should provide you with everything you need to identify the machine
you are currently running on. When asked to print all the information it
begins by reporting the OS, then gives the node name, OS release, OS version,
and finally the hardware name:
$ uname -a
BeOS MCBe 1.2 d7 BeBox

Within Emacs recognition is controlled by another script, config.guess,
which contains clues and further scripts which can be used to identify the
output of uname and convert this into the standard format recognized by the
configuration script. Checking the start of the script, you see the following:
UNAME_MACHINE=`(uname -m) 2>/dev/null` || UNAME_MACHINE=unknown
UNAME_RELEASE=`(uname -r) 2>/dev/null` || UNAME_RELEASE=unknown
UNAME_SYSTEM=`(uname -s) 2>/dev/null` || UNAME_SYSTEM=unknown
UNAME_VERSION=`(uname -v) 2>/dev/null` || UNAME_VERSION=unknown

trap 'rm -f dummy.c dummy.o dummy; exit 1' 1 2 15

Note: order is significant - the case branches are not exclusive.

case \
"${UNAME_MACHINE}:${UNAME_SYSTEM}:${UNAME_RELEASE}:${UNAME_VERSION}"\
in

The script is trying to match a string made up of the hardware, OS, OS
release, and OS version. Inserting the following as the first check should allow
the script to identify the BeOS:
 :BeOS::*)
 echo be-be-beos${UNAME_VERSION}
 exit 0 ;;

Page%191%of%467

After modifying this script, you need to adjust the other scripts to accept
this identification. The configure script requires modification so it can
recognize which header files need to be used in the final configuration. The
final stage is to create the header files in the directories outlined above. We’ll
look at the best way to approach this problem in the next section. If this whole
process looks daunting to you, Fred Fish has produced a patch for the GNU
autoconf system which performs all of these steps. In time, these changes will
be incorporated into future revisions of the GNU packages. Check Appendix
A for details of where to find Fred’s patch, and then refer to Chapter 6 to learn
how to apply the patch.

Manual Adjustments
The problem with configuration scripts is that, like computers, they are only
as intelligent as the people who programmed them. A configuration script
will only check what it has been told it needs to check, and will therefore
almost certainly fail on a new platform. As a porter, it is your job to make the
necessary changes to ensure that the script is intelligent enough to do its job.
For that, you will need to make some manual adjustments.

We have already seen how programs which use uname to identify
systems need to have their scripts modified. If you do have to make manual
modifications to scripts, make sure you know what you are doing and ensure
that you have a backup copy of the script as it was supplied. If possible you
should use one of the other tricks I have described and then modify the
configuration files created. This is safer and less prone to errors and
modifications that may cause the script to fail to run.

It will also make your life easier for complicated projects; the larger
GNU packages can use many Makefiles, all of which will need to be modified
by hand if you cannot make the configure script work. Modifying the script
will also make it more difficult when you come to port the software to the
next version of the OS, when many of the problems exhibited by the current
version may disappear.

If you need to create header files based on the changes you have made to
the script (as in the case of our Emacs example), duplicate an existing header
file from those supplied. As has been described elsewhere, the best places to
start are those close to the setup and abilities of the BeOS. These are POSIX,
SVR4, and Solaris, all of which have similar tool sets and library functions.

Even if the configuration scripts work after you have made your manual
adjustments, you will need to check the files that were produced in the
process and make some minor modifications to get the package to work. Once
compiled, you need to test the package configuration using the method

Page%192%of%467

described in this chapter, and then make the necessary final modifications to
make sure all the features work.

If the configuration scripts fail completely, even after some manual
adjustment, see the “Cheating” section at the end of this chapter. In each case,
the results will almost certainly require some form of manual massaging, so
come back to this section once you have the files you need.

Testing the Configuration
Once you have finished configuring the package using the configure script
and any of the tricks I have described here, you should test the configuration
before you build it. That might sound a little difficult at first; surely the best
way to test whether the configuration has worked is to try building the
package?

Not necessarily. There are two elements to the configuration process: one
is responsible for ensuring that the package builds correctly, the other is
responsible for making sure the program actually does what it was designed
to do. We are only concerned at this stage with the first element, making sure
the package builds correctly. There are some things you can check and modify
before you start:

•! Check that any required configuration files exist, including header files,
the Makefile, and so on.

•! Ensure that the Makefile is in the correct format and doesn’t fail because
of any layout problems. You can test for this using the “no execute”
mode of make specified by using the -n option. In this mode, make
processes the Makefile and prints the commands it will execute without
actually executing them. You therefore get to test the build process
without being required to build the package. Running the test build on
the gawk package just configured, you’d get the following output:

cc -c -g -DGAWK -I. -I. -DHAVE_CONFIG_H array.c
cc -c -g -DGAWK -I. -I. -DHAVE_CONFIG_H builtin.c
cc -c -g -DGAWK -I. -I. -DHAVE_CONFIG_H eval.c
cc -c -g -DGAWK -I. -I. -DHAVE_CONFIG_H field.c
cc -c -g -DGAWK -I. -I. -DHAVE_CONFIG_H
 -DDEFPATH='".:/usr/local/share/awk"' ./gawkmisc.c
cc -c -g -DGAWK -I. -I. -DHAVE_CONFIG_H io.c
cc -c -g -DGAWK -I. -I. -DHAVE_CONFIG_H main.c
cc -c -g -DGAWK -I. -I. -DHAVE_CONFIG_H missing.c
cc -c -g -DGAWK -I. -I. -DHAVE_CONFIG_H msg.c
cc -c -g -DGAWK -I. -I. -DHAVE_CONFIG_H node.c
cc -c -g -DGAWK -I. -I. -DHAVE_CONFIG_H re.c
cc -c -g -DGAWK -I. -I. -DHAVE_CONFIG_H version.c
cc -c -g -DGAWK -I. -I. -DHAVE_CONFIG_H ./awktab.c
cc -c -g -DGAWK -I. -I. -DHAVE_CONFIG_H getopt.c
cc -c -g -DGAWK -I. -I. -DHAVE_CONFIG_H getopt1.c
cc -c -g -DGAWK -I. -I. -DHAVE_CONFIG_H regex.c
cc -c -g -DGAWK -I. -I. -DHAVE_CONFIG_H dfa.c
cc -c -g -DGAWK -I. -I. -DHAVE_CONFIG_H random.c

Page%193%of%467

cc -o gawk array.o builtin.o eval.o field.o gawkmisc.o io.o main.o
missing.o msg.o node.o re.o version.o awktab.o getopt.o getopt1.o
regex.o dfa.o random.o
cd awklib && make all
make[1]: Entering directory `/gawk-3.0.2/awklib'
cc -g ./eg/lib/pwcat.c -o pwcat
cc -g ./eg/lib/grcat.c -o grcat
cp ./eg/prog/igawk.sh igawk ; chmod 755 igawk
(cd ./eg/lib ; \
sed 's;/usr/local/libexec/awk;/usr/local/libexec/awk;' < passwdawk.in)
> passwd.awk
(cd ./eg/lib ; \
sed 's;/usr/local/libexec/awk;/usr/local/libexec/awk;' < groupawk.in)
> group.awk
make[1]: Leaving directory `/MCCe/Projects/InProgress/Porting/
gawk-3.0.2/awklib'
cd doc && make all
make[1]: Entering directory `/MCCe/Projects/InProgress/Porting/
gawk-3.0.2/doc'
make[1]: Nothing to be done for `all'.
make[1]: Leaving directory `/gawk-3.0.2/doc'

•! Check the directories and any other defines in the header files used
during the build.

Provided everything works OK, the only thing left to do now is build the
package, which will be covered in Chapter 15. If you do find any problems,
then refer to the relevant sections of this book to identify and solve the
problem.

Cheating
“Cheating” is perhaps an ugly word for what is really just a different
approach to the problem of configuration scripts that don't work. The purpose
of the configuration script is to produce pre-configured and ready-to-use
versions of the files you need to build the package; it is not responsible for the
actual building or for making sure that the configuration is correct.

What you need to do is somehow fool the configuration script into
thinking it is running on a machine it knows about; run the configuration
script on a different machine, and use the output generated to help configure
the package on the BeOS; or, using the template files provided as part of the
configuration program, produce the “real” versions that should have been
generated by the script.

The first option, fooling the script, is the most difficult way to cheat the
configuration process. The aim is not to produce the correct configuration for
the machine first-hand; instead you want to produce as close a configuration
as possible with all the configuration files in the correct formats. Depending
on the package, you may be able to do this in a number of different ways. For
the GNU autoconf scripts that rely on a specific machine/OS combination
(Emacs, gcc, gcclib, and so on) you can specify what system you are running
on. This eliminates the checking process that attempts to identify the OS and

Page%194%of%467

moves straight on to configuring the system for the specific machine and
using the predefined header and configuration files.

If you choose to do this, make sure you select a combination that will
reduce the amount of manual configuration required. I suggest you use IBM’s
AIX (use a configuration argument of rs6000-ibm-aix) or Sun’s Solaris (sparc-
sun-sol2.4) as a starting point. If you have no luck with these OS, try using
Linux as another good starting point. You pass this information to the script
on the command line:
$ configure sun4-sun-solaris2.4

This process won’t automatically solve all of the problems associated with
running the script, so you will need to refer back to this chapter when the
configuration fails.

If you have access to another UNIX-based machine you can try the
second method of cheating, which is running the configuration program on
the alternative machine. Once you have run the script, create a tar file of the
configured package directory and transfer this file over to the machine
running the BeOS. Once you have extracted the file, you can try building the
application. This configuration will probably fail the first time, but it should
provide you with the necessary files required for configuration and the
pointers you need to make any necessary changes.

In fact, this method was used by Be to port the original set of tools and
utilities available on the BeOS. Some of the tools that are in DR9 are still based
on the same source files as those original version, so it just goes to show that
the method works!

If you know there are some things that need changing after using the
package configured on a different machine, change the configuration files
directly. The things to look out for are missing functions, directory
specifications, and the tools required to build the package. Use Chapters 8 and
9 to help you make the necessary changes before building, and refer to
Chapter 15 for help during the build process.

Most of the time the configuration substitutions are made to supplied
template files. For the last method of cheating, you can use this fact to your
advantage. Using these template files you can produce the configuration files,
which in turn can be used to build the package.

If you look at the directory contents of gawk, there are two files you need
to investigate. One is Makefile.in and the other is config.h. If you copy the
Makefile.in to Makefile and make the necessary substitutions by hand in
combination with making similar modifications to the config.h file, you can
simulate the process of the configuration script, which is, after all, only trying
to this quickly and easily.

Page%195%of%467

I used this method for Perl5 as the scripts used for the configuration
process often failed to run. It’s not the easiest method, and it isn’t for the feint
hearted, but it can work if you concentrate on changing the necessary
elements to get the application to compile. You can sort out details on the
specifics of the application one you have the Makefile working correctly.

Configuration scripts are intended to make the build process easier, but when
it comes to porting they sometimes help to confuse the issues. The fact is that
nobody has invented a way of identifying all of the features of a machine
simply and easily, and then producing a configuration around that
information.

The GNU autoconf system gets very close, but it still has to obtain and
sometimes even guess a lot of information about the machine before it can
make any intelligent suggestions about how the package should be
configured.

Page%196%of%467

Chapter 11: Smart Compilers
Following in the footsteps of the configuration script is the smart compiler.
The principles of the configuration script and Makefile apply to the smart
compiler. The aim is to configure and then compile the package for the current
platform based on a series of questions and/or some automatic tests to
discover the necessary information required to complete the build. A smart
compiler is written to combine the two processes into a single, unified way of
configuring and building the package.

The term “smart compiler” is probably misleading; it is not a compiler at
all, just a script that controls the build process. In most instances the process is
still managed by some form of Makefile and either the script is a wrapper
around the outside of the make process, or the commands used during the
make process are scripts instead of straight compiler commands. In some
simpler packages the build process is entirely handled by the smart compiler,
although this is very rare. With make and gcc being available on such a wide
variety of platforms, most people have moved their packages to this model.

In this chapter, we will look at the use of scripts which form the basis of
the build process, with and without the use of a corresponding Makefile.

Smart compilers vs. Makefiles
Opinion over the relative merits of smart compilers over a Makefile is split
between programmers who like the shell scripts which the smart compilers
are written in, and those who prefer the functionality and ease of make and
the Makefile.

The advantage of a smart compiler is that, hopefully, it will be one
simple command to both configure and build the specified application. This
makes the process easier for non-technical people, or for complex build
procedures where the steps involved between compiling each file are complex
and therefore difficult to reproduce in a Makefile.

A configuration script with a corresponding Makefile is generally easier
to work with if you are a programmer. In particular, the ability to
automatically compile a source file based on whether it or any of the header
files to which it relies have changed is far more convenient when porting
software. You don’t need an all in one process, your aim is to get the package
compiled, not to simulate the sort of installation program you find on
Windows or MacOS.

However, all things considered, the upshot of which system the package
is using makes a difference as to the approach you need to use to complete the

Page%197%of%467

port.The first goal when working smart compilers is to understand what the
script is trying to do.

Following the Script
You already know what the execution sequence of a typical build is:
configure, build, install. With a smart compiler all three processes are bonded
together into a single process. There are basically two types of smart
compilation system. The first form of smart compiler, which uses a script to
control the entire build process, is the more difficult to work with as you need
to know shellscript in order to follow the process. The pine e-mail package
uses this sort of smart compiler; if you look at the directory contents you can
see the build script and also a makefile (note the use of lowercase):

Note: A lower-case makefile will be used in preference to
a title case Makefile when the make command is run

CPYRIGHT bin/ build.bat contrib/ imap/ pico/
README build* build.cmd* doc/ makefile pine/

Checking the documentation, you’d find that the build script requires an
argument that specifies the OS under which you are compiling. If you check
the script, you can see what actually happens during execution of the script.
Shown below is the main part of the script that handles the build process:
case $maketarget in

 ???)

Destination OS is not specified
 echo ''
 cd $PHOME
 if [-s c-client] ; then rm -f c-client ; fi
 if [-s imapd] ; then rm -f imapd ; fi

Check to see if the applications exist and delete them
 ln -s imap/systype/c-client c-client
 ln -s imap/systype/imapd imapd
 echo "Making c-client library, mtest and imapd"

Change the directory, and run make
 cd $PHOME/imap
 make $makeargs $maketarget
 echo ''
 echo "Making Pico and Pilot"
 cd $PHOME/pico
 make $makeargs -f makefile.$maketarget
 echo ''
 echo "Making Pine".
 cd $PHOME/pine
 make $makeargs -f makefile.$maketarget
 cd $PHOME
 if [! -d bin] ; then mkdir bin; fi
 cd $PHOME/bin
 rm -f pine mtest imapd pico pilot
 if [-s ../pine/pine] ; then ln ../pine/pine
pine ; fi
 if [-s ../c-client/mtest] ; then ln ../c-client/mtest
mtest ; fi

Page%198%of%467

 if [-s ../imapd/imapd] ; then ln ../imapd/imapd
imapd ; fi
 if [-s ../pico/pico] ; then ln ../pico/pico pico ; fi
 if [-s ../pico/pilot] ; then ln ../pico/pilot pilot ; fi

Link the created applications to versions in the top
directory

 cd $PHOME
 echo ''
 echo "Links to executables are in bin directory:"
 size bin/pine bin/mtest bin/imapd bin/pico bin/pilot
 echo "Done"
 ;;

Once given a suitable target OS on the command line, the script changes
to a subdirectory and runs the make command to build the target. There may
be an different way to build the package that doesn’t require the use of the
smart compilation script. The quickest way to find out is to check the other
files in the top level directory of the package. As we already know from
Chapter 5, the top level directory is the location of the README, INSTALL
and other files. It is also the location of the scripts or Makefiles used to build
the package.

Usually, we can find some other files in the top directory that can give us
pointers to a different mechanism. The most obvious is a Makefile of some
description. This may either be a genuine Makefile, or it could be a Makefile
template that we can use to recreate the real thing.

Looking back to the original directory listing, you can see a makefile
(lowercase, not title case). Checking the makefile, you can see that it actually
does nothing more than send a note to the screen about how to build the
package:
all:
 @ echo 'Use the "build" command (shell script) to make Pine.'
 @ echo 'You can say "build help" for details on how it works.'

This isn’t very helpful, and wont provide us with any system at all to
build the package. Instead, if we look back to the script, the first directory the
script moves to is imap, where it runs a make command based on the OS type
specified to the smart compilation script. The Makefile in this directory
identifies the OS and then using the information contained in the lines of the
Makefile selects an ANSI or non-ANSI version of the source code. The
Makefile has been pre-configured with the information about which OS uses
ANSI or non-ANSI style C code using the following lines:
ANSI compiler ports. Note for SCO you may have to set LN to "copy -
rom"

a32 a41 aix bsi d-g drs lnx lyn mct mnt neb nxt osf sc5 sco sgi slx
sos:
 $(MAKE) build SYSTYPE=ANSI OS=$@
aos art asv aux bsd cvx dpx dyn epx gas gso gsu gul hpp isc ptx pyr
s40
sol ssn sun sv4 ult vul uw2:
 $(MAKE) build SYSTYPE=non-ANSI OS=$@

Page%199%of%467

Following the build information for the target build, the script runs yet
another make in another subdirectory:
build:
 echo $(OS) > OSTYPE
 $(RM) systype
 $(LN) $(SYSTYPE) systype
 cd $(SYSTYPE)/c-client; $(MAKE) $(OS)
 cd $(SYSTYPE)/ms;$(MAKE)
 cd $(SYSTYPE)/ipopd;$(MAKE)
 cd $(SYSTYPE)/imapd;$(MAKE)

This last Makefile is the one which actually compiles the necessary files
into the programs being built. The extract below shows the definition for
making a Solaris version using the GNU compiler:
gso: # GCC Solaris
 $(MAKE) mtest OS=sol EXTRADRIVERS="$(EXTRADRIVERS)" CC=gcc \
 STDPROTO=bezerkproto MAILSPOOL=/var/mail \
 ACTIVEFILE=/usr/share/news/active NEWSSPOOL=/var/spool/
news \
 RSHPATH=/usr/bin/rsh CFLAGS="-g -O2 -DNFSKLUDGE \
 $(EXTRACFLAGS)" \
 RANLIB=true LDFLAGS="-lsocket -lnsl -lgen"

After some digging, what we actually see here is not a shell script
managing the build process but a script-based front end to a collection of
complex Makefiles and subordinate make commands. The actual process for
compilation is to copy a header file containing the required information and a
corresponding source file with the missing functions to a standard osdep.{c,h}
file, which is then compiled with the rest of the source files into the library.
This is repeated elsewhere in the build to produce the final versions. Like
most porting exercises, this porting process concentrates as much on the
contents of the OS-dependent files supplied with the package as it does on the
script and the Makefiles surrounding the process.

Why use a smart compiler
Beyond the reasons we’ve already looked at for using a smart compiler over a
Makefile, there are some other reasons why software writers prefer this
method.

The most obvious reason is the expected simplicity of the process.
Despite what you may think, there are some programmers who actually think
about the people likely to use their software. Typing build to completely
configure and build a package on a machine is obviously easier than typing
configure, answering some questions, and then typing make to build it.
However, the process is more difficult for the programmer this way, and
developing the software without using some form of intelligent compilation
system that doesn’t remake the software every time you run the build
command must make the process significantly longer. The real benefits to this

Page%200%of%467

all in one process only apply for those machines to which the software has
already been ported.

The all-in-one method works for those packages where the entire process
is managed by the one script. What about the hybrid solutions where a
combination of a front end script and additional Makefiles or the opposite,
Makefiles with executed scripts are used? If you examine some of the scripts
used more closely, the reason for the mixture of scripts and Makefiles becomes
obvious.

In the case of perl the use of scripts is two fold. The first reason is that
the configuration information can be easily stored in a shell script which is
then used by the other scripts to tell them what to do. For example, the
compiler script (cccmd) used by the Makefile reads in the configuration
information about the compiler and the arguments to use. Storing this
information in a shell script is easy, and using shell variables means that we
don't need to use programs like sed to generate ‘configured’ versions of the
Makefile or a header file from a template. Making changes to the
configuration is easy, all we need to do is modify the configuration shell
script, and then all the other build scripts will take note of the change.

In the case of the scripts that do some of the more complex work, the
second reason becomes apparent. The scripts use the features of the shell to
aid them in the compilation process. A Makefile and the make command only
provide the use of variables and variable information which can be generated
from the rules and targets. You can’t use any shell features during the process
because a new shell is spawned each time a command is executed.

In other cases, a smart compiler is used because the platform on which
the package was originally developed either didn’t support make, or, if it did,
it was unreliable or didn’t support the use of additional Makefiles in
subdirectories. In these situations, some form of wrapper to enable multiple
Makefiles from different subdirectories was needed, hence the smart compiler.

Lastly, as with all things, it may just be that the programmer in question
preferred to program a smart compiler than create a suitable Makefile and the
configuration system to go with it. For the programmer, the smart compiler
seemed the obvious solution, and with configuration systems as complex as
the autoconf system from GNU, it is easy to see why.

The second type of smart compiler uses a Makefile to control the build
process, with scripts working behind the scenes to compile and link the
package together. This follows the more traditional route and is generally
easier to work with. The reason for this is that individual scripts are written to
perform specific tasks. For example, a script might be written to run the local
compiler on the specified file. You’re still using the make command to build

Page%201%of%467

the package; what’s changed is that scripts are used in place of the more usual
compilers, linkers, and other tools.

The qmail package, a replacement for the mail system under UNIX, uses
special scripts for compilation, library building, and linking. The scripts make
up the core processes behind the Makefile, which is just the mechanism by
which the build process is sequenced. Essentially, though, the process is no
different from a normal Makefile. When you run make -n, the Makefile begins
by producing the following output:
cat warn-auto.sh conf-cc.sh make-cmds.sh > make-commands
chmod 755 make-commands
cat warn-auto.sh conf-cc.sh find-systype.sh > find-systype
chmod 755 find-systype
./find-systype > systype
./make-commands "`cat ./systype`" compile > compile
chmod 755 compile
./make-commands "`cat ./systype`" load > load
chmod 755 load

The package starts by creating a few scripts to attempt to identify the
system, then it goes on to produce the compile and load scripts. The compile
script is used as the replacement for the cc command:
#!/bin/sh
exec cc -O2 -c ${1+”$@”}

and the load script is used to link the applications:
#!/bin/sh
main="$1"; shift
exec cc -s -o "$main" "$main".o ${1+"$@"}

See the sidebar for reasons why people use this method as opposed to
the make command. Later on, it also builds the makelib script. All of these
different scripts are created by the combination of earlier scripts and the
identification of the OS, which is handled by the find-systype script. All of the
options have defaults, which means that the generation of the scripts does not
fail even if the system is not identified. Configuring and setting up the
package requires only that you change the definitions for these commands.

During the actual build, you will notice a number of lines which appear
to be complex compilations, like this example:
((./compile tryvfork.c && ./load tryvfork) >/dev/null 2>&1 \
&& cat fork.h2 || cat fork.h1) > fork.h
rm -f tryvfork.o tryvfork

The process actually involves running a compilation on a sample file and
then producing a header file based on a successful return code. It is probably
easier to read the entire line as an if statement. The scripts check the abilities
of the OS by checking for specific functions, much like the GNU configure
script, see the sidebar for more information. The difference is that the check
has now become part of the build process, instead of the configuration
process.

Page%202%of%467

Function checking
There are a number of ways to check if a function exists on the system. If you
consider where information about functions is stored, it’s quite easy to think
of a few obvious ways.

The first place to look is in the system header files. The header files
should contain a function prototype for each function supported by the
operating system. Searching the header files for a specific name is a quick way
of finding the information, but not, unfortunately, 100% reliable. What if the
prototype is defined, but the function doesn’t appear in the libraries? (You
may be surprised at how often this happens!).

How about checking the libraries? Well, we could do a search in the
different system libraries for the function we are looking for. Some
configuration systems use the nm command to extract a list of symbols (data
and functions) from a library. This is slow, and still prone to errors. The
function may exist, but just be an empty definition or worse, the function
name exists, but the result of the function doesn’t match what you were
expecting.

The best method employed to identify what functions are available is to
actually compile a program and view the results. For example, we could
check the existence of the printf command by compiling the following
program:
#include <stdio.h>
void main()
{
 printf(“Hello World\n”);
}

If the compiler fails to compile the program, we can assume the system
doesn’t support printf, or does support a function called printf, but not one
that matches the one we tried to compile. If the compilation succeeds, we can
also test the programs output and see if it generates the desired result.

This is a failsafe method of checking if a function exists, and goes some
way to explaining why the process is so complicated and often takes so long.

Finally, we get to the meat of the compilation process where files are
compiled and linked into the final libraries and applications:
./compile fmt_strn.c
./compile fmt_str.c
./compile fmt_uint.c
./compile fmt_uint0.c
./compile fmt_ulong.c
./compile scan_nbblong.c
./compile scan_ulong.c
./makelib libfs.a fmt_strn.o fmt_str.o fmt_uint.o fmt_uint0.o \
fmt_ulong.o scan_nbblong.o scan_ulong.o
./compile fd_copy.c

Page%203%of%467

./compile fd_move.c

./makelib libfd.a fd_copy.o fd_move.o

./load qmail-alias signal.o now.o lock.o \
qqtalk.o myctime.o datetime.o quote.o gfrom.o slurpclose.o \
libfd.a \
libseek.a \
libcase.a \
libwait.a \
libopen.a \
libenv.a libgetopt.a libgetline.a libsubstdio.a libstralloc.a \
liballoc.a liberror.a libstr.a libfs.a

The process for building the qmail package on most systems, even those
that it doesn’t recognize, is to just type make and sit back. This is the Smart
compiler working at its best.

Faking Options
Because of the automatic nature of the smart compiler, faking options isn’t
often required. With a package as complex as qmail, though, some manual
adjustment is required in order to allow for the differences between the BeOS
and other UNIX variants. The basis for faking follows the same principles as
configuration scripts: you are looking for ways in which to fool the scripts
into working within the current operating environment.

With qmail the method for faking this is provided in the form of the
scripts which go to make up the final build-time scripts compile, load, and
makelib. The process for building the compile command, for example, is
based on the combination of three scripts. The one we are interested in is the
conf-cc.sh, which looks like this:
CC='cc -O2'
LD='cc -s'

which can easily be modified to
CC='mwcc -O2'
LD='mwcc -s'

You just need to recreate the compile script, which you can do by running
make compile.

You can modify the other scripts in similar ways, although to do this you
need to examine the process by which these scripts are built. make-commands
is used to generate the different scripts, and the format of this script is to set
the default options and then set the options that are different for each OS. For
example, in the make-commands script the specifications for SunOS 5.x
(Solaris) are
sunos-5.*)
 # we can survive without /usr/ucbinclude and /usr/ucblib
 LIBS='-lsocket -lnsl'
 DNSLIBS=-lresolv
 RANLIB=:
 ;;

Page%204%of%467

We can see here that the configuration information required is what libraries
to supply during the compilation and build process. On the BeOS, it is safe to
assume that we don’t need to specify any libraries as all the system libraries
are included by default.

From the first example, you now know that the process actually uses
Makefiles, so you can use the techniques you have already learned to build
the pine package.

With many packages, you will find the former technique of modifying
the scripts the most reliable method of porting and building your application.
Alternatively, you may find that you need to use the techniques mentioned in
some of the earlier chapters to build the package properly. If neither of these
methods works, you may want to consider the two alternatives covered later
in this chapter, hand compilation and generating a Makefile.

Ideally, whatever modifications you make should done in such a way
that they can be incorporated into the version of the package distributed over
the Internet. For example, if the system uses a configuration script, you
should make the changes to the script and the files it uses so that the method
of building and installing the package is the same for all platforms.
Remember, at all times, that as the porter you doing the same work the
programmer has already done, just for a new platform, and you will need to
make the package easy to install, and make the differences easy to incorporate
into later versions of the software. We will see the best way of tackling this in
Chapter 16.

Hand Compilation
Hand compilation is the process of manually producing the required source
files (using other files as templates, or using tools such as bison) and then
compiling the source, file by file, using the command line. Being interactive in
nature, rather than automatic, it provides a number of advantages. Because of
the compatible nature of a Makefile, hand compilation is rarely needed when
only a single make command is involved in the build process. After all, at it’s
most basic level the make command only executes the compiler and linker on
a list of source files to build a program.

In the case of a shell script however, the process is likely to be more
complex, with procedures and sequences in place both before and after the
calls to the compiler. A shell script is rarely as compatible or portable as its
Makefile because a shell script will rely on a program or function which
doesn’t exist in the destination OS. A Makefile on the other hand is
compatible with any version of make. When using scripts as wrappers to
either the make process or the underlying tools used during the build, hand

Page%205%of%467

compilation can often save you the hours of work that the scripts were
originally intended to save you.

If you can easily identify the build process, as in the pine example at the
beginning of this chapter, you may decide that a hand compilation would be a
good way of getting around the problem of using multiple makes and the
surrounding shell script. In our second example, based on qmail, a better (and
easier) option would be to generate a new Makefile to do the compilation,
rather than relying on the scripts that make up the current build sequence.
Refer to the last section of this chapter for details on how to write a
replacement Makefile.

In the case of the pine example, hand compilation is probably the best
way to get around the problem of identifying the full process required for the
build and the requirements of the Makefiles. Hand compilation is a long and
complicated way of producing the same result as using a Makefile, and
although it does give you ultimate control over the build process, I don’t
suggest this method to anybody with a weak heart or a short temper!

If you decide this is the best route, you should consider the following
before starting:

•! Hand compilation requires thorough knowledge of the Makefile and the
processes involved in compiling files. I’m not referring to just the
compiler, but also the build sequence and any required libraries, files,
and applications.

•! You must know the elements and files required to build each of the
targets. This includes header files, any manual modifications, and the
use of code-generation tools such as bison and flex.

•! You must know the entire build process; missing any single element
could cause the build to fail—and take a long time to track down. In
particular, the configuration and installation processes make a significant
difference in the operation of the package, so even if the package builds
successfully, it doesn’t follow that it automatically runs properly. Use the
techniques outlined in Chapter 15 to test the package, and be much more
diligent in addressing minor errors if you’ve had to hand compile.

•! Hand compilation takes considerable time. If you are short of time, try
the Makefile process described in the next section.

These all sound very negative, and with good reason. Hand compilation
is the nasty side of the porting process and should always be avoided if
possible, although with some packages it’s inevitable.

Page%206%of%467

Generating a Makefile
In should be apparent by now that most smart compilers still use some form
of Makefile, albeit in some sort of modified form for use with the shell scripts.
If the shell scripts work, the modifications to the Makefile should be fairly
minor, but it may be easier to copy and use the script with some packages
than it is with others.

If you do need to create a Makefile, many of the problems associated
with hand compiling the package also apply. In essence though, a Makefile
does no more than the hand compilation, it just does it automatically.

Refer to Chapter 9 for more details on the use of Makefiles.

The Smart compiler is both a step forward and a step backward from the
configuration script and the Makefile. At its best, the Smart compiler reduces
the build time to mere minutes. At its worst, you end up having to either
hand-compile or produce your own Makefile to simulate the operation of the
Smart compiler.

The smart compiler works by trying to combine the process of
configuration and compilation into one script, for a variety of reasons best
known to the original programmer. Either these scripts interface, and protect
the user from, a series of Makefiles, or the Makefile is just a facade to a
collection of scripts behind the scenes that do the real work.

Whichever system is in use, configuration scripts and Makefiles or smart
compilers, the results should be the same. You are trying to get the package to
compile, and it needs to work hand in hand with the modifications to the
configuration and the source files as part of the overall framework to
achieving the build.

Page%207%of%467

Chapter 12: bison and flex
Two of the most regularly used components of the C programmer’s toolset
are lex and yacc. lex is program that produces the C code necessary for the
lexical analysis of simple text strings. yacc, which stands for “yet another
compiler compiler,” generates the C code for processing free-form text using
the information provided to it by lex.

The two are used together to produce text processors such as calculators
and command-line environments, as well as for the more complex mechanics
of preprocessors and compilers (hence the name of yacc). Under the BeOS, the
GNU versions of these tools, flex and bison, are supported.

The GNU tools provide the same functionality as their standard UNIX
counterparts, although there are some differences in their operation. It is quite
common to come across sources generated by either, or more usually both,
tools. With some packages, most notably compilers, you will need to use these
tools to generate the sources instead of using the supplied pre-created
sources. We will not be covering how to create the files used by the tools, as
that is beyond the scope of this book. If you want to learn how to use the
features of flex and bison or their counterparts lex and yacc you might want
to read ‘lex and yacc’ by John Levine published by O’Reilly and Associates.

yacc and bison
The two utilities bison and yacc and fundamentally the same, the only
difference is in their origin and their available. As a free package, bison is
more readily available than it’s yacc cousin, but those of you coming from
UNIX will recognize yacc, not bison. Before we cover the differences and
similarities between bison and yacc, we should first cover the process of
compiling source files using yacc and the range of errors and error messages
you are likely to get from the package.

yacc works by processing a specification file that includes:

•! A set of rules for the pressing of the input text

•! C source code to be executed once a rule has been matched
•! The code, or a reference to it, for the scanner used to examine the input

This last item is usually handled by lex, although it doesn’t have to be. We
will cover the use of flex (lex’s cousin) later in this chapter.

Each yacc file should have the file extension .y to identify its type. The
make command will identify files with an extension of .y as yacc files and
automatically process them, even if no specific rule is given. During the

Page%208%of%467

compilation process, the yacc file is turned into C source code, based on a
finite state machine with a stack (see sidebar).

The finite state machine
Although it has a grandiose name, a finite state machine is really very

simple. As the name suggests, it is a machine (or in the case of programming,
a program) which has a finite number of states.

For example, consider a switch. The switch has 2 finite states, on and off,
and is therefore an example of a finite state machine. Now think about a
calculator that only adds numbers together. The calculator can be in one of
three states. It is either accepting a number, accepting the operator, or
displaying the results.

The processing of the input to the machine is called reduction. Each
input token (a number or operator in our example) and the result of more
than on token in a specified is described by a rule within the yacc file. These
rules are either shifted (to obtain the next operator) or reduced (when a rule
has been matched). Going back to our example, the input of:

1+2

would be shifted twice to discover the operator type, and then the
second number. The whole expression would then be reduced and calculated
to give a result of 3.

Because each state can be defined by pattern which is being matched we
can add additional operators, and therefore additional states to the machine
to produce a calculator which not only adds numbers, but also subtracts,
multiplies and divides numbers.

The finite state machine stores the information that is being supplied to
it on a stack. Information is put on, and taken off, the stack to achieve the
necessary goal at each state, or to move from one state to the other. For
example, in our last example, the first number, 1, would have been placed on
the stack before the machine shifted to enable the operator, +, to be accepted.
The number 2 would have been placed on the stack with the 1, and then both
would be taken off the stack when the expression is reduced to the sum, 3.

To compile a yacc file into C source code, you pass the yacc file as an
argument to the yacc command:
$ yacc foo.y

The yacc program then produces a new file, y.tab.c, which is the source
file that will be compiled by a standard C compiler. You will sometimes also

Page%209%of%467

have to create a header file containing the token codes used in the yacc file.
The command
$ yacc -d foo.y

produces both the C source file and a new file y.tab.h containing these
definitions.

 If you want to produce a readable version of the parser that is created
during the process, you can also specify the -v option, which creates the
information in a file called y.output. This file describes the individual states
of the machine that is defined in the specification file. It can prove very useful,
particularly when you are trying to identify a bug in the specification.

Developing calculators
When I first started using lex and yacc, like most people, my first tool was a
calculator. I decided to work on a RPN, Reverse Polish Notation calculator,
which takes the numbers first, and then the operators to produce the result.
For example, to add two numbers together, you would type in:

1 2 +

The system uses the stack and is actually easier to program in because
you can take in both numbers and then pop them off the stack, using the
operator to produce the result. I developed it using the rules in yacc to
produce a simple calculator using the four basic operators, +, -, /, *.

My next task was a standard equation calculator, which instead takes in
input as you would write the sum in english:

1 + 2

This still uses the stack, although the process is more complex as the
rules required to resolve the numbers either side of an operator are more
difficult compared to the RPN method I’d used before.

What is interesting though, is that if you replace the source code used to
resolve each rule with source code to print the input, an equation calculator
produces RPN output. Ie., entering

1 + 2

prints

1 2 +

Meanwhile, if you do the same with the RPN calculator, all you get is
RPN output!

Page%210%of%467

Because a yacc file is independent of the machine on which it is run, it is
very unusual, if not impossible, for the process to fail on one machine when
the same file works elsewhere. In many cases, the C source code is provided
with a package, and like the yacc file that was used to produce it, the source
code is cross-compatible, as it uses no functions or other machine-specific
information.

You will, however, sometimes run into problems because of missing glue
functions. There are only two such functions, main and yyerror. All packages
should define these two functions, but if not, you can use the source code
below:
#include <stdio.h>

int main(void)
{
 return(yyparse());
}

int yyerror(const char *s)
{
 (void)fprintf(stderr,”%s\n”,s);
 return 0;
}

During the compilation, particularly with complicated files such as
compilers, you may be warned of a number of conflicts. For example, when
compiling gawk (a text processing language, and a version of the UNIX awk
program from GNU) you get the following:
awk.y contains 62 shift/reduce conflicts.

The conflicts exist because the specification file describes a finite state
machine that doesn’t change states in an orderly manner, or would not parse
the input to the machine correctly. A shift/reduce conflict arises when the
machine is unable to decide how to process the input because no valid
conclusion can be made based on the input. A reduce/reduce conflict arises
when the input could be resolved into two states, instead of the expected one
state.

These conflicts are normal, in the sense that the programmer either
expects or accepts their existence. They arise because of the strict ordering and
parsing mode of the source file and don’t indicate a problem to a porter.
Checking the documentation will usually tell you to expect a certain number
of reduce/reduce or shift/reduce conflicts during the build process, and
provided the numbers match these warnings can be safely ignored.

Differences of bison from yacc

bison is completely backward-compatible with yacc, but there are some minor
differences in the compilation processes of the two commands. The main
difference is that the source file created during the source creation process is

Page%211%of%467

not called y.tab.c it is instead called the name of the source with a tab.c
extension instead of y.

If you process the sample yacc file foo.y with bison you can see the file
created has the .tab.c extension:
$ bison foo.y
$ ls
foo.tab.c foo.y

During the course of a build this will cause problems, because make will
have a rule that expects the normal y.tab.c file created with yacc if you simply
replace the yacc command with bison. This will therefore cause make to fail,
because the command hasn’t produced the file it expected.

Making bison yacc-Compatible

All the command-line options work in an identical manner to yacc. You can
therefore create a shell script called yacc which simulates the operation of
yacc, but uses bison instead.
bison -y $*

The -y option forces bison to produce the y.tab.c file and other files using the
standard y prefix letter, instead of the prefix of the input file.

lex and flex
flex is the GNU equivalent of lex, a lexical analyzer used to identify regular
expressions and pass a token reference for the matched string to the calling
function. lex is typically used with yacc to provide the token information that
yacc requires to parse text. Like yacc, lex uses the information stored in a
specification file to then create C source code which can be compiled into part
of a program.

In comparison to yacc, lex is relatively stupid, its prime purpose being to
identify strings and perform a simple function. There is no concept of rules,
precedence, or sequences, thats what yacc is for. lex does make a good text
processor, much like sed, but the lex file would have to be processed into C,
and then compiled and linked. Sed, on the other hand, is really a pure editor,
and needs no compilation to achieve the same results as lex.

Each lex file must end in .l to be recognized by make and other software.
The normal operation of lex is to generate a C source file from the
specification file, as in the example below:
lex bar.l

The file produced is called lex.yy.c and can be compiled as a normal C source
file.

Page%212%of%467

As with yacc, both the original lex source file and the source code
produced are cross-platform compatible, although it is best to make a new C
source file from the lex source to ensure complete compatibility.

When lex is used with yacc a number of additional elements are added
to the lex file to make it aware of the yacc interface. At the most basic level
yacc uses the yylex() function to find the next input token. Unfortunately, the
function is very dumb, and it is not possible for yacc using this function to
match strings or special characters; it can only recognize numbers. Lex on the
other hand can identify just about anything you choose, including strings,
special characters and can even be set to identify arbitrary strings and
differentiate between strings and numbers. Using lex we can pass the
matched information on to the yacc rules. This function can be replaced by the
lex source code and so the two packages must be aware of the common
elements.

This information is contained in the header file produced by the yacc
code-generation process, and the glue information required in the lex source
is an extra definition at the start of the file:
%{
#include “y.tab.h”
%}

You also need to be able to pass variable information (arbitrary strings or
numbers) to the yacc code. This information is passed in the global variable
yylval. The definition of yylval is contained in the yacc source and must be
referenced as an external variable in the lex source code. By default this value
is an integer, although it can be any variable type, including a union or
structure.

The use of a different variable type for the yylval variable can cause a
number of problems during compilation because yacc will often define the
type of yylval as integer (via the YYSTYPE macro), effectively ignoring the
definition in the yacc source file. It is not uncommon to see additional lines in
a Makefile the express purpose of which is to add the definition to the source
code generated. This is particularly common in the more complex examples.

Differences of flex from lex

flex differs only very slightly from the standard lex in operation. You have
more control over the source code generation process than with the standard
lex; beyond this, the differences are minimal. It is best to examine the
documentation supplied with the BeOS to note the differences, as the facilities
provided by flex change with each new version.

One major advantage of flex over lex, particularly on the BeOS, is the
ability to produce C++ compatible code instead of normal C code. This can be

Page%213%of%467

useful if you are developing BeOS applications that use the BeOS C++
application kits where the use of a C++ object for parsing text will be more
useful than the compatibility of C function. Refer to the documentation for
more details.

Making flex lex-Compatible

There is no need to write a shell script that simulates the yacc command line
as you have to do with bison; instead, you can just substitute the commands
directly so that
$ lex bar.l

becomes
$ flex bar.l

Exactly the same file, lex.yy.c, is produced by both programs so this should
not cause any problems during the build process.

flex Library

Once you have generated the C source and compiled it, at the time of linking
you must use the flex library. Without it, programs will fail to build correctly.
You can include the flex library with the -lfl command to the C compiler. This
is in direct replacement of the corresponding lex library, -ll, as in this example:
$ mwcc lwx.yy.c -lfl

Alternatively, you can replace the two required commands with the C
source below:
extern int yylex(void);

int yywrap(void)
{
 return(1);
}

int main(void)
{
 while (yylex());

 return 0;
}

For most porting situations these will be supplied, or the library versions will
be used in their place.

Page%214%of%467

Chapter 13 - The Compiler and
Linker
The compiler and linker are at the heart of the package-building process. The
compiler converts the C source code into object code (compiled source) and
the linker links the object code together to produce the application. Without a
compiler it is impossible to convert the source code supplied in a package into
the object code required by the linker. Without the linker, you can’t turn the
object files into a library or an application. It is therefore safe to assume that
without the compiler and linker, it is impossible to port a package to any new
platform.

The BeOS is supplied with two applications: mwcc is the C compiler and
mwld is the linker. In this chapter we will take a look at how these work, and
how to use the features of these applications to complete the port.

How the compiler and linker work
Before we cover the specifics of using the compiler and linker, it is worth
covering the steps involved in turning your source file into an executable:

17.1.!The first stage, called preprocessing, uses a preprocessor, which reads in
the source file, expands any macro definitions (#define), and processes
any conditions (#ifdef). Any include files (which consist mostly of
directives and function prototypes) are also included and processed. The
files produced are called preprocessed source.

18.2.!The compiler parses the C code produced from the previous process
(including the header files, expanded macro definitions, and so on) and
produces assembly language for the processor (PowerPC or Intel on the
BeOS). The files produced at this stage are called assembly language
source.

19.3.!An assembler converts the assembly language produced in stage 2 into
the machine instructions used by the processor. The files produced by
this stage are called object files.
On the BeOS, the compiler mwcc performs steps 1 to 3
using a single application. Other compilers, such as gcc
have different applications which perform each stage.

20.4.!Finally, a linker collates the object files and library functions. The file

produced at this stage will either be a library (a collection of functions)

or an executable application.

Page%215%of%467

The standard compiler under the BeOS is mwcc, and unlike the
compilers on other platforms it is a completely self-contained program that
performs the entire process from preprocessing to code generation. The linker,
mwld, is similarly multipurpose, being able to link object files and create
libraries, both tasks normally shared by two or more applications.

The GNU C compiler, gcc has now been ported to the
BeOS, but you still need to use the BeOS linker, mwld, to
produce an executable.
In this chapter, we will see how to make the best use of the BeOS

compiler and linker, and how they differ from those found on many UNIX
platforms.

Preprocessing
We have already seen that preprocessing is the first step in the production of
an executable. The sub-steps involved in preprocessing are executed in a more
or less recursive style with a number of passes (usually three). The first pass
reads in the source, including any header files, and any header files which are
included by the header files.

The next pass reads in the full source and identifies any macro
definitions, including any conditional statements. The third pass then
expands the definitions into the final preprocessed version of the source file.

Defining Values

The -Dname option to mwcc allows you to specify additional macro
definitions This is compatible with most other compilers, including gcc, so it
should not represent a problem when porting.

When using command-line definitions you should keep a few things in
mind:

•! Try to keep the number of definitions to a minimum; if you find you are
using a lot of definitions on the command line, create a header file and
include that in the source. Having a lot of definitions on the command
line makes the code generally hard to follow because you can’t see a
macros value until the source is compiled. It also makes changes more
difficult to incorporate, as we have already seen, changing the settings in
a Makefile doesn’t ensure that the source is recompiled.

•! When specifying definitions that require special characters you will need
to escape them using the backslash (\). For example, you would specify
a string as follows:

$ mwcc -c foo.c -DOUTSTR=\”Hello World!\”

Page%216%of%467

•! Using a definition on the command line allows you to specify the
definition only for a particular file, or for a number of files. Make sure
you only use the specification on the files that require it; incorrect
definitions can cause porting problems.

It is also possible to undefine macros (using the -Uname option) that
may be specified in the file (or any of the header files included by the file).
This is equivalent to a #undef directive in the source file. It is unlikely you
will use this in general practice. However, if a compilation is failing because a
definition causes the use of some incompatible source code, it may be quicker
to try your theory by undefining the macro on the command line instead of
modifying the source.

Using the Preprocessor

It is common for some packages to use the facilities of the preprocessor to
process and format the Makefile and other files before building the package.

Because of the macro definition and expansion capabilities of the
preprocessor it can make the process of configuring a package easier without
requiring an alternative configuration program. By default, most packages
expect to use the -E argument to the compiler to preprocess files and the
Metrowerks compiler is no exception. So to preprocess the file foo.c you
would type:
$ mwcc -E foo.c

Output from the command is sent to stdout, so you will need to redirect the
output to a file if you want to use it.

Some packages may use the C preprocessor, cpp, directly but there is no
separate preprocessor in the Metrowerks toolkit. The commands cpp and
mwcc -E are interchangeable. If you want to use the cpp command, you can
create a small shell script called “cpp” containing:
#! /bin/sh
mwcc -E $@

You could use this script to emulate the existence of cpp and therefore trick
configuration scripts into thinking that a cpp program exists. In most
instances however the configuration script will also try to use mwcc -E to
preprocess a file.

Preprocessing can also aid in the porting process by allowing you to
generate the file which is actually compiled by the rest of the C compiler,
rather than the source file which contains the definitions and conditional
statements. When working with a large or complex project identifying a
complex expansion can be a mammoth task. In order to achieve the level of
cross-platform compatibility, definitions and conditionals are used to decide

Page%217%of%467

which piece of source code should be compiled. Using the preprocessor, you
can preprocess the source and then identify which macro needs to defined (or
indeed, undefined) to compile the source correctly.
Note: When reading preprocessed source dont expect to see tidy C source code. A
great deal of the niceties such as tabs, spaces, and the more useful comments will all
be missing from the preprocessed version of the file.

Creating a Dependency List

In Chapter 9 we covered the advantages of using a dependency list in a
Makefile to aid in the correct compilation and building of a package. On most
UNIX flavors, the makedepend program creates the dependency list.

Under the BeOS you use an option to the mwcc compiler to create the
dependency list. For example,
$ mwcc -make foo.c

generates a list of the dependent files for the source file. It is probably a good
idea to create a shell script to simulate the makedepend command with the
compiler’s alternative. The makedepend program is usually run on the entire
source tree; you may want to repeat this action for mwcc, which you can do
quite easily by passing the command-line arguments straight to the
makedepend script:
#!/boot/bin/sh
mwcc -make $*

Optimization
Optimization allows the compiler to make decisions about how it produces the
assembly code that ultimately produces the final application. Normally,
optimization is only specified during compilation once an application has
been debugged, although some people use optimization throughout the
development of a package.

The optimization can be either for execution speed or for size, depending
on the final application. Today, the size of an application and the memory and
disk space it uses are less of an issue; most people want to squeeze the
maximum horsepower out of their machines. In addition, many people want
to optimize the application for their processor. Different processors can
execute the same compiled C source code in different sequences, and a
compatible sequence on one processor does not always execute at the same
speed when run on a different processor from the same family.

In general, optimization works by removing additional or extraneous
assembly code, or modifying source code to make better use of the processor

Page%218%of%467

functions available. For example, using a single specialized CPU instruction
instead of two for a particular command will save you an instruction cycle. It
doesn’t sound like much; after all your average instruction cycle takes only
microseconds to execute. But factor it up to the number of lines in a package
and you gain a significant increase in speed. emacs, for example, has about
150,000 lines of C source code, not including any header or configuration files.

Other techniques include identifying loops and modifying the assembly
code to process the loop faster. For example, the for loop below would be
terribly inefficient when compiled, as the process of looping requires jumping
from the end of the loop to the beginning again and then testing the value of
the counter. This is a number of processor steps, even without the addition of
adding up the value of the total variable.
for (counter=0;counter<4;counter++)
 total+=4;

When optimizing the code, the compiler would convert the loop into just
three statements which add up the value of total.

Other techniques used are instruction re-ordering which changes the
order commands are supplied to the processor and removing unused, or
unnecessary code sections.

Optimization Levels

The GNU C compiler, gcc, supports two basic levels of optimization, -O and -
O2. These adjust the number and type of optimization techniques employed
by the compiler during its generation stage.

gcc also supports levels -O3 and -O4, but -O2 is the
recommended optimization level for most project.s
mwcc accepts a number of different optimization options. The basic level

of optimization, -O, supports processor scheduling. This is a technique
whereby individual CPU instructions are sequenced in the correct order for
efficient operation without the CPU having to load information or
instructions from RAM to do its task.

For each level you go up from -O an additional form of optimization is
added, up to the top level of -O7 which optimizes all the code, with
scheduling and speed optimization using the techniques I described above.
This is the highest level you can go to under the BeOS and should only be
used for final versions. If you are using a Makefile, add -O7 to the CFLAGS
before a final compile. You can also specifically select optimization for size or
speed using the -Os and -Op command-line arguments. See Table 13.1 for a
full list of optimization levels available on the PowerPC platform and the
effects.

Page%219%of%467

There are different levels of optimization and different styles of
optimization available on the Intel version of the BeOS. These were not
available in full form at the time of writing so check the documentation of
mwcc under Intel when it becomes available.

Table 13.1

mwcc optimization levels
Option Optimization methods used
-O0 Suppress all optimization
-O Enable instruction scheduling (PPC603)
-O1 Enable peephole optimization
-O2 Enable instruction scheduling (PPC603)
-O3 Enable global optimization
-O4 Enable peephole, speed and instruction scheduling optimization

with global optimization level 1
-O5 Enable peephole, speed and instruction scheduling optimization

with global optimization level 2
-O6 Enable peephole, speed and instruction scheduling optimization

with global optimization level 3
-O7 Enable peephole, speed and instruction scheduling optimization

with global optimization level 4
-Op Optimize for speed
-Os Optimize for size

Warning: Using level -O7 on some source code will cause the compiler to use huge
amounts of virtual memory. If you find that the compilation is taking too long, try
reducing the level down to -O5 or below. You may also find that you need to reduce to
as much as -O3 if you find problems with 64-bit integers.

Using Optimization with Debugging

Like the GNU C compiler, mwcc can create optimized debuggable code,
something many compilers do not handle. This allows you to debug
compiler-optimized code rather than debugging a non-optimized version. As
you will see, optimizing source code can introduce errors, and the ability to
debug the optimized version should help to pinpoint any specific problems.

As a personal preference, I find that I use the two options of
optimization and debugging exclusively. The first pass of the porting process I
always run with debugging on. This allows me to identify and fix any
problems with as much information to hand as possible. Particularly useful
when porting is the ability to monitor variable values.

Page%220%of%467

Once I have completed and tested the “debugger” version of the
package, I then recompile with optimization switched on to generate the final
distributable version. The other advantage to switching debugging off at the
final build is that the executable will be that much smaller.

There are some exceptions to this rule; a number of programs that use
symbol tables like debugging symbols included to aid the program execution.
In particular, debuggers, compilers, and complex programs like emacs like
debug information. In all of these cases, the ability to optimize code execution
while still retaining this information should make the ported package
significantly faster compared to a debugged-only version.

Coping with Optimization Problems

With some applications and packages using optimization can cause a number
of problems. On the whole, it is relatively rare, but when it happens it can
often be very difficult to trace the problem to the source code. This is because
the optimized version of the source code does not match the file which you
select to compile.

The most obvious problem with optimized code are the introduction of
strange numbers and unexpected modifications to strings and pointers. If you
encounter any such problems during a port that you can’t pin down to an
alternative source (see Chapter 15), try compiling the package without
optimization.

In extreme circumstances, you may want to go from one extreme to the
other and produce debugged code instead of the optimized version. This
should, by default, just compile the source as the compiler finds it, which
should hopefully introduce fewer errors into the final source.

Debugging
Debugging software is the process of removing the errors (bugs) from the
application. Traditionally, removing bugs meant using manual techniques,
such as multiple printf() statements, to print out the status of a program
during its execution. Symbolic debuggers take a more interactive approach;
they take compiled source combined with additional debug code and provide
a structured interface where the compiled code is executed step by step
alongside the source code lines.

To perform symbolic debugging additional information is supplied with
the object files and applications which describes the stage line by line. The
symbolic debugger takes this information, combined with the original source,
and displays it interactively to the user. We will see examples of the Be

Page%221%of%467

debugger in Chapter 14, and in Chapter 15 we’ll look at alternative ways of
testing and debugging applications using the manual method.

Debugging under the BeOS is slightly more complicated than it is under
most UNIX platforms. Under most platforms the debugging information is
incorporated into the object file, and ultimately any libraries or executables
created from those object files. You have the option to keep the debug
information in the file, or, without recompiling, you can use strip to remove
the additional symbol information from the file.

With mwcc and the BeOS, debugging information is generated using the
same command-line option, -g, but that is where the similarity between the
two ends. All the debugging information is stored in a separate symbolic
debugging file with the library or application. The file extension is .xSYM and
this is used, in conjunction with the application itself, to debug the code. To
create a debuggable version of emacs, for example, you would need to add
the -g option to the CFLAGS variable used in the Makefile.

Warnings

Warnings are exactly what they say they are: warnings about the quality of
the code you have written, and pointers to possible problems at the time of
execution. You can choose to ignore warnings; some packages may even tell
you to ignore them during a build because they know of the problem and it
doesn’t cause any trouble. The point of a warning is merely to notify you that
something isn’t quite right about the source that you’ve written, and that you
ought to change it. A warning doesn’t necessarily point to a problem, but if
there is an error in the code that has been produced an unchecked error is a
good place to start.

There are a number of reasons why you might get a warning, and you
can control the notification level of warnings from the compiler using a
number of command-line options. There are three basic levels of warning:

•! None. No warnings are issued.

•! On.! All warnings are issued, except missing function prototypes.
•! All.! All warnings are issued, including missing function prototypes.

You can switch to each of these levels by using the -w opt1,opt2
argument. For example, to switch warnings to “on,” you would type:
$ mwcc -c -w on foo.c

mwcc also supports the cc/gcc style argument -wn where n is a number.
0 switches warnings off; 1 turns on warnings except command-line options;
2-8 turns on all warnings (except missing function prototypes); and 9 turns on
full warnings (including missing function prototypes).

Page%222%of%467

Warnings can also be individually selected on the command line when
compiling using the same argument mechanism. The various types of
warning are listed in Table 13.2.

Table 13.2

 Options to the warning argument, -w
Option Description
pragmas Illegal pragma definitions
emptydecl Empty declarations
possible Possible (unspecified) errors
unusedvar Unused (but declared) variables
unusedarg Unused (but prototyped) arguments
extracomma Extra commands
extended More possible (unspecified) errors
params Suspicious, obsolete, or substituted command line options
largeargs Large arguments passed to functions without prototypes
hidevirtual Hidden virtual functions

Warnings do not stop the compilation process; the files will be compiled
as usual. You can change this behavior using the iserror option, which causes
warnings to be treated as errors, stopping the compilation process and
interrupting any make or other build script that’s in progress:
$ mwcc -c -w iserror foo.c

When porting, I suggest you switch full warnings on, which should
highlight any OS-specific problems (such as incompatible char, int, or other
variable types) as well as highlighting possible problems that the original
author missed. Always check the documentation first before acting upon any
of the warnings given; they be known but ignorable items. Also, don't always
take the warnings as a signal to a problem with the port, it may be nothing to
do with the porting process, but should probably be investigated anyway.

Header Files
A header (or include) file serves as the interface between the source code and
library functions supported by the system libraries. Essentially, each header
file is a list of function prototypes, variables, and macro definitions which are
used to supply information to the source file (and ultimately the compiler)
and to verify the format and syntax of the required functions or their
prototypes. The actual functions are stored in libraries, which we’ll cover later
in this chapter.

The functions and macro definitions in the header files are used
regularly and are supplied in a number of files which can then be called upon

Page%223%of%467

by each source file requiring the library facilities. For example, the file stdio.h
contains the information required to use printf, scanf, and other I/O functions
(hence the name, which is short for “standard I/O”).

 A common problem with header files is that although there are some
agreed-upon standards for names, over time, a number of the files have
changed names and sometimes contents. A complex part of the porting
process is matching the requested header in a source file to the actual header
file required.

For example, the older UNIX OSs used strings.h to specify the string
handling functions (strcat, strcpy, and so on). SVR4 and other recent revisions
of the OS now place this information into string.h, a change of only one
character, but the compiler is not smart enough to make an automatic
decision. We will see in Chapter 15 how the wrong header file can cause all
sorts of problems during the building of a package.

The Metrowerks C compiler is ANSI-compatible, which can cause some
problems when you use alternative header files from supplied sources. The
ANSI specification requests an ANSI-style prototype of each function.
Without this prototype function definition, mwcc may issue a warning about
incorrect argument numbers or argument types to a function.

The format of the function is also different:
int foo(char *bar);

instead of the traditional
int foo(bar)
char *bar;

although this does not cause a problem for mwcc.
If you specify the -ansi strict option then mwcc will
report an error.
Finally, in the case of the BeOS, which uses C++ as its core language, the

format is slightly different from that of standard header files to account for the
way in which C++ handles external functions, as can be seen in this example:
#ifdef __cplusplus
extern “C” {
#endif
char *strcpy(char *, const char *);
char *strncpy(char *, const char*, size_t);
#ifdef __cplusplus
}
#endif

Obviously, a non-C++ program will just define the functions and other
definitions as normal during the preprocessing stage. ANSI C and Kernighan
and Ritchie (K&R) C define functions in different ways; for example,
char *strcpy(char *, const char *);

in ANSI is equivalent to
char *strcpy();

Page%224%of%467

in K&R. To get around the problem of defining the functions differently for
each type of C compiler, functions are defined in the source code by some
packages using a macro, __P():
char *strcpy __P((char *, const char *));

the latter part of which would expand to nothing for K&R C, or (char *, const
char *) for ANSI C.

Standard Locations

There are two ways in which a header file can be referenced in source code.
Those in angled brackets, like this:
#include <stdio.h>

are searched for and used from the standard system directories, while those in
quotes:
#include “foo.h”

are searched for in the current directory.

It is usual to find additional directory specifications in large packages,
and these are referenced using additional arguments to the compiler, as we
will see later.

During preprocessing it is also possible to switch off the default
directories used for header file inclusion using the -nodefaults option. This
can often be useful if you are building an alternative OS or cross-compiling.

The standard header files can be found in the /boot/develop/headers
directory. This is defined in the BEINCLUDES environment variable, which in
fact points to this directory and a number of subdirectories, as follows:
/boot/develop/headers
/boot/develop/headers/be
/boot/develop/headers/be/add-ons
/boot/develop/headers/be/app
/boot/develop/headers/be/device
/boot/develop/headers/be/drivers
/boot/develop/headers/be/game
/boot/develop/headers/be/interface
/boot/develop/headers/be/kernel
/boot/develop/headers/be/mail
/boot/develop/headers/be/media
/boot/develop/headers/be/midi
/boot/develop/headers/be/net
/boot/develop/headers/be/nustorage
/boot/develop/headers/be/opengl
/boot/develop/headers/be/support

/boot/develop/headers/cpp/boot/develop/headers/gnu
/boot/develop/headers/posix

The posix directory contains the files in which we are most interested, as
the bulk of the POSIX-compatible support can be found here. We will look at
POSIX in more detail in Chapter 17, with further details on the level of POSIX
support in the BeOS in the remainder of the chapters.

Page%225%of%467

As a rough guide, Table 13.3 lists some of the facilities that the standard
header files provide.

Table 13.3

Header files and their contents
File Description
assert.h Program assertion checking
ctype.h Character handling (isalpha(), toupper())
errno.h Error conditions/descriptions
float.h Floating point value limits
limits.h Other data limits
locale.h Locale information (currency, thousands separator,and so on)
math.h Mathematics (constants, sin(), cos(), and so on)
setjmp.h Nonlocal jump mechanism
signal.h Signal handling
stdarg.h Variable arguments (for printf()-like commands)
stddef.h Common definitions (NULL)
stdio.h Standard input/output (printf(), scanf())
stdlib.h General utilities (alloc(), number/string conversions, and so

on)
string.h String handling
time.h Date and time get/set
unistd.h System calls (exec*(), fchown(), and so on)

Using Other Locations

mwcc supports the standard -I directive for including additional directories in
the search path. For example, to include the /boot/local/include directory,
you would use the command:
$ mwcc -c foo.c -I/boot/local/include

The Metrowerks complier is more strict about which files it includes
when, and so the -I option is not always sufficient. An additional header file
argument, -i-, forces all include directories specified after this argument to be
searched for <> include references and “” references. Specified on it’s own
though, -i- forces the current directory not to be searched. Effectively, all
include files are treated as system-wide files. Like the -nodefaults option this
allows you to compile sources using header files not in the standard header
path.

This can be very useful when porting software, and in fact I would
recommend that you use it all the time to prevent any potential header file

Page%226%of%467

problems. Because of the strictness of mwcc compared to gcc you need to
specify this argument whenever additional header directories are used, as in
the example below:
$ mwcc -i- -I/local/include foo.c -c

More commonly you will want to specify some local directories, in fact it
is common practice to specify -I. As part of the build process. When used in
conjunction with -i- you need to decide where to place this option as it will
affect how the directory is searched. Using
$ mwcc -i- -I.

forces mwcc to search the current directory for <> and “” header file
references. Using
$ mwcc -I. -i-

will force mwcc to only search for “” header file references.

Libraries
A library is a collection of functions and data supplied in a single file.
However, you could make the same statement about standard object files. If I
compile foo.c:
$ mwcc -c foo.c

I automatically create an object file called foo.o. If foo.o contained a function
that I wanted to use in another program, bar, I could just link the two files
together:
$ mwcc bar.o foo.o -o bar

There is nothing wrong with this model, until you start using the same
file repeatedly in a number of projects. Libraries are a convenient way of
collecting together a number of object files into a single file.

Under UNIX, this file is a special format and can be handled by the ar
program. Under BeOS, mwcc simply puts all the objects from the object files
into one big one that is historically given the same .a filename suffix. At link
time, mwcc then extracts the objects it requires for the current application it is
building.

All of the functions that you take for granted, for example printf(), are in
fact functions contained in the standard library. Under most OSs this is libc;
under the BeOS it is libroot.so.

Library Types

There are two basic types of library: static and shared. A static library is the
library type most people are familiar with. A static library is created either by
using the linker or by using ar to produce a file that contains all of the code
and data from the supplied object files. A shared (or dynamic) library is

Page%227%of%467

generated by the linker and then only referenced at the time of execution of
the application.

There are advantages and disadvantages to each library type. Basically
these center around size and speed of execution. As a general rule, statically
linked applications tend to be large, but fast in execution, while dynamically
linked applications are small, but incur a small overhead each time they are
executed.

The use of a shared library also forces a reliance on the library being
available when you next run the application. On your own machine this is not
a problem, but when supplying the file to another user or distributing the
software you must ensure that the shared library will be available on the
destination machine.

Static libraries avoid this problem entirely by incorporating all the
required functions within the application. This makes distribution easier and
more reliable, but also more cumbersome as you have to supply larger and
larger applications. In summary:

•! Static linking copies the functions required by the application when the
executable is created.

•! Dynamic linking copies the functions required by the application when
the program is executed.

You will find that most libraries supplied with most OSs, including the
BeOS, use a combination of the two, and sometimes include both. In the case
of the BeOS, the OS libraries are shared, but the additional development
libraries (flex, termcap, and so on) are static. This is fairly normal, because it
allows the OS libraries to be updated without requiring the additional
applications and tools to be rebuilt.

A library name is of the form libname.[a|so], where name is the library’s
title and the extension specifies the library type. All libraries start with lib ,
and static libraries always end with .a and shared libraries with .so.

Locations

By default, the mwld linker uses the libraries specified in the BELIBRARIES
environment variable. As standard this environment variable contains:
/boot/beos/system/lib
/boot/develop/lib
/boot/home/config/lib

 You can specify additional library directories in much the same way as you
would header file directories, this time using the -L option.

For example, within the perl package the additional directories are
specified by the LDFLAGS variable in the Makefile:

Page%228%of%467

LDFLAGS = -L/usr/local/lib -L/opt/gnu/lib

Using Other Libraries

To use a different library, you specify the library name after the -l argument.
For example,to include the math library you would type
$ mwcc -lm -o foobar foo.c bar.c

The library is searched for in the library path (see above), and if it isn’t
found the linker will return an error. Refer to Chapter 8 for details on the
libraries available under the BeOS.

Making Libraries
In the process of porting various packages it is likely that you will need to
build some libraries. Under the BeOS, both types of libraries can only be built
using the linker, so you need to adjust the way most packages produce their
libraries.

Creating Different Libraries

There are two different types of library, as we’ve already seen. They are the
symbolic and the static library. If you class an application as another type or
library, there are really three different types. You specify what type of library
to build by specifying the -xm option and the library type (a for application, l
for a static library, and s for a shared library).

You will also need to specify the output file name using the -o option.
For example, to create a static library called foobar you would use
$ mwcc -xml -o libfoobar.a foo.o bar.o

or for a shared library
$ mwcc -xms -o libfoobar.so foo.o bar.o

Most libraries that you will build during porting will be static libraries.
Usually static libraries are created using the ar program, which creates an
“archive” of the object files and their contents. The command used to generate
a static library using ar is
$ ar cs libfoobar.a foo.o bar.o

Using a script that simulates the functionality of ar will help to reduce
the manual modifications required to build the package. I use the script
below:
#!/boot/bin/sh

if [$# -lt 3]
then
 echo Not enough arguments

Page%229%of%467

else
 shift
 outfile=$1
 shift
 if [-f $outfile]
 then
 echo Remove existing?
 read answer
 case $answer in
 y*) rm -f $outfile
 echo Removing $outfile
 echo Recreating...
 mwld -xm l -o $outfile $*
 ;;
 *) echo Attempting to rebuild...
 mv $outfile $outfile.tmp
 mwld -xm l -o $outfile $outfile.tmp $*
 rm -f $outfile.tmp
 ;;
 esac
 else
 mwld -xm l -o $outfile $*
 fi
fi

Provided the number of arguments is greater than three, the script
ignores the first argument, takes the next argument as the library name, and
any remaining arguments as files to be added to the library. I’ve included an
additional test which checks if the library already exists; if it does, you can
select whether to remove it and recreate the library based on the objects you
specified. If you don’t remove the existing library, then the object files are
added to the library file.

There is no standard way of generating a shared library under a variety
of OSs, which is probably why most packages build static libraries instead.

When producing a static library, there are no hard and fast rules or tips.
Obviously, the smaller and more optimized your code, the faster and smaller
your final applications will be.

For shared libraries, you need to keep in mind the way in which the
functions and data stored in the library are copied to the executing
application. At the point of execution, the OS uses a single copy of the shared
library code and data stored in memory. When creating the shared library, it is
a good idea to use the -rostr option to the compiler. This forces strings to be
marked as read only.

•

During the actual creation process for a shared library, you need to
specify which symbols should be exported. This is in deference to the UNIX
style shared library where all symbols are automatically exported. The
operation of generating the symbol tables is different depending on which
processor the BeOS is running on. The process for Intel processors was still
being finalized at the time of writing, but is likely to be similar to the process

Page%230%of%467

for building DLL libraries under Microsoft Windows. You should check the
release notes for the Intel version when it becomes available.

For PowerPC the process you use will depend on the size of your library.
If you are only creating a small library, you can simply specify the symbols
you want to export on the command line. For example, to export the function
foo you would use the following command:
$ mwcc -xms -export foo foo.o -o foo.so -ldll -lroot -lbe -lnet

Note: The additional libraries listed are the standard BeOS shared libraries, and must
be specified. This is because the shared library that is generated must contain
references to the functions from other shared libraries that it uses. Under normal
circumstances, the compiler does this for you, but it doesn’t when generating another
shared library.

Any additional functions would also have to specified on the command
line. For even a small library this method obviously becomes a time
consuming task.

If the library has a corresponding header file with the function
prototypes you should insert the following line before the prototypes start:
#pragma export on

and then
pragma export off

where they end. When compiling, you use a command similar to the
following:
$ mwcc -xms -export pragma foo.o bar.o -o foobar.so -ldll -lroot -lbe -lnet

This is a simple solution, but you must ensure that all the prototypes are
listed, otherwise the functions will not be exported. Also be careful if you
intend to pass the modified code back to the author, it may cause problems for
older C compilers.

The final solution is much less straightforward, but it will get round the
difficulties of exporting all the functions. Using a different command line
option, you can specify a file which contains a list of the functions of you
want to export. The command line is:
$ mwcc -xms -f foo.exp foo.o bar.o -o foobar.so -ldll -lroot -lbe -lnet

If the file doesn’t exist, the compiler will create the file with all the
functions in it, all you have to do is go in and remove the ones you don't want
to export. There are a number of functions that we don't want exported that
will be generated as part of the standard compilation process. We can speed
up the removal of these standard functions by creating a script which
generates the shared library automatically:
libname=$1
shift
objects=$*
rm -f tmp.exp
mwcc -o $libname.so -xms -f tmp.exp $objects\
 -ldll -lroot -lbe -lnet >/dev/null 2>&1

Page%231%of%467

sed -e s:^longjmp:\#longjmp:\
 -e s:__ptmf_null:\#__ptmf_null:\
 -e s:__register_global_object:\#__register_global_object:\
 -e s:__destroy_global_chain:\#__destroy_global_chain:\
 -e s:__global_destructor_chain:\#__global_destructor_chain:\
 -e s:_init_routine_:\#_init_routine_:\
 -e s:_term_routine_:\#_term_routine_:\
 -e s:__start:\#__start:\
 -e 's:^@:\#\1:p' <tmp.exp >libname.exp
rm -f tmp.exp
mwcc -o $libname.so -xms -map $libname.xMAP -f libname.exp\
 $objects -ldll -lroot -lbe -lnet

To use, you just specify the library name (without it’s extension) and the
objects you want in the library. For example, our foobar.so library could be
generated by the command:
mksharedlib foobar foo.o bar.o

Included Symbols

By default, a library file on the BeOS only includes the functions specified. If
you want to be able to debug the library functions, you must also specify the
debugger options to create the necessary symbol files. The symbol file
contains the list of symbols (functions and variables in the object file) and
their physical location within the file. It also specifies the location of the
source, and in some cases a copy of the source file used to generate the object
file. This information is used by symbolic debuggers to move around the
application and identify variables and their types, and to display the source
code rather than the machine code during the debugging process.

Using a separate is in complete contrast to most OSs, which include the
debugger information in the object file, which in turn is stored in the library
file. You must specify the debugger argument at the time of creating the
library, for example:
$ mwcc -g -xms foo.o bar.o -o foobar.so

When installing the library file, make sure you also copy across the
appropriate symbol file.

Profiling
Profilers are used to monitor the performance of specific functions and areas of
code. This includes monitoring the code’s speed of execution , and how long
specific functions are called.

The process of profiling happens in two stages. First the compiler adds
code to the functions it is compiling and uses a library for the support
functions. During execution, a file is produced which is processed by the
profiling application. Profiling a program can help to improve both its
performance and the quality of code you produce.

Page%232%of%467

A profiling library is now available as part of the full Metrowerks
CodeWarrior BeIDE, and profiling support is built into the supplied mwcc
compiler using the -profile option:
$ mwcc -c -profile on foo.c

Luckily, this shouldn’t pose too much of a problem during porting. Generally
the profiling process is only useful when first writing the software, although it
can be useful to identify problems in parts of ported code.

Page%233%of%467

Chapter 14: The Debugger
Identifying and removing bugs is an art. You need to locate the problem and
find a solution. When programming your own software, this process is
relatively easy. You know the problem, and you know the likely reasons for
the problem. Most of the time, the problem is a typing error, or a mismatch
somewhere between data types, pointers, or other information.

Working with somebody else’s program is more difficult, and in porting
the focus shifts from the code that constitutes the program to the functions
and data types that you are using. We will see in Chapter 15 that a large
number of problems with ported software stem more from mismatches
between functions and less from the way the program works.

Using a debugger can aid the process by showing, in real-time as it were,
precisely what the program is doing, and what the values of the variables are
at that point. There are three ways of debugging applications on the BeOS.
The first, the OS debugger, is a machine code-level debugger that can
sometimes help with tracing a problem. It is the first debugger you will come
across when you run a BeOS application that fails, as it automatically loads
when a program crashes.

The second debugger is the symbolic debugger, so named because it
shows you the symbols within the application, as well as the variables and
other data, all in the native format of standard C source code. Of all the
debuggers, this is probably the most useful as it provides the most
comfortable interface to the insides of an application.

The final method of debugging is the use of printf and other commands
to supply you with progress information.

Depending on your experience this is the most useful or the most useless
type of debugging. In this chapter, we will take a look at how to use all these
methods, and how to get the best out of them in the process. We will also
discuss the various merits of each method.

The BeOS Debugger
The BeOS debugger is built into the operating system and allows you to
control or examine a running or crashed program. The debugger is what most
people would class as an absolute debugger because it displays the assembly
language and registers of the processor rather the variable names and
program lines (symbols) that would be available in a symbolic debugger.

The name Absolute Debugger is a reference to the fact that the code and
variables you are seeing are those on the processor. What you are viewing is

Page%234%of%467

the absolute, or complete version of the application. You cannot get a more
precise or exact view of a running application than the code executing on the
processor. Unlike the symbolic debugger, it isn’t relating the values in the
processors registers back to variables.

It is the BeOS debugger that appears when you run a program that
crashes, effectively the same operation as a UNIX machine deciding to dump
the core, although on the BeOS you drop into a debugger which can help you
resolve the problem instantly, without having to separately run a debugger.

You can also cause the program to drop into the debugger by calling the
debugger() function within the source code, or, finally, by running the db
program. For example, to debug the application foo, you’d use the command:
$ db foo

Alternatively, you can debug a running application by specifying the thread
(or process) number:
$ db 138

In all cases, for the program to be debugged properly a symbol file must be
available. This should have been created at the compile stage using the -map
option, for example:
$ mwcc -map foo.xMAP foo.c

Note however that this symbol map is different to the symbol file created with
the -g option to the compiler. Compiling a program with -g does not create a
BeOS debugger .xMAP file, you must specify the option at the time of
compilation.

When the debugger starts, you end up in a Terminal window the title of
which is the program Team number. We will look at BeOS-specific programs,
including teams and threads, in Chapter 16. The first thing that is shown,
providing you have generated an .xMAP file, is the function which caused the
program to abort. In this example, temacs, the executable generated when
emacs is built, has generated an error:
data access exception occurred
make_pure_string:
+0074 8000b7ec: 93a70000 *stw r29, 0x0000 (r7)
temacs:

Within the debugger you can run a number of commands to determine
why you ended up there, and to find out the status of the machine. db, being
an absolute debugger, is pretty useless unless you know what information
and data the registers should contain.

Using the sc command you can display a stack crawl. The stack crawl
displays the contents of the stack including any called functions, variables or
chunks of allocated memory. Depending on how well you know your
application this may or may not be useful to you.

Page%235%of%467

The most useful function the debugger is to provide a relatively safe way
for the program to quit execution using the exit command. Unfortunately, it
isn’t completely reliable, and in some cases can bring the entire OS to a halt.
For this reason, you should move onto running the application within the
symbolic debugger, which will provide you with more useful information
about the reason for the crash.
Caution: Make sure that the application you are quitting from is your application, and
not one of the systems servers. You can verify this by running ps in a Terminal window
and comparing the number at the top of a debug window with the thread number in
the process list.

The Symbolic Debugger
The symbolic debugger is supplied with the development tools on the BeOS.
Being a symbolic debugger it deals with the debug process at source level and
allows you to interactively refer to the variables and program statements by
name and line number from the C source code they were compiled from.

In general through a symbolic debugger you should be able to:

•! View program execution using the source code instead of the assembly
language equivalent.

•! Identify the location and function/data which caused the crash. This is
usually handled by a “backtrace” command which displays a listing of
the functions called that lead to the error. In the BeOS debugger the
functions are shown in a separate window; see below for more details.

•! View the address space and value of data in both the native (unreadable)
form and the “human” (readable) form. Under the BeOS this includes
identification of the constituent parts of structures, unions, and arrays.

•! View the assembly language equivalent, and the register values.

•! Set a breakpoint. A breakpoint is a logical reference to a line within a
program. The breakpoint causes execution to stop and it’s often used
within loops to enable you to identify the variable values, and just before
points known to cause the program to crash so you can monitor the
variables leading up to it.

•! Single-step through the program. Sometimes called “step-over,” this
involves running successive lines of the source code individually.
Attached to this, the BeOS (and other debuggers, including gdb, not
currently supported on the BeOS) also support what is classed as step-
into and step-out. Step-into allows you to debug not only the source of
main() but also the functions which it calls. Without step-into, you
would only be able to identify the line within the main() execution

Page%236%of%467

sequence that caused a problem. Step-out is the reverse of this process.
Using both commands allows you to control the level of granularity with
which you view the source, and ultimately, the errors.

You control the debugging process via a simple interface which provides
access to the program execution sequence, the source code, and other
variables and functions within it. All this information is displayed in different
windows and allows for easy cross checking. To start the debugger, drag and
drop the .xSYM file produced during compilation onto the debugger
application which can be found in /boot/develop/debugger/MWDebug-Be.

If the program you are debugging normally performs all of it’s input/
output via a Terminal window, you need to start the Debugger differently.

1.! Open a Terminal window
2.! Run the debugger from the command line:
3.! $ /boot/apps/Metrowerks/debugger/MWDebug-Be.debug
4.! Choose “Open” from the File menu and select the symbol file relating to

the application you want to debug

Using this method, all the input/output of the application continues to
go via the Terminal instead of being lost.

Once the symbol file has been opened, you will be presented with two
windows. In Figure 14.1 you can see the main debugger window which
contains the name of the application. We will take a look at the second
debugger window, which refers to the .xSYM file shortly.

Page%237%of%467

Figure 14.1
The main debugger window

The main window shows the current program and the state of execution.
The window has two main panes. The lower one shows the current execution
position within the program source. In between these two panes is the toolbar
which allows you to control the execution of the program you are debugging.
We will take a closer look at this later. The top pane of the main window is
split again and shows the function stack in the left pane. This is the list, in
order, of the functions that have been called to reach the current point. In the
sample window you can see there are only two functions listed. ___start is the
library function which precedes the main() function and sets up the
environment to be ready for the program to start.

The right-hand part of the top pane shows the currently active variables
in the application. Numbers, addresses, and pointers show their values.
Character strings and structures are displayed by their address in memory
space; the blue triangle to the left of the variable name expands this definition
to show either the contents of the string or the variables which make up the
structure or union. Successive variables can then be expanded again. This
allows you to show the contents of, for example, the argv variable usually
defined either as char **argv, a list of pointers to pointers which themselves
point to character strings or char *argv[], a list of pointers to variable length
strings.

Page%238%of%467

Control is handled by the toolbar window shown in Figure 14.2. Each
button controls a different event in the execution of the program. The first will
run the program if it is not already running (Alt+R). The second stops the
program when it is running (Alt+.), and the next, with the cross on it, kills the
program completely (Alt+K). The next three buttons control the execution.
The first performs a step-over, executing a single line of source code (Alt+S).
The second and third step into (Alt+T) and out of (Alt+U) the code. If the
current line is a function within the current application it will move the main
window into the file containing the function’s source. If the source isn’t
available, then the assembly language equivalent of the current source line
will be shown instead. The last takes you back up the levels to the source for
main(). Menu equivalents for all the toolbar buttons can be found under the
Control menu in any of the other debugger windows.

Figure 14.2
The debugger control panel

The symbol window, Figure 14.3, is split into two separate panes. The
bottom pane shows the source code or assembly language for the selected
function or variable. The top pane is split into further sections, with the
section on the left listing the source files, the middle section showing the
functions within the selected file, and the last section the global variables
within that file. You can view individual functions and source files within this
window independently of the program window. The contents of this window
are basically the output contents of the symbol dump, which itself is
contained in the .xSYM file. Selecting functions or variables will automatically
display the relevant section of the source file. As with the program window,
you get the option to select the display in either source or assembly form by
using the pop-up at the bottom of the window.

Page%239%of%467

Figure 14.3
Viewing symbols within the program

Within any window (except the toolbar) if you want to edit a selected
file, use Alt+E (or Edit Filename under the File menu) to open the file within
the IDE editor window.

For a demonstration of how to use the debugger, let’s look at a real
example. I’ve shown the output here as text, instead of multiple debugger
windows, to make it easier to read. Going back to our temacs problem above,
opening the same file within the debugger and running the program shows us
a fault within the make_pure_string function; more specifically, the program
halts at the XSETSTRING line:
Lisp_Object
make_pure_string (data, length)
 char *data;
 int length;
{
 register Lisp_Object new;
 register int size = sizeof (EMACS_INT) + INTERVAL_PTR_SIZE + length
+ 1;

 if (pureptr + size > PURESIZE)
 error ("Pure Lisp storage exhausted");
 XSETSTRING (new, PUREBEG + pureptr);
 XSTRING (new)->size = length;
 bcopy (data, XSTRING (new)->data, length);
 XSTRING (new)->data[length] = 0;

 /* We must give strings in pure storage some kind of interval. So
we
 give them a null one. */

Page%240%of%467

#if defined (USE_TEXT_PROPERTIES)
 XSTRING (new)->intervals = NULL_INTERVAL;
#endif
 pureptr += (size + sizeof (EMACS_INT) - 1)
 / sizeof (EMACS_INT) * sizeof (EMACS_INT);
 return new;
}

Hmmm...XSETSTRING is probably a macro, it’s all in capitals. This is
where the usefulness of the debugger stops, although it’s already provided us
with the piece of information we want to know. The problem with a symbolic
debugger is that the source code it shows you is the source code that was
compiled. It takes no account of any preprocessing and so macro definitions
like XSETSTRING have to be traced manually. Just before we leave the
debugger, let’s check the values for the two variables new and pureptr shown
in the right-hand top pane:
new = -2146524792
pureptr = 0

The value of new looks dodgy, the number is large and it’s negative.
That doesn’t signify a problem as such, since memory is allocated from 2Gb
and above in the BeOS. The highest bit will be set, and will therefore display
as a large negative number. Printing it as a hex value would make it look less
conspicuous. Even so, it still looks wrong. Checking back in the source code
the variable was never initialized when it was created, so a random number
probably isn’t that weird. As for pureptr, it looks equally dubious, but with a
value of zero it probably won’t cause us too much trouble. Dropping to a
Terminal window, we need to look for the definition. We’ll try their source file
first, in case it’s local:
$ grep XSETSTRING alloc.c
 XSETSTRING (val,
 XSETSTRING (val,
 XSETSTRING (val,
 XSETSTRING (new, PUREBEG + pureptr);
 XSETSTRING (*(Lisp_Object *)&buffer->upcase_table, buffer-
>upcase_table);
 XSETSTRING (*(Lisp_Object *)&buffer->downcase_table, buffer-
>downcase_table);
 XSETSTRING (*(Lisp_Object *)&buffer->sort_table, buffer-
>sort_table);
 XSETSTRING (*(Lisp_Object *)&buffer->folding_sort_table, buffer-
>folding_sort_table);
 XSETSTRING (*objptr, newaddr);
 XSETSTRING (*objptr, newaddr);
 XSETSTRING (* (Lisp_Object *) &newaddr->intervals-
>parent,

Nope, not there, let’s look in the header files instead:
$ grep XSETSTRING *.h
lisp.h:#define XSETSTRING(a, be) XSET (a, Lisp_String, be)

Doesn’t help us much, it’s just a macro which references what appears to
be another macro. If we look for the XSET macro, we get even more matches:
$ grep XSET *.h
config.h:#undef HAVE_XSETWMPROTOCOLS
frame.h:#define XSETFRAME(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_FRAME))

Page%241%of%467

frame.h:#define WINDOW_FRAME(w) ({ Lisp_Object tem; XSETFASTINT (tem,
frame.h:#define XSETFRAME(p, v) (p = WINDOW_FRAME (***bogus***))
lisp.h:#ifndef XSETTYPE
lisp.h:#define XSETTYPE(a, b) ((a) = XUINT (a) | ((EMACS_INT)
lisp.h: and XSETFASTINT provides fast storage. This takes advantage
lisp.h:#define XSETFASTINT(a, b) ((a) = (b))
lisp.h:#ifndef XSET
lisp.h:#define XSET(var, type, ptr) \
lisp.h:#ifndef XSETMARKBIT
lisp.h:#define XSETMARKBIT(a,b) ((a) = ((a) & ~MARKBIT) | ((b) ?
lisp.h:#define XSETTYPE(a, b) ((a).u.type = (char) (b))
lisp.h: and XSETFASTINT provides fast storage. This takes advantage
lisp.h:#define XSETFASTINT(a, b) ((a).i = (b))
lisp.h:#define XSET(var, vartype, ptr) \
lisp.h:#define XSETMARKBIT(a,b) (XMARKBIT(a) = (b))
lisp.h:#define XSETINT(a, b) XSET (a, Lisp_Int, b)
…

Nothing definitive, but lisp.h looks like it might contain a number of
these definitions. Any one of these definitions could be the one we’re looking
for, and each one is probably selected by a configuration option. Rather than
wading through the source and then the config files to find the one we’re
currently using, we can cheat and use the pre-compiler to show us what’s
actually going on:
$ mwcc -E -i- -I. -I.. alloc.c >alloc.cpp.out

The other advantage of this is that we will resolve what the values of
some of the other macros are. The output for the make_pure_string function
looks complicated. I suggest you skip over this output if you have a phobia of
parentheses:
int
make_pure_string (data, length)
char *data;
int length;
{
register int new;
register int size=sizeof(int) +(sizeof (struct interval *))+length +
1;
if (pureptr + size > ((240000 + 0 + 0) * 1))
error ("Pure Lisp storage exhausted");
((new) = ((int)(Lisp_String) << 28) + ((int) ((char *) pure + pureptr)
 & ((((int) 1)<<28) - 1)));
((struct Lisp_String *) (((new) & ((((int) 1)<<28) - 1)) |
0x20000000))
->size = length;
bcopy (data, ((struct Lisp_String *) (((new) & ((((int) 1)<<28) - 1))
 | 0x20000000))->data, length);
((struct Lisp_String *) (((new) & ((((int) 1)<<28) - 1)) |
0x20000000))
->data[length] = 0;
((struct Lisp_String *) (((new) & ((((int) 1)<<28) - 1)) |
0x20000000))
->intervals = 0;
pureptr += (size + sizeof (int) - 1)
/ sizeof (int) * sizeof (int);
return new;
}

Ouch! The line we’re interested in is this one:
((new) = ((int)(Lisp_String) << 28) + ((int) ((char *) pure + pureptr)
 & ((((int) 1)<<28) - 1)));

Page%242%of%467

If we check back with the debugger for what some of the values are, and
then calculate them, we can shorten the expression to:
new = ((int)(Lisp_String) << 28) + 698540)

Alternatively, we can try to evaluate the expression using the debugger’s
expression window. Open the window using the Expression option in the
Window menu and then use New Expression under the Data menu to enter
any expression you like. If we try the expression above it will fail because it
doesn’t recognize Lisp_String as being a variable.

Searching the source code again, we find that Lisp_String is in fact a
structure and so the expression doesn’t appear to make any sense. To try to
make sense of this expression, we can modify the source code to incorporate a
printf that displays the value of (int)(Lisp_String) << 28. This is helpful; we
get a value of 805306368. Incorporate that into our equation above, and we get
a large figure. It’s no wonder the program crashes with a data access
exception, it’s trying to create a variable at an address of 768Mb. We already
know that user memory is allocated at an address of 2Gb or higher, and
therefore the program is trying to create a memory block within the kernel
data area.

Here we hit upon another problem with debuggers: although we now
know why the problem exists, it will take us time to work through the header
files, and ultimately the configuration files, before we resolve the problem.
That’s not to put the debugger down; it has provided us with the information
about where the problem started, and from that we could fathom what the
likely problem was. Of course, there are other ways of finding out this
information.

Manual Debugging
There are many people who are against the principle and process of manual
debugging. Depending on your experience of debuggers, you may prefer this
less complete but often faster method of debugging. The process entails using
printf statements to show the progress and/or variable contents during the
execution of a program.

Often, this is more useful than using a debugger, particularly if you want
to monitor the point or function at which a program is failing, or during long
for and while statements where the debugger would have to be stepped
through the program lines instead of simply providing a list of the values.

There are some obvious disadvantages to using manual debugging. Each
time you make a modification to the information you want to view, the
program must be re-compiled. This in itself is not a problem, apart from the

Page%243%of%467

time aspect, but it introduces extra levels of complication, and possible error,
that you don’t need when trying to port an application.

There are no hard and fast rules for deciding whether to use manual
debugging or not. You will need to make your own mind up on whether this
method is acceptable to you. Personally, I use this method up to a point. The
printf statement can only supply so much information before you lose track of
where you are, where you should be, or what values you’re really looking at.

I’ve also found on other platforms (not the BeOS, yet!) that using printf
on a string seems to correct a value that would otherwise cause a function to
crash. The exact reason in each case is something I have never discovered, but
it’s made me dubious enough to use manual debugging sparingly. The most
likely reason is a timing issue (the printf statement inserts a ‘wait’ which
causes the value to end up correct. Alternatively, it could be related to a
optimization or compilation error, and introducing the additional printf
statement causes a different code sequence to be created.

We will start by looking at how best to use the printf command, or it’s
cousin the fprintf command which can be used to send the output to a file,
rather than to the standard output. We will then move on to look at some
sample uses from my own experience that helped me to solve problems very
quickly, and some that provided me with no information at all.

Using printf

Using printf and fprintf is a programming art all its own. In the context of
debugging, they are used for two main functions. The first is displaying the
progress of the application, the second is displaying variables.

The first technique is the easiest; you just add lines into the program like
this:
printf(“Got here!\n”);

However, it might be useful if you expand on the description somewhat or
risk running a program that outputs the following:
$ foo
Got here!
Got here!
Got here!
Got here!
Got here!
$

which is not exactly useful.

Much better is to provide information about the location of the
statement:
$ foo
Opened file (input.dat)
Read data (hello)

Page%244%of%467

Read data (world)
Read data (today)
Closed file

You can also use the printf technique to display variables and strings
during the execution. I used this technique in the example above to show me
the file I was opening and the data I was reading from the file. Although this
is useless for some information, it can provide pointers to potential problems.
I used this method to identify a bug in one of my own programs. The
program would crash when it reached a certain function call, and checking
the output with debugging switched on showed me precisely what the
problem was. I’d gotten the name of the file wrong, but hadn’t checked for
this simple mistake in the code:
#include <stdio.h>
#include "db.h"

#define IFILE "import.txt"

void main()
{
 int i;
 FILE *import;

 ip_record tmp_ip_rec[40];
 db_file_record newdb;

 printf("Started\n");

 create_db("dbfile.db");

 printf("Created database\n");
 printf("About to open file %s\n",IFILE);

 import=fopen(IFILE,"r");

 printf("Got here\n");

 for(i=0;i<40;i++)
 {
 fscanf(import,"%s%s
\n",tmp_ip_rec[i].ip_addr,tmp_ip_rec[i].name);
 tmp_ip_rec[i].id=i;
 }
 fclose(import);

 for(i=0;i<40;i++)
 write_record("dbfile.db",tmp_ip_rec[i],sizeof(tmp_ip_rec[i]));
}

The bad file name specified by IFILE didn’t occur to me until after I ran
the program:
$./testdb
Started
Created database
About to open file import.txt
Drop to debugger

It took a few minutes for the problem to sink in, but without the mental
prompt of the file name, I would never have discovered the problem.

Page%245%of%467

All you are really doing when using printf is providing a running
commentary on the progress of the application. Some packages offer an extra
level of debugging that provides a similar facility. It’s not uncommon to come
across statements like this:
#ifdef MEMDEBUG
printf(“Freeing up %ld bytes of memory\n”,net_buffer);
#endif

The authors are just using the same manual debugging principles to aid
in the porting process. You can switch the debugging on and off at
compilation time by defining the macro:
$ mwcc -c -DMEMDEBUG lib.c

and when the problem is solved, compile the source again without the
debugging switched on.

Unfortunately, this technique doesn’t always work. When working with
emacs I decided to use this technique to identify the point at which a
particular function failed. Within emacs a number of the functions are defined
as complex internal functions based around a combination of the elisp
language and C code, all strung together with complex macros sorting out the
data types and complex structures used by the program.

We’ve already seen the effect of running temacs and how this triggered
the OS debugger, and also traced the problem within the symbolic debugger.
Before I moved to the symbolic debugger I tried the manual route by adding
in the appropriate printf statements describing the current location during
execution. All I discovered using this method was that the real problem didn’t
lie in the emacs.c source file.

I managed to trace the failure to make_pure_string in alloc.c, and then
down to a specific line:
XSETSTRING (new, PUREBEG + pureptr);

I could even display the values of the variables, but I couldn’t identify the
problem without then checking the source code using a combination of grep
and my favorite editor.

OK, so the technique didn’t fail, but to get to the point I needed to get to
—the macro that caused the problem—I had to hand edit and recompile a lot
of different files. I wasted an hour, perhaps 90 minutes trying to identify the
problem this way, and it got me to the same conclusion as the symbolic
debugger. The difference is that with the symbolic debugger it took seconds.

Creating a Log File

An extension of the printf principle is to create a set of functions which write
errors and information out to a log file. This is most useful with text-based
programs that send all of their output to the Terminal and extracting your

Page%246%of%467

printf statements from the normal text that is sent to the screen as part of the
application will be difficult.

I use the small file below to do most of my work for me. The newlog
function just creates a file, and the writelog function will take variable-length
argument lists to make reporting conditions with additional information as
easy as possible.
#include <stdarg.h>
#include <stdio.h>
#include <errno.h>

#define LOGFILE "./execlog"

int newlog()
{
 FILE *new;

 if ((new=fopen(LOGFILE,"w")) == NULL)
 {
 fprintf(stdout,"ErrLog:Fatal Error\nCant open error file\n");
 return(1);
 }
 fclose(new);
 return(0);
}

void writelog(char *format, ...)
{
 va_list args;
 char str[1000];
 FILE *errlog;

 va_start(args, format);

 vsprintf(str,format,args);

 if ((errlog=fopen(LOGFILE,"a")) == NULL)
 {
 fprintf(stdout,"ErrLog:Fatal Error\nCant open error file\n");
 return;
 }

 fprintf(errlog," %s\n",str);

 fclose(errlog);

}

To report an error, you can use the same printf format used above:
writelog(“Got here, value of str is %s, current errno:%d”,str,errno);

The LOGFILE macro specifies the location of the file for all the
information to be written to. You’ll need to compile this and then link it with
the final executables in each case. It’s coded so that a failure to open or write
the log file doesn’t affect the execution of your program, but obviously you’ll
lose any errors recorded using the function.

Tracking the progress of a program is not always as easy as it first appears.
You may think you know what the program is doing, but until you trace it
with a debugger, you can’t know for certain. Debuggers take the guesswork
out of solving bugs and can save you hours of work. However, they are

Page%247%of%467

complex applications that often provide you with more information than you
want, or less information than you need.

In these situations, it probably pays to use printf instead. On the other
hand, using printf can similarly supply you with mountains of useless
information as the program executes, or not enough information to isolate the
problem. Often, printf will point to something you could have found much
easier using the debugger.

Page%248%of%467

Chapter 15 - Building the Package
Thus far we have focused on the processes and programs used to conduct a
port, without actually covering the build itself.

You already know how to extract the package, how to configure it, even
how to debug it after it’s been compiled. What you don’t yet know is how to
cope with the error messages produced during compilation, and how to
interpret those back to the configuration.

Hopefully, if the extraction, preparation, and configuration have gone
correctly, this should be the easiest part of the process. Unfortunately, the
truth is that this is the most tiresome part of the process as you grapple with
the compiler, the configuration, and the actual source code to produce the
goal. Porting is a recursive process, and as such you will return and repeat the
same steps and the same commands many times before you actually complete
the process.

It can be disheartening to try yet another modification to the program
and not achieve the final, desired result. You could build the project by hand
as you manually compile the sources, then link everything together, only to
find there is still some missing component required at the linking stage. You
need to keep a clear head, make plenty of notes, and always consider the
simplest possible causes of a problem. It will become apparent as we go
through the process in this chapter that the bulk of problems are caused by
missing header files, which in turn are usually caused by incorrect
configurations. Above all else, testing the code you have produced is vital.
We’ll take a look at the errors and their likely solutions from the first time you
type make up until the point when you install the files.

Keeping a Log
Keeping a log, in whatever form (even paper!), is vital when you are porting
software. You must keep track of what you’ve done, what you’ve changed,
and the different solutions you’ve tried.

If you decide to use a version tracking system such as RCS the process of
logging and returning to any changes you might have made is easy. If you
prefer to work without RCS (and I do) then you need to create a file, or a
number of files, which show the steps that led you to the final version.

I use a simple script which takes in my input, prepending the date and
time, and stores it in a corresponding file depending on the command-line
arguments I give it. For example, to write a comment about about the build in
general I type:

Page%249%of%467

$ writelog

and start typing in my comment. The result is stored in the file build-
log.general. To comment about a specific file, I use
$ writelog config.h

The result from this command is written to build-log.config.h where the
extension is the file name. Using this technique for file naming means I can
very quickly see which files I have modified or made notes on.

The script itself is very simple:
#!/bin/sh
if [$# -lt 1]
then
logfile=build-log.general
file=General
else
logfile=build-log.$1
file=$1
fi
echo “Comments for $file@
date >>$logfile
cat >>$logfile
echo “--” >>$logfile
echo >>$logfile

echo “Comments appended to file $logfile”

When creating the log, remember to include as much information and
detail as would be needed to recreate the same source version again. Your log,
in whichever form, is the only way in which you can reliably make the
changes necessary to complete the build. It should form your “notepad” of
thoughts and ideas on how to progress the port to its final conclusion.

Storing Output
Another vital tip when porting software is to store the output from the build/
make/compile process. This is vital not only as an additional reference to
your logs, but also to help you make the necessary changes to the source. You
need to make sure that you capture all the potential output from a build using
redirection; for example,
$ make >make.log 2>&1

will capture both the standard output produced by make and the errors
produced by the compiler.

When using the output that was generated, open the file in an editor and
examine the file, then use the section below to identify and resolve the
problems. If you need to make a number of modifications, do it in reverse
order and that way the line numbering given in the errors will remain the
same as you proceed to the start of the file. Remember, however, that some
errors early on in the source file will have knock on effects. For example, a
missing header file may cause problems and errors throughout the rest of the

Page%250%of%467

file. Make sure you check the first few errors and see if you can identify the
obvious before making sweeping changes in the code.

You might decide to keep different versions of the output generated, but
in general they shouldn’t be needed, as the most recent build should have
been the most successful. On the other hand, you may find that previous
versions aid the logging process by showing both the problems and the
method in which you fixed them. You might even decide to use the file to help
produce the Changes document you supply with the package.

Compilation Errors
You will find that a large number of the errors reported during compilation
are actually caused by simple but fatal errors. From the moment you type
make (or its equivalent) there are literally hundreds of reasons for the
compilation to fail. The most common ones are missing header files and the
absence of structures, datatypes, and macro definitions usually specified in
those files. In the following sections we will take a look at some of the more
common errors and how to solve them.

Missing Header Files

Because header files are included at the top of a source file during the
preprocessing stage they are the first error to be reported. Header files also
define and set up many of the definitions, function prototypes, and variables
used by the rest of the source code. Because of this, they generate knock-on
errors (missing variables or bad functions for example) that can fool you into
thinking something else is wrong.

For example, consider this output from building gdbm:
cp ./testndbm.c ./tndbm.c
mwcc -c -I. -I. -O ./tndbm.c
mwcc Compiler Error:
#include <ndbm.h>
^
the file 'ndbm.h' cannot be opened
#--
File "/MCCe/Projects/InProgress/Porting/begdbm1.7.3/tndbm.c"; Line 45
#--
mwcc Compiler Error:
datum key_data;
^^^^^
undefined identifier 'datum'
#--
File "/MCCe/Projects/InProgress/Porting/begdbm1.7.3/tndbm.c"; Line 65
#--
mwcc Compiler Error:
datum data_data;
^^^^^
undefined identifier 'datum'
#--

Page%251%of%467

File "/MCCe/Projects/InProgress/Porting/begdbm1.7.3/tndbm.c"; Line 66
#--
mwcc Compiler Error:
datum return_data;
^^^^^
undefined identifier 'datum'
#--
File "/MCCe/Projects/InProgress/Porting/begdbm1.7.3/tndbm.c"; Line 67
#--
mwcc Compiler Error:
char key_line[500];
^^^^
expression syntax error
#--
File "/MCCe/Projects/InProgress/Porting/begdbm1.7.3/tndbm.c"; Line 69
#--
mwcc Compiler Error:
char data_line[1000];
^^^^
expression syntax error
#--
File "/MCCe/Projects/InProgress/Porting/begdbm1.7.3/tndbm.c"; Line 70
#--
mwcc Compiler Error:
DBM *dbm_file;
^^^
undefined identifier 'DBM'
#--
File "/MCCe/Projects/InProgress/Porting/begdbm1.7.3/tndbm.c"; Line 72
#--
mwcc Compiler Error:
char done = FALSE;
^^^^
expression syntax error
#--
File "/MCCe/Projects/InProgress/Porting/begdbm1.7.3/tndbm.c"; Line 74
#--
mwcc Compiler Error:
char *file_name;
^^^^
expression syntax error
…
too many errors
errors caused tool to abort

There are 377 lines in the full output, which I’ve truncated here for
brevity. A number of errors are reported, including missing identifies and
syntax errors, but the root of all the problems is the missing header file. In this
case, the problem can be solved by specifying an additional header directory
in the compiler command line. In this example, I need to include some
contributed library and header files from the dbm database sources. We
looked in Chapter 13 at how to refer to other directories for header files and
libraries.

Missing header files usually have one of two symptoms. Either the
header file cannot be found, or the header file is mis-referenced or mis-
described. The first problem is usually solvable by modifying the include
directory options to the compiler. Going back to our gdbm example, all
references to the configuration header autoconf.h are made as local references:
#include “autoconf.h”

emacs on the other hand references the config.h as a system include:

Page%252%of%467

#include <config.h>

To make sure the header file is found and used correctly we need to
specify additional search locations to mwcc:
$ mwcc -i- -I. -I.. -c fileio.c

The second cause, incorrect header file names, is more difficult to solve.
The question of what header files are available and which the package should
use should have been resolved at the configuration stage. A very common
source of trouble is the header file which defines the string handling routines
such as strcpy. On many systems the name of this file is strings.h; on others,
the BeOS included, the name of this file is in fact string.h. The two files
contain largely identical definitions and function prototypes; it is only the
files’ names that are different.

In extreme cases you may find that the header files you have just don’t
contain what the package expects to find. In these circumstances you will
need to either search for the real location of the item, or, if it can’t be found,
attempt to plug the gap with alternative source.

Undefined Defines

Providing you have overcome the problems of header files mentioned above,
resolving undefined definitions (the next most common cause of errors)
requires a more extensive search. You need to search the header files to make
sure the definition isn’t hidden elsewhere. Alternatively, you may find that a
simple definition requires making substantial modifications to the code to get
around the differences.

Martin: Sorry, but the above sentence just isn’t clear. Try breaking it
down into more than one sentence, and see if you can clarify. -Mark

Better? MC

The problems of an undefined macro definition are difficult to trace
because the preprocessor doesn’t really know whether the item it’s looking for
should or shouldn’t be a macro. For example, the code fragment:
if ((fp=fopen(INFILE,”r”))==NULL)
 return(-1);

looks fairly innocent, but compiling it without defining the INFILE macro
produces a rather cryptic error:
mwcc Compiler Error:
if ((fp=fopen(INFILE,”r”))==NULL)
^^^^^^
undefined identifier ‘INFILE’
#--
File “fileread.c”; line 47
#--
errors caused tool to abort

Page%253%of%467

All the compiler tells us is that it doesn’t recognize the word as either a
variable or a suitable string value.

What we need to do is identify what INFILE should be before we fix the
problem. Almost certainly the fact that the name is all uppercase means it is a
macro definition, but we should confirm this. The first thing to do when
looking for a macro definition is to search the local source files and see if it is
used elsewhere. Chances are, if it is, we can get an idea from that file what the
definition is and where we can find it. We can do this using grep, and for
speed we’ll ask grep only to report the files it finds the string in.
$ grep -l INFILE *.c
fileread.c

We already knew that…

Now let’s try looking in the local header files:
$ grep -l INFILE *.h
files.h

Aha! We do a line search on that file:
files.h: #define INFILE “infile”

and we’ve found it. To fix the problem all we need to do is include the header
file in the source, or find the configuration option that switches the inclusion
of that file on. Usually the configuration is handled by some sort of script, or
by one of the header files supplied with the package. Refer to Chapters 9-11
for more information.

If we hadn’t found it, the next stage would be to search the system
header files.
$ cd /boot/develop/headers/posix
$ grep -l INFILE *.h sys/*.h

If we could find the definition here then the process is the same, we need
to ensure that the file is included in future when compiling. If there isn’t a
built-in option for specifying this in the configuration system then we will
need to add our own. It’s best to do this as simply and effectively as possible;
remember that your port should also be portable to other machines and
eventually you’ll be passing the code back to the author.

For this reason, include the header statement within some qualifiers, for
example:
#ifdef BEOS
#include <ctype.h>
#endif

You will need to modify the build commands or the configuration file so that
BEOS is defined when it comes to compiling the source again.

If the definition can’t be found anywhere, you have to make a decision
about the package you are porting. If the package you are porting is
important, or required, then you will need to find an alternative source of the

Page%254%of%467

definition and almost certainly the functions and variables that go with it.
We’ll look at this again later in this chapter, and in more detail for specific
items in Part 3 of this book.

Undefined Variables

Getting an undefined variable error is generally quite rare. The bulk of source
code should be written with variable names “hard-coded” as it were.
However, for compatibility and portability reasons some variables are defined
within an #ifdef statement, and not having the configuration right will cause
the wrong version, or in some cases no version, of the variable to be included.

The trick is to find where the variable is used, and then the function
header in which it is defined so you can identify what datatype the variable
should be. You can use the same method as before. Use grep to search the
source code and header files to look for the original definition.

Undefined Types

Invariably, an undefined type is caused either by the lack of the correct header
file, or by a fault in the configuration which fails to either define the type or
include the necessary file.

Incorrect/Incompatible Types

The mwcc compiler is notoriously strict at character conversions. If you take a
look at my port of emacs you will notice numerous modifications that add a
type cast to the strings used. This is not because the strings are defined badly,
but because occasionally mwcc doesn’t like doing a conversion between
const, unsigned, and signed character strings. For example, from fileio.c I
have to make a modification to the getpwnam function call:
#ifdef BEOS
 pw = (struct passwd *) getpwnam ((const char *)(o + 1));
#else
 pw = (struct passwd *) getpwnam (o + 1);
#endif

You can tell mwcc to be more relaxed about it’s pointer conversions by using
the -relax-pointers command line option.However, it’s probably a good idea
to make these manual modifications anyway.

In general, incorrect or incompatible types are probably caused by a
header file error, which ultimately leads you back to configuration. You have
two choices here: either modify the header files to be compatible (dangerous
and inadvisable) or use the technique I described above. If there is a

Page%255%of%467

configuration option to change the datatype within the package, use it in
preference to modifying the source code.

Unexpected End of File

This is an unmatched parenthesis, #ifdef, or similar statement where the
compiler is expecting to find a closing statement or character, but instead
finds the end of a file. It is unlikely that you would find one of these in a
package’ it will usually have been picked up by the author before the package
was sent out. But, as we’ll see in the next section, it is possible to make the
mistake yourself.

Introducing New Errors

You should be careful when making changes not to introduce any more
errors, or worse introduce any problems which will make the code
incompatible with your current system by making it reliant on some other
unsupported function.

It’s easy to make the situation worse simply by forgetting to add or
remove a particular line. For example, a good trick I’ve already mentioned is
to comment out code using macro definitions when compiling. I often use
#ifndef BEOS
…
#endif

and then pass the BEOS definition via the configuration file. This quickly
comments out a particular section without requiring me to edit the file to
enable it again. Forgetting the #endif will disable the remainder of the file,
and introduce an unexpected end of file error.

Another common problem is adding definitions to the configuration in
order to fix a problem in one file, only to make compilation of another file fail.
I came across just such a problem when working on a commercial port to the
BeOS. The functions for converting between network byte order and host byte
order were defined in one source by default. A straight compile produced an
error because the functions were already defined.

Changing the configuration successfully commented out the offending
functions, only to have a different source file fail because the compiler
couldn’t find the functions when it came to linking the file.

When building packages, whenever you change the configuration you
should recompile the entire package to make sure that your modification
doesn’t cause a different file to fail during compilation. The easiest way to do
this is to run make again specifying clean as the first target:

Page%256%of%467

$ make clean all

Alternatively, just deleting all the object files should, in a simple
package, cause everything to be recompiled:
$ rm -f *.o
$ make

For more complex packages where source files, object files and the
various support files are contained in subdirectories you will need to visit
each one and delete the files, or alternatively use a find command such as this:
$ find . -name “*.o” | xargs rm -f

Compilation Warnings
As we’ve already covered, compiler warnings can help to point to potential
problems. By default, only some of the warnings are produced by the
compiler, but these can still help to highlight incompatibilities within the
package. You can turn on all warnings using the -w all or -w9 option to the C
compiler. Below, we’ll take a look at some common warnings and why they
occur.

Function Has No Prototype

When a function is used without a prototype, a warning is generated to
highlight the fact that no checking can be performed on the format of the
function. The error doesn’t necessarily point to an immediate problem, but it
may mean there is a missing header file. This in turn may be selected by a
macro definition in the configuration and therefore point to a badly
configured package. The error does however remind you to check the
existence of this function when it comes time to link the object code.

The -wlargeargs flag can help you to identify problems with passing
large values to functions that have not been prototyped, and may be more
useful for identifying problems than using -w9.

Return Value Expected

The function
int add(int a, int be)
{
 int c;
 c=a+b;
 return;
}

should return the value of a+b, but the return statement doesn’t contain the
value specified in the function definition. This is sloppy programming, and

Page%257%of%467

you will need to modify the source to solve the problem. If you don’t do so,
the value “returned” to the calling line will most likely be a random value and
bare no relevance to the expected value.

Variable Name Is Not Used in Function

This error can be caused either by sloppy programming or by code which
uses the variable but has been commented out. This shouldn’t affect the
execution of a program, but will affect the memory used. Obviously with a
small variable such as an int it doesn’t make any difference, but with a large
structure or string it would cause a problem.

Linking Errors
If you get to the linking stage, you have already completed the most difficult
part of the build stage. Any file that has compiled correctly without reporting
any errors (or warnings) is a major achievement. The problems which
manifest themselves during the linking stage are easier to solve and are
normally caused by missing functions, libraries, or in some cases even
missing object files.

Missing Objects

Most make processes should have failed before they get to the linking stage if
a file is missing. The dependency checking should stop the build, but not all
Makefiles use dependencies. If you’ve made your own Makefile you need to
check the dependencies.

The mwcc compiler returns this error:
mwcc OS Error:
can’t resolve file path for ‘abbrev.o’
File or directory not found (OSD error -2147454956)
errors caused tool to abort

If you think the file isn’t needed, you can get past the problem by faking
the existence of the file using touch:
$ touch abbrev.o

The error will almost certainly disappear. The trick works because make
is only concerned with whether the file exists, not its contents. You may find
that a different group of linking errors, relating to missing functions, will
appear instead. You’ll need to check the configuration files and source code to
make sure these missing functions are compiled correctly, and we will look at
how to identify and fix those problems. Check the Makefile and ensure that
the file is in the dependency list; if it isn’t, try making the file by hand:

Page%258%of%467

$ make foo.o

Using make rather than mwcc to build the file initially should force the
use of the correct C compiler and options. If this doesn’t work, try using the
compiler directly. Often you can get away with a simple compiler command:
$ mwcc -i- -c -I. -I.. foo.c

In other cases you might need to add some more options, such as additional
defines, or even additional include directories.

The most likely reason for a missing file, though, is that it didn’t compile
properly, and that usually points back to a bad configuration and one of our
earlier examples.

Missing Libraries

If we look at the remainder of the earlier gdbm example, the build continues
to fail because of some missing libraries:
mwcc -o tdbm testdbm.o -ldbm -lndbm -lc
mwld OS Error:
can't resolve file path for 'libdbm.a'
File or directory not found (OS error -2147454956)
errors caused tool to abort

In this particular case the library in question is the basic dbm library,
which gdbm aims to replace. The library isn’t supplied with the BeOS as
standard and so a separate build and port of the dbm library had to take place
before I could compile this program.

This behavior demonstrates one of the frustrating elements of the
porting process, the “reliant” object code on which the port is based.
Admittedly, it is fairly safe to assume that dbm exists on a UNIX system—the
dbm libraries are used by many of the core OS programs such as sendmail to
store information—but it is also presumptuous to assume automatically that
the file exists.

Most “missing” libraries aren’t missing at all; either they are in different
directories, in which case you need an additional -L argument to the compiler
command, or you don’t need them for the BeOS platform. This latter problem
is particularly prevalent in the additional libraries required for functions such
as networking. Under Solaris you need to include a number of libraries to
provide access to DNS and socket-based services:
$ gcc -o foonet foo.o -lnsl -lsocket

HP-UX, on the other hand, includes the required functions in the
standard C library. Within the BeOS, although the libraries are separate, they
are automatically incorporated at link time based on the contents of the
$BELIBFILES environment variable. You will still need to remove any
specifications for additional libraries from the Makefile because the library
names are different.

Page%259%of%467

If the library is supposed to be built during the standard build process,
then you have a different problem. Most likely, it’s a dependency problem in
the Makefile; the build should have failed by now if the library couldn’t be
built.

Missing Functions

It is quite common to come across missing functions within a package.
Dealing with missing functions by matching the functions required by the
package with the functions available on the BeOS constitutes a large part of
the porting process. The configuration process should have selected the
correct functions, and any missing functions, identifiers, or header files which
normally go with them should have been identified at the compile stage.

This isn’t always the case, however. Particularly in the large, well-ported
packages the problem stems not from any missing function in the system
library (as such) but from a problem in the source code. A reliance on a
specific function is often handled by an additional suite of functions included
with the package. emacs and other GNU packages use the sysdep.c file to
supply these additional functions. These are then switched on or off by the
configuration header file, which specifies which functions are needed. For
example, the bcmp function is defined within the sysdep.c file as follows:
#ifndef BSTRING
#ifndef bcmp
int
bcmp (b1, b2, length) /* This could be a macro! */
 register char *b1;
 register char *b2;
 register int length;
{
#ifdef VMS
 struct dsc$descriptor_s src1 = {length, DSC$K_DTYPE_T, DSC
$K_CLASS_S, b1};
 struct dsc$descriptor_s src2 = {length, DSC$K_DTYPE_T, DSC
$K_CLASS_S, b2};

 return STR$COMPARE (&src1, &src2);
#else
 while (length-- > 0)
 if (*b1++ != *b2++)
 return 1;

 return 0;
#endif /* not VMS */
}
#endif /* no bcmp */
#endif /* not BSTRING */

As with missing variables and datatypes during compilation, your first
task is to find out if the function exists within the current distribution. If it
doesn’t exist, check the system libraries and headers. In this example, the
bcmp function is referenced in the bsdmem.h header file on the BeOS, a
header file which is unlikely to be included in the standard configuration.

Page%260%of%467

If you can’t find the function, you will need to re-create it. For simple
functions you might be able to do this yourself, but an easier option is
probably to use one of the available public libraries. A good place to start is
the GNU C library package, glibc, which contains all of the functions required
by GNU packages. Another alternative is the Linux, FreeBSD and NetBSD
sources, either of which should be able to provide you with the information
and functions you require.

As with previous examples, if you find you need to modify the
configuration or the files required by the entire package, do a make clean and
compile the package again. This ensures that the changes you have made do
not affect other parts of the build and ultimately cause it to fail.

Duplicate Objects

The opposite of the previous error, a duplicate function or variable, can be
caused by similar problems. Specifying that a particular function is required
to be built within a package when an OS version exists can be dangerous.
Sometimes, however, it is a necessary decision. In other cases, the problem has
probably arisen because you have modified the configuration without
building the entire project again.

Either way, unless the duplicate is deliberate or necessary (for
incompatibility or bug reasons) it is best to get rid of it. The output of the
linker should show you where the duplicate was found and where the
original is, making identification and elimination easier.

Installation
Generally you can go ahead right now and test the files you have created.
However, for many packages, there is yet another step before you test the
files, that of installation. Generally, if practical, I install the files before
performing any sort of test on what I’ve created. As we’ll see in the next
chapter, a number of errors can be generated by the program not finding what
it expects to find where it expects to find it.

The process of installation may involve any or all of the following:

•! Installation of executables into a location that can be referenced by the
shell, that is, a directory in the PATH

•! Installation of any documentation and support files, including
configuration, preference, and other information

Page%261%of%467

•! Setting the correct permissions and ownerships of the files and
directories used by the application, including, if necessary, any “blank”
directories

•! Installation of library and header files in places available for program
development

There is also one additional item, often omitted from the process by both
systems administrators and package authors:

•! Removal of any old versions already installed on the system
Forgetting this last item can cause all sorts of problems, from software that
doesn’t run correctly or reports spurious errors and problems right through to
a messy system.

Depending on the package the installation is either easy and fully
automatic or complex and completely manual, or any variation of those
limits. We will take a look first at removing the old versions before we move
on to installing new versions.

Removing Old Versions

Between different versions of emacs the installation directories and formats
do not change much. Looking at the install target in the Makefile it is fairly
obvious that a very strict structure exists:
Build all the directories we're going to install Emacs in.
 Since
we may be creating several layers of directories (for example,
/usr/local/lib/emacs/19.0/mips-dec-ultrix4.2), we use
mkinstalldirs
instead of mkdir. Not all systems' mkdir programs have the `-p'
flag.
mkdir: FRC
 $(srcdir)/mkinstalldirs ${COPYDESTS} ${lockdir} ${infodir} $
{man1dir} \
 ${bindir} ${datadir} ${docdir} ${libexecdir} \
 `echo ${locallisppath} | sed 's/:/ /g'`
 -chmod a+rwx ${lockdir}

All of the configuration files, lisp code, and support files from emacs are
installed into the /usr/local/lib/emacs directory by default. Beneath this
directory the different versions are kept, and within each version the
architecture-dependent files are kept. This allows multiple versions of emacs
on multiple machines to all be stored within the same directory layout.

While this makes installation and the program itself more complicated, it
also makes removing old versions very easy. You can just delete the directory
tree for the version you no longer require. This is precisely the method used
by the uninstall target in the Makefile:
Delete all the installed files that the `install' target would
create (but not the noninstalled files such as `make all' would
create).
###

Page%262%of%467

Don't delete the lisp and etc directories if they're in the source
tree.
uninstall:
 (cd lib-src; \
 $(MAKE) $(MFLAGS) uninstall \
 prefix=${prefix} exec_prefix=${exec_prefix} \
 bindir=${bindir} libexecdir=${libexecdir} archlibdir=$
{archlibdir})
 for dir in ${lispdir} ${etcdir} ; do \
 if [-d $${dir}]; then \
 case `(cd $${dir} ; /bin/pwd)` in \
 `(cd ${srcdir} ; /bin/pwd)`*) ;; \
 *) rm -rf $${dir} ;; \
 esac ; \
 case $${dir} in \
 ${datadir}/emacs/${version}/*) \
 rm -rf ${datadir}/emacs/${version} \
 ;; \
 esac ; \
 fi ; \
 done
 (cd ${infodir} && rm -f cl* dired-x* ediff* emacs* forms* gnus*
info* mh-e* sc* vip*)
 (cd ${man1dir} && rm -f emacs.1 etags.1 ctags.1)
 (cd ${bindir} && rm -f emacs-${version} $(EMACS))

For other packages, it is more difficult to identify their installation
location. Your average package is likely to be split over at least two
directories, and you need to remove the files without upsetting any of your
other packages. This process doesn’t make the BeOS (or UNIX for that matter)
unique. It is a well-accepted fact that software on UNIX machines is generally
difficult to install properly, and more often than not impossible to uninstall
completely.

The decision you make about removing old versions of software
depends on your own circumstances. It is possible when working with
different versions of packages and with your own different builds of software
to have multiple, but incompatible, executables all trying to use the same
folder structure and configuration files, which makes it almost impossible to
work with the version or abilities of the one you want.

As a general rule, unless you need to use the previous version of the
package for compatibility reasons, I suggest you remove it. If possible, make
sure you have a compiled version available, or the old sources (including any
modifications you made), before removing the package. This way, should you
need to reinstall it, it will hopefully be a less painful process than having to
repeat the porting exercise all over again.

The problem of removing old software remains to be solved; even with
emacs the uninstall target only removes the current build version, not the
previous one. For that, you’ll need to go back to a previous release of emacs,
and older releases didn’t include the uninstall option at all.

Removing a package without such an option is a laborious process,
made worse by the availability or otherwise of the relevant source tree. If the
old Makefile is available you need to find the install target to find out which

Page%263%of%467

files were installed, and where. The example below is relatively simple and
comes from gdbm:
install: libgdbm.a gdbm.h gdbm.info
 $(INSTALL_DATA) libgdbm.a $(libdir)/libgdbm.a
 $(INSTALL_DATA) gdbm.h $(includedir)/gdbm.h
 $(INSTALL_DATA) $(srcdir)/gdbm.3 $(man3dir)/gdbm.3
 $(INSTALL_DATA) $(srcdir)/gdbm.info $(infodir)/gdbm.info

We can duplicate this entry and replace the $(INSTALL_DATA) with rm
-f, producing
uninstall: libgdbm.a gdbm.h gdbm.info
 rm -f libgdbm.a $(libdir)/libgdbm.a
 rm -f gdbm.h $(includedir)/gdbm.h
 rm -f $(srcdir)/gdbm.3 $(man3dir)/gdbm.3
 rm -f $(srcdir)/gdbm.info $(infodir)/gdbm.info

 For other packages the process is not as simple. emacs, for example, has
an extensive install target which has to copy the executable, support files, lisp,
and info files to the corresponding directories.

If you don’t have access to the original Makefile then the process is more
long-winded. You need to find the executable and all the files that go with it.
The easiest way to do this is to find the executable:
$ which perl
perl is /boot/home/config/bin/perl

and then search the probable locations for files modified within minutes of the
executable’s modification date and time. You can use ls -lt to list the date/time
stamp sorted in time order.

If, and however, you decide to remove an already installed package you
must be careful not to remove software you actually need, or to disable other
packages by removing a required configuration file. Removing a library, for
example, is probably a bad idea. Removing an application can be less
traumatic, but it is possible that another application or script requires the file
you have just deleted.

Installation of the Files

For most applications, the install target is the ultimate goal. The normal target
specification for install is for the all target to be built first, and for the
compiled software to then be copied to appropriate directories, like this:
install: all
 cp foo /boot/home/config/bin

while others are more complex:
BINDIR= /boot/home/config/bin
ETCDIR= / boot/home/config/etc
MANDIR= / boot/home/config/man
MANEXT= 8

all:
 @ echo 'Use the "build" command (shell script) to make ftpd.'

Page%264%of%467

 @ echo 'You can say "build help" for details on how it works.'

install: bin/ftpd bin/ftpcount bin/ftpshut
 -mv -f ${ETCDIR}/ftpd ${ETCDIR}/ftpd-old
 @echo Installing binaries.
 install -o bin -g bin -m 755 bin/ftpd ${ETCDIR}/ftpd
 install -o bin -g bin -m 755 bin/ftpshut ${BINDIR}/ftpshut
 install -o bin -g bin -m 755 bin/ftpcount ${BINDIR}/ftpcount
 install -o bin -g bin -m 755 bin/ftpwho ${BINDIR}/ftpwho
 @echo Installing manpages.
 install -o bin -g bin -m 755 doc/ftpd.8 ${MANDIR}/man8/ftpd.8
 install -o bin -g bin -m 755 doc/ftpcount.1 ${MANDIR}/man1/
ftpcount.1
 install -o bin -g bin -m 755 doc/ftpwho.1 ${MANDIR}/man1/
ftpwho.1
 install -o bin -g bin -m 755 doc/ftpshut.8 ${MANDIR}/man8/
ftpshut.8
 install -o bin -g bin -m 755 doc/ftpaccess.5 ${MANDIR}/man5/
ftpaccess.5
 install -o bin -g bin -m 755 doc/ftphosts.5 ${MANDIR}/man5/
ftphosts.5
 install -o bin -g bin -m 755 doc/ftpconversions.5 ${MANDIR}/
man5/ftpconversions.5
 install -o bin -g bin -m 755 doc/xferlog.5 ${MANDIR}/man5/
xferlog.5

Even after this extensive list of files to install, wuftpd still requires some
manual intervention to complete the installation. Herein lies a problem: In
much the same way that removing old versions causes a problem, there is no
standard way of installing a package after it has been compiled and built.

This presents us with something of a problem, because we know that
installing the wrong files—or, worse, installing the right files in the wrong
place—presents us with a problem not only when we come to use the
package, but also when we come to replace or remove it later.

With all these negative points, it is hard to imagine that anything gets
installed correctly. In fact, the situation is not as bad as I’ve portrayed it; most
installation processes supplied with most packages are adequate, in that they
install the files in the specified place. The full sequence of events during
installation should be:

1.! Create any necessary directories
2.! Copy across the application files into the directories
3.! Copy across the support files and documentation
4.! Set permissions on the files and directories

Most packages make the process simpler (even within the scope of a
Makefile) and use the install program, which is supplied as standard with the
BeOS, or a shell script equivalent. The install program has advantages over cp
in that files can be copied to their locations with the permissions and file
ownership already set correctly. This shortens the overall process and
simplifies the commands make has to run.

In addition to the standard install target some packages split the
installation process between a number of smaller targets. It is not uncommon

Page%265%of%467

to find targets such as install-man and install-doc in addition to, or as part of,
the main install target. Other packages don’t include any options for installing
documentation, and still others don’t include any form of installation at all.

In all cases the basic process is the same; all you need do is ensure that
the process runs smoothly and does not generate any errors. As a warm-up,
here is an extract from the emacs Makefile, which pretty much does
everything required to install the package. It is annotated, and should be
relatively easy to follow.
We do install-arch-indep first because
the executable needs the Lisp files and DOC file to work properly.
install: ${SUBDIR} install-arch-indep install-arch-dep blessmail
 @true

Install the executables that were compiled specifically for this
machine.
It would be nice to do something for a parallel make
to ensure that install-arch-indep finishes before this starts.
install-arch-dep: mkdir
 (cd lib-src; \
 $(MAKE) install $(MFLAGS) prefix=${prefix} \
 exec_prefix=${exec_prefix} bindir=${bindir} \
 libexecdir=${libexecdir} archlibdir=${archlibdir})
 ${INSTALL_PROGRAM} src/emacs ${bindir}/emacs-${version}
 -chmod 1755 ${bindir}/emacs-${version}
 rm -f ${bindir}/$(EMACS)
 -ln ${bindir}/emacs-${version} ${bindir}/$(EMACS)

Install the files that are machine-independent.
Most of them come straight from the distribution;
the exception is the DOC-* files, which are copied
from the build directory.

Note that we copy DOC* and then delete DOC
as a workaround for a bug in tar on Ultrix 4.2.
install-arch-indep: mkdir
 -set ${COPYDESTS} ; \
 for dir in ${COPYDIR} ; do \
 if [`(cd $$1 && /bin/pwd)` != `(cd $${dir} && /bin/pwd)`] ;
then \
 rm -rf $$1 ; \
 fi ; \
 shift ; \
 done
 -set ${COPYDESTS} ; \
 mkdir ${COPYDESTS} ; \
 chmod ugo+rx ${COPYDESTS} ; \
 for dir in ${COPYDIR} ; do \
 dest=$$1 ; shift ; \
 [-d $${dir}] \
 && [`(cd $${dir} && /bin/pwd)` != `(cd $${dest} && /bin/
pwd)`] \
 && (echo "Copying $${dir} to $${dest}..." ; \
 (cd $${dir}; tar -cf - .)|(cd $${dest};umask 022; tar -
xvf -); \
 for subdir in `find $${dest} -type d ! -name RCS -
print` ; do \
 rm -rf $${subdir}/RCS ; \
 rm -rf $${subdir}/CVS ; \
 rm -f $${subdir}/\#* ; \
 rm -f $${subdir}/.\#* ; \
 rm -f $${subdir}/*~ ; \
 rm -f $${subdir}/*.orig ; \
 rm -f $${subdir}/[mM]akefile* ; \

Page%266%of%467

 rm -f $${subdir}/ChangeLog* ; \
 rm -f $${subdir}/dired.todo ; \
 done) ; \
 done
 -rm -f ${lispdir}/subdirs.el
 $(srcdir)/update-subdirs ${lispdir}
 -chmod -R a+r ${COPYDESTS}
 if [`(cd ./etc; /bin/pwd)` != `(cd ${docdir}; /bin/pwd)`]; \
 then \
 echo "Copying etc/DOC-* to ${docdir} ..." ; \
 (cd ./etc; tar -cf - DOC*)|(cd ${docdir}; umask 0; tar -xvf
-); \
 (cd $(docdir); chmod a+r DOC*; rm DOC) \
 else true; fi
 if [-r ./lisp] \
 && [x`(cd ./lisp; /bin/pwd)` != x`(cd ${lispdir}; /bin/
pwd)`] \
 && [x`(cd ${srcdir}/lisp; /bin/pwd)` != x`(cd ./lisp; /bin/
pwd)`]; \
 then \
 echo "Copying lisp/*.el and lisp/*.elc to ${lispdir} ..." ;
\
 (cd lisp; tar -cf - *.el *.elc)|(cd ${lispdir}; umask 0; tar
-xvf -); \
 else true; fi
 thisdir=`/bin/pwd`; \
 if [`(cd ${srcdir}/info && /bin/pwd)` != `(cd ${infodir} && /
bin/pwd)`]; \
 then \
 (cd ${infodir}; \
 if [-f dir]; then \
 if [! -f dir.old]; then mv -f dir dir.old; \
 else mv -f dir dir.bak; fi; \
 fi; \
 cd ${srcdir}/info ; \
 (cd $${thisdir}; ${INSTALL_DATA} ${srcdir}/info/dir $
{infodir}/dir); \
 (cd $${thisdir}; chmod a+r ${infodir}/dir); \
 for f in ccmode* cl* dired-x* ediff* emacs* forms* gnus*
info* message* mh-e* sc* vip*; do \
 (cd $${thisdir}; \
 ${INSTALL_DATA} ${srcdir}/info/$$f ${infodir}/$$f; \
 chmod a+r ${infodir}/$$f); \
 done); \
 else true; fi
 thisdir=`/bin/pwd`; \
 cd ${srcdir}/etc; \
 for page in emacs etags ctags ; do \
 (cd $${thisdir}; \
 ${INSTALL_DATA} ${srcdir}/etc/$${page}.1 ${man1dir}/$${page}
${manext}; \
 chmod a+r ${man1dir}/$${page}${manext}); \
 done

Build Emacs and install it, stripping binaries while installing
them.
install-strip:
 $(MAKE) INSTALL_PROGRAM='$(INSTALL_PROGRAM) -s' install

Build all the directories we're going to install Emacs in.
 Since
we may be creating several layers of directories (for example,
/usr/local/lib/emacs/19.0/mips-dec-ultrix4.2), we use
mkinstalldirs
instead of mkdir. Not all systems' mkdir programs have the `-p'
flag.
mkdir: FRC
 $(srcdir)/mkinstalldirs ${COPYDESTS} ${lockdir} ${infodir} $
{man1dir} \

Page%267%of%467

 ${bindir} ${datadir} ${docdir} ${libexecdir} \
 `echo ${locallisppath} | sed 's/:/ /g'`
 -chmod a+rwx ${lockdir}

Even if the installation process doesn’t work as advertised, doing the
installation by hand is as easy as copying any file. Whichever way you decide
to install the package, you will know when you come to test whether the
installation, and more importantly the compilation, have failed. We will take a
closer look at this in the next chapter.

Testing the Build
Most programming is testing. Ideally, you need to test the application in every
single possible combination and sequence of events that could happen. Of
course, this isn’t always feasible. What you can do, though, is check the
basics, check the high and low figures, and run some spot checks on
procedures and functions that you know are likely to cause problems.

There are quite literally thousands of reasons why a program may not
work, even after it has been compiled correctly. Your job as a porter is made
significantly easier because you are not writing the software from scratch, you
are only porting it to a new platform. Most, and hopefully all, of the core C
code should work on any platform; your job is to make sure that the links to
the OS and the outside world work as they should. What you need to do is to
create a test harness, a collection of tests and spot checks through which the
bulk of the problems will not be able to escape.

Checking the Created Files
There is one, probably obvious, test to make sure that a program has compiled
correctly. Run it!

However, before you rush to the keyboard and try to run the software,
make sure that you’ve created everything you need. For many packages, this
is just a single application file, but for others the package may be made up of a
number of smaller files and scripts, all of which may be interdependent. You
may need to install the application(s) you have just compiled, support files,
and configuration files before testing. Check the documentation to see if this is
required.

List the files built during the build process and make sure they are
executable, and of a reasonable size. Anything that isn’t executable probably
hasn’t been generated and output by the linker properly. Check the logs
created during the build process to ensure that the linker didn’t return any
errors.

Page%268%of%467

The size is also important; some packages create an empty application
file before the linker generates the real version. Alternatively, your linker may
have tried to generate the application file, but failed because of a missing
object file or library, leaving behind an incomplete application file. Anything
that looks excessively small has probably not compiled correctly. It could be a
shellscript, but this is unlikely to have been generated as part of the build
process.

Creating Your Own Harness
A test harness is a set of scripts, tests or other applications that test the
functionality of the code you have produced. The term harness is an analogy
that implies that a function that fails the test harness manages to break
through the tests you have developed.

Creating your own test harness is a complicated process. You know what
you need to achieve: as much testing as possible on the various elements of
the program. The problem is how to go about it. When writing your own
programs testing is easy; if you’re like me you probably test the software after
each additional feature has been added. When you run your program and
something doesn’t work as you expect, you can almost immediately identify
the problem.

Working with somebody else’s code can be mind-numbing, but you can
apply the same basic principle: subdivision. If you subdivide the program
into component parts it should be easier to identify the source of the problem.
Subdivision also works on the superficial level of determining what the
problems might be. The range of errors for a ported application is relatively
small; you can concentrate on a number of specific areas to reduce the time it
takes to test. The main reasons for ported software failing are differences in
the library implementations of functions, or genuine bugs in the source code.

Differences between the libraries on the OS from which the program was
ported and those on the BeOS can cause significant problems. Hopefully the
configuration process will have ironed out most of the differences, or
identified the difference and proposed an alternative solution. It is possible
however that the configuration you’ve selected isn’t the perfect selection for
the BeOS. Minor things can cause a tremendous number of errors. For
example the BeOS doesn’t support flock() although the function exists returns
a useless number as the result. The configuration found the function, and ran
a test program to check the existence, but this wasn’t picked up as either a
fault or a successful return; the program (gdbm) just failed during startup
with an unknown error.

Page%269%of%467

Bugs which were ignored on the development system because they
didn’t cause any problems suddenly manifest themselves. This is particularly
apparent with pointers and character strings.

This reduces the amount of code you have to test because many of the
lines within a package don’t fall into the two categories above.

The subdivision approach to testing is the same way that packages such
as gawk and perl test themselves. They start by testing the basic features, and
then move on to testing the more complicated features and built-in functions.
You can apply this process to other packages by concentrating on the area of
the package affected.

For this approach, you really need to use some form of debugging if you
don’t want to get into the bowels of the package. As I have already described
in Chapter 14, I find manual debugging with printf statements showing the
progress and location the easiest way to track down the locality of the
problem. Usually, this is enough to isolate the function or line of code causing
the problem. When working on the BeOS port of emacs, for example, I used
this method to trace me back to a function which initialized the memory
system.

The program would freeze when it reached this point, and I used
multiple printf statements to isolate the function call. Using grep I was then
able to identify the source file containing the function init_alloc_once, which
pointed in the direction of the alloc.c source file, which in turn pointed me
towards the malloc() system call.

emacs, like many of the large packages, is virtually impossible to
understand without months of reading the code, and so subdivision is the
only way you will discover where the problem is. Even so, there is no
practical way of testing every function of the program; even using the built-in
lisp language, testing would be difficult and time consuming. Therefore, once
you have emacs or similarly large software running, the best way to test the
package is just to use it. If you think it is stable enough, release it to the
public. You will find out soon enough from the users of the software whether
there is a problem with it.

In fact, your users probably are the only ones who will be able to test the
full range of features and functions in the ports you provide to them.

Using the Supplied Harness
GNU packages, and some others, come with their own test suites which you
can use to verify the quality of the port. Using the supplied test harness can
save you a considerable amount of time and effort. The harness should cover

Page%270%of%467

all the core operations and may, with more complex programs, even cover all
the functions required for operation (but not necessarily all the variables).

Certainly with alternative languages such as gawk and perl the harness
supplied is comprehensive enough to test the vital parts and provide
information on possible problems, or at least pointers to problems, very
quickly. We will look at some possible errors returned by tests and how to
identify and fix the problems in the next section of this chapter.

The perl test suite is located in the t subdirectory and contains an
extensive array of tests and a script (also written in perl) to execute and
monitor their output. You may think that a problem with perl could cause the
main script to fail, but you can test items individually to identify the source of
the error. The output from the tests is fairly sparse, but it does give an
indication of whether the tests completed as expected:
$ TEST
base/cond......ok
base/if........ok
base/lex.......FAILED on test 12
Failed a basic test--cannot continue.
base/pat.......ok
base/term......ok
comp/cmdopt....FAILED on test 12
comp/cpp.......FAILED on test 0
comp/decl......ok

The test file base/lex produced an error on test 12. Because the TEST
script is just another perl script, we can run the scripts individually:
$ perl base/lex
1..24
#1 :x: eq :x:
ok 1
ok 2
ok 3
ok 4
ok 5
ok 6
ok 7
ok 8
ok 9
ok 10
ok 11
ok 12
ok 13
ok 14
ok 15
ok 16
ok 17
ok 18
ok 19
ok 20
ok 21
ok 22
ok 23
ok 24

We find that, in fact, there is nothing wrong with the script; it must be in
the TEST script instead. We can verify this by running another script which
also failed on test 12, comp/cmdopt:

Page%271%of%467

$ perl comp/cmdopt.t
1..40
ok 1
ok 2
ok 3
…
ok 38
ok 39
ok 40

Again, the test doesn’t return any errors. This is almost certainly a
problem with the parent TEST script. Unfortunately, this doesn’t get us off the
hook; we need to find out what the problem in this script is because it still
points to a bug in the perl we have created.

The best way to approach this is to write our own test script which
progressively works through the tests and stores the output so we can track
down the problems later. Using the output we can identify the problem, make
the necessary changes to the sources, and then try again until all the faults are
eliminated.

perl is a complicated package to use as an example, although it is one of
the few packages to come with such an extensive test suite. Another good
example of a supplied test harness is gdbm, the GNU version of the database
management system. Within the gdbm package is a suite of programs which
test the functionality of the various library functions. Here the tests need to be
performed manually, but you should still be looking out for the same pointers
to possible problems as before.

An alternative to the gdbm test programs is to use perl to test the dbm
functions. However, you run the risk of reporting and trying to solve errors
that may be in the wrapping or the contents. Trying to fix perl when the
problem is gdbm, or vice versa, may cause you to tear your hair out.

Pointers to Problems
During the tests you will undoubtedly come across a problem or event, and
you need to be able to trace that back to the source code and a possible
incompatibility. You could use a debugger, or one of the debugging
techniques I have already shown you. The problem is that using a debugger
doesn’t always answer your questions about the cause of a problem.

Certainly, debugging will show you the sequence of events leading up to
the problem, and the values of the variables that may have caused it, but it
doesn’t always show you the actual cause, only where the cause made the
program crash.

There are, though, some obvious things you can look out for when
running and testing your program which will help you to identify the
problem and its probable source.

Page%272%of%467

Memory Overflow

A memory overflow is highlighted by a core dump, or a drop into the
debugger. The error can indicate a variety of problems, most of which, with
good programming, shouldn’t appear. However, often the result is caused by
an incompatibility between OSs that causes a problem which would
otherwise have been picked up on a different platform.

The most likely shape this problem will take is the program trying to
access a variable outside of the current memory space. The most likely cause
of this is a badly aligned string, or a failed alloca() call that was never
checked. You should be able to trace the fault to a specific line using a
debugger, but it may take further investigation, tracking back through the
source, to find the real fault.

If you’re building a GNU package, try altering the configuration to use
the GNU memory routines. The ALLOCA definition usually controls this
action.

Signed/Unsigned Numbers

The BeOS is a 32-bit OS, which means that by default an int is 32 bits long,
which is the same size as a long. This bitsize gives a maximum value for an
int of (2^32)-1. A char is eight bits long. Whereas a short is sixteen bits. Some
packages use specific types for different variables, which can cause problems
as you move between OSs.

For example, if a particular variable is specified as a short but returns a
negative instead of the expected positive number then you need to specify a
larger type. It should probably be changed to an int. You can do this by
manually modifying the source code using a search and replace. Be careful
not to define an int int though.

A better solution is to redefine short in a header file as long:
#define short long

A good example of this problem can be seen in the compiler mwcc, although
the error number is returned by the OS:
File or directory not found (OS error -2147454956)

which returns an unfeasibly large negative number for what is a relatively
simple number. We will see why this number is the value it is, and also look at
the full range of datatypes in Part 3 of this book.

Character Order

Page%273%of%467

The byte order of an operating system can be described as “big-endian” or
“little-endian.” Big-endian OSs store the larger portions of the number in the
lower bytes, so the number 0x12345678 would have digits 1 and 2 in byte 0, 3
and 4 in byte 1, and so on.

In little-endian OSs the reverse is true: 1 and 2 would be stored in byte 3,
3 and 4 in byte 2, and so on ending with 78 in byte 0. You can see the
difference more clearly if you take a look at Table 18.1. For the storage of
numbers this shouldn’t matter, as number types are defined only within the
compiler.

Table 18.1

Big-endian and little-endian numbers
Byte Little-endian value Big-endian value
0 78 12
1 56 34
2 34 56
3 12 78

You can test the behavior of your system using the program below, taken
from the perl Configure script:
#include <stdio.h>
main()
{
 int i;
 union {
 unsigned long l;
 char c[sizeof(long)];
 } u;

 if (sizeof(long) > 4)
 u.l = (0x08070605L << 32) | 0x04030201L;
 else
 u.l = 0x040302010L;
 for (i = 0; i < sizeof(long); i++);
 printf(“%c”,u.c[i]+’0’);
 printf(“\n”);
 exit(0);
}

If you compile and run this program on the BeOS on a PowerPC processor
you will find it is big-endian, reporting “4321”. For BeOS on Intel processors it
should report “1234”.

Missing Files/Directories

When you run an application it may return a “configuration file not found” or
“missing directory” error. These are simple problems with the configuration
where you have not adjusted the directory or file names to match the BeOS
layout. Chapter 2 covered the basic layout of the Be file system.

Page%274%of%467

In some cases, these problems may manifest themselves as more serious
errors, although the problem remains the same. I have even seen one program
(a commercial Internet tool) report “Fatal error: cannot continue.” After
debugging the source, I found a problem with a file name, where the
specification had been hard-coded into the source instead of using a “public”
definition. Though easy to solve, the problem caused my heart to skip a beat
after some weeks of porting other parts of the program.

The File System Interface

When porting a program which uses file locking as a mechanism of accessing
and controlling the contents of files, you need to check the file locking
mechanisms and functions. Most programs should report an error when they
come across such a problem; it usually affects the execution enough that the
program has to shut down. Some programs will just report a “Can’t read file”
error, even though you are sure the file exists and is readable.

You may also come across programs which expect to use hard links, so
you will need to change the references to link() to symlink(). In addition, the
off_t datatype is 64 bits in the BeOS, not 32 bits. We will look at these and
other file system specifics in Part 3 of this book.

Testing the software and making sure it works properly is the last stage
of porting before supplying your changes to the author and distributing the
package to the rest of the OS community. It is vital, not just for the program’s
success, but also for your own credibility, that the program work correctly.

Page%275%of%467

Chapter 16 - Overview of BeOS
Programming
When writing a program for the BeOS, as opposed to porting a program to
the BeOS, you have two styles to choose from. One is the POSIX style which
resembles the UNIX environment and the other is the object-oriented BeOS
API (application programming interface). As porters of mostly UNIX
software, we are more interested in the POSIX compatibility layer. Before we
take a closer look at the POSIX support provided by the BeOS we will take a
brief look at both styles, how the two can be used together, where the
differences and similarities are apparent and where the two styles cross over.

Program Styles
If you take a look at the diagram of how the BeOS works in Figure 16.1, you
can see how the two programming interfaces interlock with each other. The
BeOS API attaches itself directly to the kernel, as does the POSIX support. You
will also notice that the BeOS API covers some of the POSIX support, and in
some cases is actually built on the POSIX functions.

Figure 16.1
The BeOS application structure

Page%276%of%467

This is a fairly simplistic representation; the entire application support is
slightly more complex and sophisticated. We can, however, make some
analogies between the BeOS and other OSs. We already know there are two
different styles of programs within the BeOS: those based on the BeOS API
and those based on the POSIX-style interface.

The main difference between the two from the user’s point of view is the
interface that will be used. A BeOS application is more than likely to be based
within the Windows-style environment for the OS and use the same multiple
windows, menus, and so on for interaction with the user. A POSIX-style
application is more likely to work within a text-based interface. emacs or perl
are both good examples of POSIX-style applications and are more similar to
the two packages on a UNIX machine or DOS on a PC. We also know that a
POSIX application can really only be started from within a Terminal window
(the command line) because of the restrictions on the I/O. A BeOS application
on the other hand can be executed from the command line, but can also be
executed from within the Tracker by double-clicking on it. All these
differences, while fairly invisible to the user, are much more dramatic behind
the scenes, both when the application is written and developed and when it is
executed.

It is possible to double-click on a POSIX application in
the Tracker, but you will not see any output, even if it is
produced.
A good example of an application which is based on a GUI API that can

be run from the command line is the BeOS browser, called NetPositive. This is
a GUI based application built on the BeOS API, and can be run from the
command line, as well as by double clicking it from the Tracker.

Be Style
Programming for the BeOS is unlike writing application software for any
other platform. Thinking about Be programming style requires an open mind
and a fresh approach.

A Closer Look

If you take a closer look at the structure of the BeOS API (Application
Programming Interface), as seen in Figure 16.2, you can see that the
underlying structure of a BeOS program is supported by a number of servers.
A BeOS application is, put simply, a client application to a number of
supporting servers, all of which are automatically started up at boot time.
Access to the servers is controlled via a number of software kits, and it is this

Page%277%of%467

combination of multiple APIs and the client/server model that makes
programming on the BeOS so unique.

Figure 16.2
The BeOS API

If we start from the bottom of the diagram and work our way up, we can
investigate the internals a little more closely. At the base level is the hardware,
the physical equipment required to run the OS. On top of this is the kernel.
The kernel sits on top of the hardware and is the core unit that controls the OS.
It provides the interface functions between the next level—the servers—and
the hardware. At a CPU level, this encapsulates the support of multiple
processors and supports the notion of threads, the basic building blocks of a
running application. The kernel is highly optimized and very small in
comparison to other bulky OSs. The MacOS System file, for example, is 6.5Mb
in its latest revision, Mac OS 8, this is without support for networking or
anything other than the basic system and interface. In comparison, the BeOS
kernel, also without any additional components, is just 452K.

The use of a kernel allows the core of the OS to be ported to a number of
platforms, and also allows a variety of hardware to be supported using
software drivers which are dynamically loaded when required. The kernel
can be accessed either directly using system calls (as in UNIX) or via the
abstraction layer, which is the object-oriented interface supported by the
servers.

Each server is responsible for supporting a different set of services. For
example, the network server supports networking protocols on top of the

Page%278%of%467

physical device. Each server is multithreaded, much like the kernel, and so is
able to handle a number of requests and operations almost simultaneously.

Fitted onto the servers is the API, which in Be terminology is the
software kits. The software kits (and the servers) are written in C++, whilst
the kernel is written in C. The object orientation of C++ provides a number of
benefits, not least of which is the speed with which programs and
applications can be written. Most significantly, they support the model of
ever-expanding support for basic structures.

For example, using the principles of inheritance it is possible to create a
base class of a window, and then a new class which uses the features of the
window combined with the additional features of a text entry box. This is
similar to the building blocks used to describe animals. The specification of a
mammal is a creature that has fur and is warm blooded; within this you get
dogs, which have the basic features combined with extended canines and a
tail, and also kangaroos, which follow the same basic features of being furry
and warm blooded, and include the addition of a pouch.

Finally, communication between the servers, threads, and other
applications takes place via messages. These messages can be any piece of
information you might want to exchange, or they may be the control codes
which run, pause, or stop an application. We’ll see how this works in the
“Program Structure” section, below.

All of these abilities fit together within the BeOS to make the
development of a multithreaded, graphical application very quick and easy.
In addition, behind the scenes you are able to access the core of the OS and
the underlying hardware.

Program Structure

If you take a look at a sample BeOS application you can see its main
differences from a standard C application. The main function seems to contain
a lot of code that doesn’t really do anything, and an additional function has
been defined that does the work:

#include <Application.h>
#include <Window.h>
#include <View.h>

class HelloView : public BView {

public:
 HelloView(BRect frame, char *name);
virtual void AttachedToWindow();
virtual void Draw(BRect updateRect);
};

class HelloWindow : public BWindow {

Page%279%of%467

public:
 HelloWindow(BRect frame);
virtual bool QuitRequested();
};

class HelloApplication : public BApplication {

public:
 HelloApplication();
};

void set_palette_entry(long i,rgb_color c);

HelloView::HelloView(BRect rect, char *name)
 : BView(rect, name, B_FOLLOW_ALL, B_WILL_DRAW)
{
}

void HelloView::AttachedToWindow()
{
 SetFont(be_bold_font);
 SetFontSize(24);
}

void HelloView::Draw(BRect)
{
 MovePenTo(BPoint(10, 30));
 DrawString("Hello, World!");
}

HelloWindow::HelloWindow(BRect frame)
 : BWindow(frame, "Hello", B_TITLED_WINDOW, B_NOT_RESIZABLE)
{
}

bool HelloWindow::QuitRequested()
{
 be_app->PostMessage(B_QUIT_REQUESTED);
 return(TRUE);
}

int main(void)
{
 HelloApplication *myApplication;

 myApplication = new HelloApplication();
 myApplication->Run();

 delete(myApplication);
 return(0);
}

HelloApplication::HelloApplication()
 : BApplication('HLWD')
{
 HelloWindow *aWindow;
 HelloView *aView;
 BRect aRect;

 // set up a rectangle and instantiate a new window
 aRect.Set(100, 80, 260, 120);
 aWindow = new HelloWindow(aRect);

 // set up a rectangle and instantiate a new view
 // view rect should be same size as window rect but with left
top at (0, 0)
 aRect.OffsetTo(B_ORIGIN);
 aView = new HelloView(aRect, "HelloView");

Page%280%of%467

 // add view to window
 aWindow->AddChild(aView);

 // make window visible
 aWindow->Show();
}

If you compile and run this application, with the associated files
supporting the view and window functions, you get a window displaying:
Hello World!

Beyond the obvious use of C++ as the programming language, you
should notice that the main() function, which is the function that by default is
the entry point and also the controlling element in the execution of the rest of
the program, has simply become a container.

The HelloApplication object defines the action of the program, which in
this case involves opening a window and printing a message to the screen.
The other statement in the definition tells the application to quit using the
BMessage system.

The sequence of execution is then as follows:

5.1.! Open a connection to the application server
6.2.! Create the application, window and print the message.
7.3.! Run the application created, thereby actually displaying “Hello world!”.
8.4.! When the window close button is clicked, send the

B_QUIT_REQUESTED message to the applications message queue.
9.4.! The B_QUIT_REQUESTED message is received and we check whether

we should actually quit.
10.5.!The program quits.

You can now see how this differs from a standard application. A
standard application would immediately start executing code and making
calls to the library function printf. Under the BeOS API the application is first
“created” and then executed as a client to the application server. If the user
had not click the close window button, the application HelloApplication
would have continued running indefinitely.

Although the main() was still the top function in the execution stack, in
real terms it was no longer the controlling function within the program. In
fact, the program, per se, actually finished when the Run() command was sent
to the application server. It was only the application which finished executing
on receiving the BMessage.

Threads

Under standard UNIX an application or program that is running is called a
process, under Windows it is called a task, and on the MacOS it is simply an
application. Within all of these OSs you have the ability to multitask.

Page%281%of%467

Multitasking is the ability to run more than one application at a time, and have
each application continue to run in the background while you are using the
foreground application.

The different OSs all handle this with varying degrees of success. UNIX
as an OS was designed to be multiuser, and therefore had to be multitasking.
Both the MacOS and Windows (even NT and 95) approximate multitasking
with varying degrees of success. In all these cases, OSs have grown out of the
previous model and hardware, and the requirement to be backward-
compatible with previous versions of the software and OS.

Threading is the ability to not only multitask with many applications
running at the same time, but to subdivide a single application into a number
of smaller parts. This threading is useful when you have large, complex
programs and you don’t want to introduce complex mechanisms for
simulating the effect of multiple threads in a single application.

The overall impression a user will get from threading is of a much faster,
much more responsive system. Within the BeOS the threading occurs at the
OS level, right from the kernel through the servers and on to the software kits.
It is so extensive and largely automatic that the threading occurs naturally. At
creation time a BApp (an application written using the BeOS API) using
BWindow will automatically have two threads created. One controls the
underlying program in the application server and the other controls the client
functions of the window that is created. The window can then be moved
around the desktop, resized, and so on without affecting the operation of the
program controlling it.

The other advantage of threading over multitasking is that it allows the
OS to switch the threads of an individual application between different
processors. In a single-processor machine this makes no difference to
multitasking, but within a multiprocessing machine you get true symmetric
multiprocessing and therefore a much faster overall system. Using threads on
a true multi-processing machine allows you to run a thread simultaneously
on each processor. Using a four processor machine, and you have 4 threads
executing at the same time.

You can see multiple threads in action just by looking at a process list.
I’ve taken the extract below from my system, and you can see the multiple
Tracker threads, each one related to a single window. Because each window
has it’s own controlling thread, updates occur immediately, instead of waiting
for the next scheduled update of the entire Tracker program. The controlling
process is number 72:
 72 #wt Tracker Status sem 15 2 3 Bpcreate(804)
 73 #wt Deskbar sem 15 4701 3103 Bpcreate(810)
 76 #wt desktop sem 15 1425 1287 Bpcreate(853)
 156 #wt Disks sem 15 633 511 Bpcreate(103402)
 158 #wt MCBe sem 15 2226 2009 Bpcreate(103424)

Page%282%of%467

 161 #wt develop sem 15 587 495 Bpcreate(103454)
 164 #wt headers sem 15 314 210 Bpcreate(103484)
 167 #wt posix sem 15 1050 814 Bpcreate(103511)

Software Kits

Each interface to the server is accessed by a C++ software kit. The kits define
the object classes and therefore the data and functions required to access the
various servers. Each kit is targeted for supporting a different server, or a
different base of functionality. For example, the application kit contains
everything required to communicate with the application server, whilst the
device kit controls access to and communication with physical devices. It is
difficult to make a comparison to a UNIX-style system, as a combination of
the system and C libraries go to make up the functions that allow you to
program and control the OS.

Application Kit

The application kit describes the core application objects. These include the
base BApplication object, which is the building block for all applications, and
the BRoster object, which keeps track of the running applications. The
BMessage object is used to pass objects and data between threads, and the
threads are controlled and managed by the BLooper objects. The clipboard
functionality is supported through the BClipboard object class.

The application kit is the most important of all the software kits as it
defines the set of objects which allow applications to be built. Without the
application kit, the notion of BApplications would not exist.

Device Kit

In order to write device drivers you need to use the device kit to extend the
functionality of the kernel. This includes hardware drivers, display drivers,
and other hardware-based interfaces. The device kit also provides support for
the standard devices of the OS, which vary depending on the machine you are
working on, but include serial devices (BSerial).

Device drivers can also be used to define elements which are not
physical devices, but that you want to access in a set way. For example, Osma
Ahvenlampi has developed the /dev/random device which returns a random
number based on the hardware interrupts in the kernel.

Game Kit

The game kit provides a simple interface to support full-screen rather than
window-based graphics, an essential level of support for fast full-screen
animation.

Page%283%of%467

3D Kit

Using the 3D kit it is possible to construct and control fully rendered 3-D
objects in real time. The 3D kit also includes support for the industry-standard
OpenGL libraries.

Interface Kit

The interface kit provides the objects that support the windows (BWindow)
and container objects for laying out information within windows (BView).
The supported objects include the standard check boxes (BCheckBox) and text
boxes (BTextView). For those who are used to working with X, the interface
kit is defines the widgets used top display information within a window. For
example, the Motif window manager specifies the
xmBulletinBoardWidgetClass widget, which is roughly equivalent to the
BView object in the interface kit. It is the interface kit which also supports the
graphic and drawing objects. The whole kit is generally used with the
application kit to provide the required objects to the whole of the application.

Kernel Kit

Unlike the other kits, the kernel kit is C-based instead of C++-based. It
provides low-level access to the kernel functions. This allows a programmer
to create and manage multiple threads. Ports are the in/out box of the
message world and allow different threads to pass messages to each other.
Semaphores can be used to control the execution time and sequence of
threads and other pieces of code. Areas are roughly equivalent to the shared
memory system available under most UNIX flavors. They allow large areas of
memory to be allocated and then shared between threads. The same blocks of
memory can also be forced to remain in the system memory of the machine,
rather than being shunted to the disk as with normal virtual memory.

Finally, the last major part of the kernel interface is the image system. An
image is the code which is produced by the compiler and can be an entire
application, a dynamically loadable library, or an add-on image. This last item
is the mechanism used by various programs within the OS to support the
notion of add-ons to their functionality. The kernel kit also provides a number
of utility functions such as time access, system information, and datatype
operations.

Media Kit

The media kit supports the sound and video abilities of the OS. At its base
level, the media kit provides mechanisms for the generation, monitoring, and
manipulation of media-type information. Much like technologies such as
MPEG and Quicktime, the media kit also supports synchronization between

Page%284%of%467

different media formats, which is useful for broadcast and video editing. The
synchronizing mechanism is built into the media kit; all you need to do is
select the data streams you want to synchronize, and the media server does
the rest of the work.

The features of the media kit are extended slightly through the use of
subscriber technology. The notion of subscription to a media stream means that
audio or video data can be monitored and manipulated in real time between
the input and output of the data. For example, you could produce an
electronic graphic equalizer that subscribes to an audio stream and modifies
the signal before outputting it to the computer’s speaker. This is a fairly
complex example; at its simplest level, subscription allows audio and video
data to be read in and written direct to disk, and vice versa. This allows the
BeOS to support a very fast I/O system for audio and video information,
which can be seen very readily when you view the optional videos. Better
still, try viewing lots of the videos supplied on the CD simultaneously.

Midi Kit

MIDI (Musical Instrument Digital Interface) is used by musicians to control,
communicate, and sequence musical information. For the most part, when
involved with computers MIDI is used to control external instruments by a
sequencing program. A sample BeOS MIDI application is included with the
OS. The midi kit will read, write to, and control musical instruments using the
MIDI standards and MIDI interfaces connected to the BeBox. On the Mac, the
MIDI kit uses the serial ports, assuming they are connected to suitable MIDI
devices, and on the Intel version the MIDI kit interfaces to the MIDI support
on a sound card, or to none if no sound card is installed. In the later versions
of the BeOS the MIDI kit can also be used to interface to a software based
MIDI synthesizer.

Network Kit

As the name suggests, the network kit provides access by BApps to the
network. Access is currently supported through the use of BSD-style sockets
and TCP/IP. The network kit is also the location for the BeMail library, which
supports Internet-style e-mail messages. From PR onwards Be has developed
an Appletalk library for compatibility with Apple computers. At present this
only supports interfacing to Appletalk printers, but longer term this may
provide network access to Appletalk servers.

Storage Kit

Access to directories, files, and the file systems is achieved via the storage kit.
This defines the structures and functions used to access the core components
of the storage system on the BeOS. Using the storage kit it also possible to

Page%285%of%467

expand the functionality and supported file system types. Some of the
functions provided are roughly equivalent to UNIX functions (dirent() and
statfs(), for example).

Support Kit

The lowest levels of the BeOS application system are accessed via the support
kit. Using the object model it is possible to organize and arrange information
using the BList object class, and access the errors and base data types within
the entire object model. In essence, the support kit provides you with access to
the very building blocks (or objects) that go to make up the Be object-based
development environment. In addition, the support kit also provides a syslog-
style system for logging errors (almost identical to the UNIX model), a
StopWatch toolkit, and a system for caching memory, which is useful for large
data throughput applications.

Headers and Libraries

All the headers are stored within the /boot/develop/headers/be directory:
total 620
drwxr-xr-x 1 baron users 2048 Jul 20 09:33 .
drwxr-xr-x 1 baron users 2048 Jul 20 09:33 ..
-r--r--r-- 1 baron users 448 Jun 28 02:13 AppKit.h
-r--r--r-- 1 baron users 509 Jun 28 02:13 Be.h
-rw-rw-rw- 1 baron users 589776 Jun 28 02:59 BeHeaders
-r--r--r-- 1 baron users 313 Jun 28 02:13 BeHeaders.pch++
-r--r--r-- 1 baron users 309 Jun 28 02:13 DeviceKit.h
-r--r--r-- 1 baron users 224 Jun 28 02:13 GameKit.h
-r--r--r-- 1 baron users 1014 Jun 28 02:13 InterfaceKit.h
-r--r--r-- 1 baron users 346 Jun 28 02:13 KernelKit.h
-r--r--r-- 1 baron users 381 Jun 28 02:13 MediaKit.h
-r--r--r-- 1 baron users 399 Jun 28 02:13 MidiKit.h
-r--r--r-- 1 baron users 289 Jun 28 02:13 NetKit.h
-r--r--r-- 1 baron users 638 Jun 28 02:13 StorageKit.h
-r--r--r-- 1 baron users 461 Jun 28 02:13 SupportKit.h
drwxr-xr-x 1 baron users 2048 Jul 20 09:32 add-ons
drwxr-xr-x 1 baron users 2048 Jul 20 09:32 app
drwxr-xr-x 1 baron users 2048 Jul 20 09:32 device
drwxr-xr-x 1 baron users 2048 Jul 20 09:33 drivers
drwxr-xr-x 1 baron users 2048 Jul 20 09:33 game
drwxr-xr-x 1 baron users 2048 Jul 20 09:33 interface
drwxr-xr-x 1 baron users 2048 Jul 20 09:33 kernel
drwxr-xr-x 1 baron users 2048 Jul 20 09:33 mail
drwxr-xr-x 1 baron users 2048 Jul 20 09:33 media
drwxr-xr-x 1 baron users 2048 Jul 20 09:33 midi
drwxr-xr-x 1 baron users 2048 Jul 20 09:33 net
drwxr-xr-x 1 baron users 2048 Jul 20 09:33 nustorage
drwxr-xr-x 1 baron users 2048 Jul 20 09:33 opengl
drwxr-xr-x 1 baron users 2048 Jul 20 09:33 support

Each of the top-level header files contains #include statements to
incorporate the contents of the software kit folders. This enables you to
incorporate the entire software kit with one single #include statement in your
own source.

Page%286%of%467

The libraries are stored within the /boot/beos/system/lib folder and are
split into a number of files, mostly by the software kit or server.

Naming Conventions

The more observant of you will have already spotted a trend in the naming of
objects and functions within the BeOS API. Nearly all objects within the BeOS
API start with the letter “B,” for example, BApplication.

All names start with an uppercase character, and a mixed case is used
throughout the API to help distinguish API code from POSIX code. Within C+
+, object-based functions are attached to their parent objects, and so you can
reuse names throughout a project.

The rules for symbol names are identical to those of the UNIX style (see
below), and there are the additional reserved names of the C++ language to
avoid. These include:

catch inline protected virtual
class new public
delete operator template
friend private this

Interfacing with the POSIX Libraries

If you refer back Figure 16.1, the BeOS API not only sits on top of the servers
and the kernel, it also partly covers the POSIX interface.

C++ is merely a superset of the standard C programming language, and
is backward-compatible with C-style functions and data. In my first example
of a BeOS application I used the printf function to display a message on the
screen. This is actually a C library function, as opposed to a POSIX library
function, but the principles are the same. Any C function can be used within a
C++ application providing it is available in a library. This means you can use
POSIX functions, supplied libraries (such as gdbm), and your own C code to
support the functions and abilities you need.

For hardened C programmers, this is preferable to rewriting code in C+
+, but it loses the advantages of reusable code and expandable objects. Many
people would argue, however, that well-written C code has been reusable for
years and that C++ is just the latest programming fashion, as Java is rapidly
becoming, and as Pascal and BASIC have previously been.

Page%287%of%467

UNIX Style
UNIX-style programs are those run within a Terminal window and are the
type most people would expect to use on a DOS or UNIX machine.

Overview

UNIX-style programs (it is wrong to call these programs POSIX-style, as
POSIX doesn’t define how a program is written, only some of functions that
are used to write it) are much simpler than Be-style programs.

For a start, we can remove all of the additional features that are
supported by the C++ libraries.

Program Structure

With UNIX-style programs, the format and layout is much easier and simpler.
To duplicate the functionality of our BApp program we can use the following
source:
#include <stdio.h>

void main(void)
{
 printf(“Hello World!\n”);
}

When we run this we get, once again:
Hello World!

There’s no textual difference in the result. The real differences for the
user are really aesthetic. The execution sequence starts with the function
main() after the first opening brace, then it runs the library function printf,
and execution stops when it reaches the closing brace. There is no application
which is separate from the program, we don't need to contact the application
server to generate the application, window and other information, but the
message is still displayed to the user.

The main differences in the programming are:

•! Calls to system functions are made straight to the kernel or the
supported libraries; functions are not accessed via the software kits or
the kernel.

•! The execution is direct; there is no communication to the application or
any other servers.

•! We don't have access to the window environment of the BeOS.

Page%288%of%467

On the whole the program is much simpler, but we have also lost a lot of
flexibility, the most significant part of which is the ability to use the graphical
interface.

Under the BeOS, there really isn’t a lot of distinction between the two
styles. A BApplication can use POSIX functions in the same way as a POSIX
program can, and many of the function calls to the core of the operating
system are supported in C as well as C++ via the software kits. However,
there is a difference in the way the program is constructed with the use of
BApplication objects compared to the simple straightforward C style. The
major difference is the interface, where POSIX style programs will use the text
based interface and BApplication applications will use the windows
environment.

Headers and Libraries

Back in Chapter 8, we took a look at the header files and how they affect the
porting process. Now let’s look again at the headers and their role in
programming a UNIX-style application.

First, let’s start by taking a look at the directory contents of /boot/
develop/headers/posix:
total 129
drwxr-xr-x 1 baron users 2048 Jul 20 09:33 .
drwxr-xr-x 1 baron users 2048 Jul 20 09:33 ..
-r--r--r-- 1 baron users 4056 Jun 28 02:13 CPlusLib.h
-r--r--r-- 1 baron users 157 Jun 28 02:13 alloca.h
-r--r--r-- 1 baron users 1281 Jun 28 02:13 ansi_parms.h
-r--r--r-- 1 baron users 737 Jun 28 02:13 assert.h
-r--r--r-- 1 baron users 1211 Jun 28 02:13 be_math.h
-r--r--r-- 1 baron users 532 Jun 28 02:13 bsd_mem.h
-r--r--r-- 1 baron users 3406 Jun 28 02:13 ctype.h
-r--r--r-- 1 baron users 671 Jun 28 02:13 dirent.h
-r--r--r-- 1 baron users 359 Jun 28 02:13 div_t.h
-r--r--r-- 1 baron users 1666 Jun 28 02:13 errno.h
-r--r--r-- 1 baron users 1699 Jun 28 02:13 fcntl.h
-r--r--r-- 1 baron users 4099 Jun 28 02:13 float.h
-r--r--r-- 1 baron users 4762 Jun 28 02:13 getopt.h
-r--r--r-- 1 baron users 458 Jun 28 02:13 grp.h
-r--r--r-- 1 baron users 1031 Jun 28 02:13 limits.be.h
-r--r--r-- 1 baron users 1134 Jun 28 02:13 limits.h
-r--r--r-- 1 baron users 1157 Jun 28 02:13 locale.h
-r--r--r-- 1 baron users 5206 Jun 28 02:13 malloc.h
-r--r--r-- 1 baron users 6256 Jun 28 02:13
malloc_internal.h
-r--r--r-- 1 baron users 2361 Jun 28 02:13 math.be.h
-r--r--r-- 1 baron users 11274 Jun 28 02:13 math.h
-r--r--r-- 1 baron users 133 Jun 28 02:13 memory.h
-r--r--r-- 1 baron users 239 Jun 28 02:13 null.h
-r--r--r-- 1 baron users 3452 Jun 28 02:13 parsedate.h
-r--r--r-- 1 baron users 522 Jun 28 02:13 pwd.h
-r--r--r-- 1 baron users 1534 Jun 28 02:13 setjmp.h
-r--r--r-- 1 baron users 5406 Jun 28 02:13 signal.be.h
-r--r--r-- 1 baron users 940 Jun 28 02:13 signal.h
-r--r--r-- 1 baron users 453 Jun 28 02:13 size_t.h
-r--r--r-- 1 baron users 1130 Jun 28 02:13 stdarg.h
-r--r--r-- 1 baron users 540 Jun 28 02:13 stddef.h

Page%289%of%467

-r--r--r-- 1 baron users 6724 Jun 28 02:13 stdio.h
-r--r--r-- 1 baron users 3074 Jun 28 02:13 stdlib.h
-r--r--r-- 1 baron users 671 Jun 28 02:13 string.be.h
-r--r--r-- 1 baron users 5340 Jun 28 02:13 string.h
drwxr-xr-x 1 baron users 2048 Jul 20 09:33 sys
-r--r--r-- 1 baron users 6623 Jun 28 02:13 termios.h
-r--r--r-- 1 baron users 3181 Jun 28 02:13 time.h
-r--r--r-- 1 baron users 4448 Jun 28 02:13 unistd.h
-r--r--r-- 1 baron users 243 Jun 28 02:13 utime.h
-r--r--r-- 1 baron users 279 Jun 28 02:13 va_list.h
-r--r--r-- 1 baron users 560 Jun 28 02:13 wchar_t.h

The /boot/develop/headers/posix/sys directory contains:
total 21
drwxr-xr-x 1 baron users 2048 Jul 20 09:33 .
drwxr-xr-x 1 baron users 2048 Jul 20 09:33 ..
-r--r--r-- 1 baron users 319 Jun 28 02:13 dir.h
-r--r--r-- 1 baron users 289 Jun 28 02:13 dirent.h
-r--r--r-- 1 baron users 92 Jun 28 02:13 fcntl.h
-r--r--r-- 1 baron users 68 Jun 28 02:13 file.h
-r--r--r-- 1 baron users 129 Jun 28 02:13 ioctl.h
-r--r--r-- 1 baron users 161 Jun 28 02:13 param.h
-r--r--r-- 1 baron users 130 Jun 28 02:13 socket.h
-r--r--r-- 1 baron users 3480 Jun 28 02:13 stat.h
-r--r--r-- 1 baron users 358 Jun 28 02:13 sysmacros.h
-r--r--r-- 1 baron users 793 Jun 28 02:13 time.h
-r--r--r-- 1 baron users 502 Jun 28 02:13 times.h
-r--r--r-- 1 baron users 959 Jun 28 02:13 types.h
-r--r--r-- 1 baron users 300 Jun 28 02:13 utsname.h
-r--r--r-- 1 baron users 649 Jun 28 02:13 wait.h

We can actually separate these listings into two groups. The UNIX style
of programming uses C, which has its own set of headers. Any OS will also
have its own collection of headers which define the functions used to access
the system. We already know that the BeOS uses the POSIX standard,
something we’ll look at in the next chapter.

The standard C library consists of the following header files:

assert.h! Diagnostics
ctype.h! Character class tests
float.h!Floating point limits
limits.h! Integer and string limits
math.h! Mathematical functions
setjmp.h! Non-local jumps
signal.h! Signals
stdarg.h! Variable argument lists
stdio.h! Input and output
stdlib.h! Utility functions
string.h! String functions
time.h!Date and time functions
The remainder of the header files are therefore Be- and/or POSIX-specific.

Under UNIX, there is essentially no such thing as a standard library, but
the file libc.a contains all the C functions, with additional libraries supporting
additional OS or utility functions. Under the BeOS, the standard C library

Page%290%of%467

does not exist; it has been split into a number of files spread across the OS. See
Chapter 8 for more information.

Naming Conventions

Defined within C and POSIX are a number of naming conventions. Within
this superset there are a number of subset conventions relevant to each
element of the program. The basic difference between writing a BeOS API
application and a UNIX style application when it comes to naming
conventions is the use of upper- and lowercase.

Traditionally all functions, keywords, and variables are referenced
within C as lowercase names. Uppercase is used very rarely within normal
programs, except for macro definitions, but is sometimes used to indicate a
difference between two major sets of program functions. For example, X and
window managers such as Motif use titlecase so that you can distinguish the
window functions and variables from the rest of the application.

First in the lists of reserved words are the defined keywords as used
within the standard C language. These are:

auto! double! int! struct
break! else! long! switch
case! enum! register! typedef
char! extern! return! union
const! float! short! unsigned
continue! for! signed! void
default! goto! sizeof! volatile
do! if! static! while

There are also a number of standard functions defined within the C
language, using these as names for your own variables and functions should
be avoided. All are defined within the C headers listed in the previous section:

abort fprintf longjmp strcat
abs fputc malloc strchr
acos fputs mblen strcoll
asctime fread mbstowcs strcpy
asin free mbtowc strcspn
atan freopen memchr strerror
atan2 frexp memcmp strftime
atexit fscanf memcpy strlen
atof fsetpos memmove strncat
atoi ftell memset strncmp
atol fwrite mktime strncpy
bsearch getc modf strpbrk

Page%291%of%467

ceil getchar perror strrchr
calloc getenv printf strspn
clearerr gets putc strstr
clock gmtime putchar strtod
cos isalnum puts strtok
cosh isalpha qsort strtol
ctime iscntrl raise strtoul
difftime isdigit rand strxfrm
div isgraph realloc system
exit islower remove tan
exp isprint rename tanh
fabs ispunct rewind time
fclose isspace scanf tmpfile
feof isupper setbuf tmpnam
ferror isxdigit setlocale tolower
fflush labs setvbuf toupper
fgetc ldexp sin ungetc
fgetpos ldiv sprintf vfprintf
fgets localeconv sqrt vprintf
floor localtime srand vsprintf
fmod log strcmp wcstombs
fopen log10 sscanf wctomb

Next are the naming conventions used within the POSIX standard. There
is some crossover between the C library functions and those supported by
POSIX, and also some omissions because of the lack of support of these
functions by the BeOS:

access fdopen mkfifo sigsetjmp
alarm fork open sigsuspend
asctime fpathconf opendir sleep
cfgetispeed fstat pathconf stat
cfgetospeed getcwd pause sysconf
cfsetispeed getegid pipe tcdrain
cfsetospeed getenv read tcflush
chdir geteuid readdir tcgetattr
chmod getgid rename tcgetpgrp
chown getgrgid rewinddir tcsendbreak
close getgrnam rmdir tcsetattr
closedir getgroups setgid tcsetpgrp
creat getlogin setjmp time
ctermid getpgrp setlocale times
cuserid getpid setpgid ttyname
dup getppid setuid tzset
dup2 getpwnam sigaction umask

Page%292%of%467

execl getpwuid sigaddset uname
execle getuid sigdelset unlink
execlp isatty sigemptyset utime
execv kill sigfillset waitpid
execve link sigismember write
execvp longjmp siglongjmp
_exit lseek sigpending
fcntl mkdir sigprocmask

In addition to these names there are some conventions that can be used,
but are best avoided if at all possible. Here are some good rules to follow:

•! Avoid naming functions with a leading underscore (_). Many of the C
internal support functions use one or two leading underscores.

•! Only use uppercase names for macro definitions, and try not to use
mixed-case names within UNIX/POSIX-style programs.

•! Don’t use any names beginning with “sa_” or “SIG”, which are related to
the signal functions.

•! Don’t use symbols starting “l_”, “F_”, “O_”, or “S_”, all of which are
used within the fcntl system.

•! Symbols starting with “E” should also be avoided as they are used to
define errors.

This is not an exhaustive list, and you should refer to a C manual such as The
C Programming Language by Kernighan and Ritchie.

The vagaries of programming on the BeOS can make programming, and more
specifically porting, interesting. Because the BeOS supports the two different
styles you have to take these items into consideration when porting software.
For the purposes of the porting you are only concerned with two elements:
the supported headers and functions, and the reserved names used
throughout the OS.

The BeOS API provides a different of programming to that which you
are used to. However, the POSIX style interface provides a much more
familiar environment, and for porting purposes is a much needed element of
the operating system.

Page%293%of%467

Chapter 17. - POSIX

Page%294%of%467

We’ve covered the relevance of
POSIX in the makeup of the BeOS a
number of times. While a large
majority of the software written for
the BeOS will use the BeOS C++/
object-based environment, a
significant proportion is expected to
be made up of UNIX-style tools and
utilities.

In order to make this possible, Be needed to build a UNIX-like interface
to the complex BeOS system, and that presented a problem. There is no such
thing a single UNIX OS. Most commercial UNIX operating systems, including
HP-UX, Solaris, and SCO, are made up of elements from the two main schools
of UNIX software, BSD and AT&T (System V). Even different versions from
the same vendor are not tied to one particular variety. If any UNIX limited
itself to only the ‘standard’ functions, we wouldn’t have access to the tools
and utilities most people consider to be the standard, such as NIS, DNS, and
NFS at a network level, and sockets and streams at an OS level.

Rather than trying to adhere to a specific UNIX standard, Be decided to
reverse the position and instead follow the standard that UNIX vendors, and
vendors of other OS, use as their guide to developing their OS. This standard
is POSIX, and we will take a brief look at the effect of POSIX on UNIX and
how the POSIX support has been implemented on the BeOS, and how this
pertains to the porting process.

What Is POSIX?
POSIX is a set of standards that apply to OSs, utilities, and programming
languages. The standards are wide-ranging and cover everything from
“standard” function calls and what they should return, to the capabilities and
features of the OS on which those functions rely. In relation to the BeOS, the
standard we are most interested in is known as POSIX 1003.1 and defines the
interface between the applications and the OS (we’ll look at this abstraction
layer later). The standards were set by the IEEE and have been adopted by a

Page%295%of%467

number of other organizations including the American National Standards
Institute (ANSI) and the International Standards Organization (ISO).

There are many POSIX standards other than POSIX 1003.1 (POSIX.1),
including real-time extensions (POSIX 1003.1b), threads (POSIX 1003.1c), and
a shell command language based around the System V shell with features
from the C and Korn shells (POSIX 1003.2). This last standard not only
specifies the shell and its abilities, but also the commands that the shell
should be able to find (POSIX 1003.2a). This specification was intended to
make shell scripts more portable, and it’s understandable why the additional
commands were added to the specification.

The POSIX standard is also endorsed and supported by a number of
organizations, including the leading UNIX vendors such as Sun
Microsystems, Microsoft, IBM, Digital, and Hewlett-Packard, the less well-
known UNIX and mainframe system developers like Bull and Data General,
and organizations such as the Free Software Foundation. Endorsement by
such companies, as well as acceptance by both ANSI and ISO, virtually
guarantees the use and support of the standard by all information systems
companies, and this provides us with a suitable base to work from when
developing new software and porting existing software.

As I have already stated, the POSIX.1 standard defines the interaction
between applications and the OS, although this communication is strictly
organized into the two sides of the requirements. An application needs to
make a call to the OS and uses a specific function; the OS performs the
functions and returns a result code. The POSIX.1 standard defines the
function name used by the calling application and the arguments to the
function and what they represent. The expected response from the OS,
including it’s format and range of values is also defined. How the OS
implements the function call is not defined, because it doesn’t need to be. In
fact, the standard deliberately avoids specifying the OS functions; only
functions used by typical applications are included. You can see how the
different parts interact in Figure 17.1.

Page%296%of%467

Figure 17.1
POSIX interaction

While POSIX has its history in UNIX, this abstraction of the function
definition allows the POSIX standard to be implemented on a variety of
machines and OSs. For example, the function call chdir() changes the
directory specified in the first and only argument. The implementation level
of this within the OS could be within the libraries or within the OS itself and
could rely internally on hooks, traps, or events which force the directory
change. As programmers and porters, how this function is implemented
doesn’t concern us. The function should work as described in the POSIX.1
standard, and therefore allow us to compile and use the program on a number
of POSIX-compliant OSs.
int chdir(const char *path);

The core of the POSIX.1 standard is aimed at the portability of
applications, rather than abilities or functionality. A number of areas were
identified that include processes, execution environment, files/directories,
input/output, and terminal communication. Extensions to the POSIX.1
standard define some of the additional support standards required for using
the functions, and for the use of the standard within a programming
environment. This helps to define the format of tar and cpio files at a utility
level, and the requirement for the use of either traditional or ANSI C as the
programming language of choice.

Page%297%of%467

POSIX and UNIX
The features, functions, and specifications of the POSIX.1 standard have come
about from an amalgamation of functionality from both System V UNIX
(originally developed by AT&T) and BSD UNIX (developed at the University
of California, Berkeley). Although both flavors of UNIX are based around the
same ideals and features, they have grown up with very different sets of
functions and system calls. This is what causes the bulk of the difficulties in
porting between OSs.

Unlike UNIX, POSIX is not an operating system. The definition of a
standard set of functions and functionality has caused some problems when it
comes to porting. Because POSIX uses functions from both varieties of UNIX
porting a UNIX application that has been developed with either BSD or SYSV
in mind to a POSIX-based OS can be difficult. However, if the package uses
POSIX compliant functions, the porting is relatively easy.

If we have a look at a simple example of a function you will see that the
differences are minor but also significant. The function localtime() converts a
timer value to the local time format. Within BSD, the function prototype was
contained in the header file sys/time.h, and in SYSV, the header file time.h.
Within POSIX the full definition is
#include <time.h>
struct tm *localtime(const time_t *timer)

This definition matches the full SYSV specification, including the use of the
time_t datatype; BSD on the other hand uses a long.

This helps to demonstrate two of the major differences between POSIX
and other flavors of UNIX when it comes to configuration and porting. The
first is the use of standard directories and headers, a problem which affects
every program you will ever port. The second is the use of standard datatype
names; in this example it was time_t, but other functions and function sets use
similar datatypes. This hides the underlying type of the data from the user,
while providing the level of compatibility required when programming
multiple platforms.

A more complex example of the differences can be found in the ioctl
command, which has been implemented in a variety of different, and often
incompatible, ways on all the UNIX flavors. Under POSIX the ioctl command,
which was generally used to control terminals, has been replaced by a
number of functions, all beginning with the prefix tc. For example, the
command
ioctl(fildes, TIOCGPGRP, ...)

has been replaced by the function
tcgetpgrp(fildes)

Page%298%of%467

All of these differences add up to make your life harder or easier,
depending on the OS you are porting from or the OS that the package relies
on. In general, I’ve found that SYSV or a SYSV-based flavor of UNIX is the
best place to start when porting POSIX applications. This includes Solaris,
SCO, and AIX and excludes SunOS, Linux, and, of course, FreeBSD or
NetBSD.

The BeOS and POSIX
With the latest public release of the BeOS, the attitude toward the POSIX
interface has changed. Up to DR8 of the BeOS, the importance of POSIX was
played down and the support was built as a compatible library, rather than
forming an integral part of the OS. However, the wealth of free software out
there for the UNIX platform has caused a marked change in focus.

The new POSIX libraries were written by the Be team with a copy of
POSIX Programmers Guide by Donald Lewine (O’Reilly) in front of them. This
difference means that the POSIX compatibility has been built in from the start,
and the functions are no longer a user library, but instead a proper POSIX
support layer with calls direct to the OS. For example, in the past one of the
major frustrations was the lack of support for the fork() call, which never
worked properly under DR8. It’s now a proper system call.

Despite all the work that has been done, though, the BeOS support for
POSIX is not absolute, and there are many elements missing from the full
POSIX specification. Rather than be negative about the situation, let’s look
briefly at what parts of the specification the BeOS does support:

•! Signals Full signal support, including SIGHUP and SIGWINCH. There
is also support for interrupts and alarms within the signal system.

•! Terminals Support for the termios system, including control characters.

•! Variable arguments Using the stdarg.h header file.

•! File system control chmod, chown, and so on.

•! File control Using the standard fcntl and other utilities. File locking
however is not supported by fcntl.

•! Directory entries opendir and related functions from the dirent set.
•! Non-local jumps Both longjmp and setjmp, with support for signal-

based jumps.

This is not an exhaustive list, and we’ll cover the specifics of each set of
functions in the coming chapters.

Page%299%of%467

Effects on Porting
The POSIX standard is all about portability of software at a source code level.
Most authors already support the POSIX standard as an option, and this helps
to make the process significantly easier. There are two ways in which you can
use this support to your advantage.

The first method, and the most significant of the two is the direct
support for the POSIX standard. Most packages provide a level of POSIX
support in a number of different ways. emacs, for example, is not too
concerned about POSIX except when it comes to signals. This is because the
emacs distribution includes most of the required support functions that make
up the POSIX library within the sysdep.c file. The second method affects those
packages which are less specific about their support. In these cases you may
have to use a POSIX-compatible OS to start the process off.

On the whole, POSIX support should make the process easier if the
package supports the POSIX standard. If the package doesn’t support POSIX
directly, then you can use the UNIX equivalents of the commands to produce
a POSIX version. For example, we’ve already seen how ioctl is not a POSIX
function (although, rather confusingly, ioctl is still supported by the BeOS),
but it does have POSIX equivalents of all the features.

How you implement such a change is entirely up to you, but if you’re
planning on supplying the change back to the author you should use the
#ifdef technique described in Chapter 8 of this book.
•

In the remaining chapters we’ll look at the specific areas of the POSIX
standard as implemented within the BeOS. We will also take a look at the
common UNIX functions and how you can emulate them using POSIX or by
writing the code yourself.

Page%300%of%467

Chapter 18. - Kernel Support

Page%301%of%467

The core of most programs revolves
around a number of functions that
directly access the kernel, or a layer
of kernel functionality. Without
many of these basic functions, most
applications simply wouldn’t be
able to work, even if you had
managed to replace some of the
functions we discuss in later
chapters.

This chapter covers the core limits and datatypes, memory access,
accessing users and groups, processes, interprocess communication, and then
the core kernel functions for spawning new jobs. Later in this chapter, I’ve
included information on a number of the utility support functions, including
non-local jumps and string handling. Although not strictly kernel related,
they do affect the core routines of many applications.

Datatypes
The Metrowerks compiler specifies a number of a base datatypes based on the
Standard C definitions. Additionally it defines some datatypes able to cope
with larger numbers. The header limits.h defines the minimum and
maximum values. The types, their byte sizes and minimum/maximum values
are:

Table 18.1

BeOS Datatypes and ranges
Type Size Minimum Maximum
short 2 bytes -32766 32767
unsigned
short

2 bytes 0 65535

int 4 bytes -2147483646 2147483647
long 4 bytes -2147483646 2147483647

Page%302%of%467

unsigned
long

4 bytes 0 4294967295

long long 8 bytes -9223372036854775806 9223372036854775807
unsigned
long long

8 bytes 0 18446744073709551615

float 4 bytes 1.17549e-38 3.40282e+38
double 8 bytes 2.22507e-308 1.79769e+308
long double 8 bytes 2.22507e-308 1.79769e+308
char 1 byte -126 127
unsigned
char

1 byte 0 255

As you can see, the BeOS is all set for 64-bit processors, already being
able to handle huge numbers.

Note: Some operating systems and C compilers support a
double double this is the same as a long double.
When porting or writing software to be cross-platform compatible right

from the OS up, a number of types are defined in the header files. These
datatype macros can be used both for building the kernel and for writing
applications, and so regardless of the origin of a package, when it is
recompiled the underlying datatypes will remain the same and no type
casting or conversion will be necessary.

A number of standard datatype macros are defined using typedef and
the BeOS supports a subset of these, which are defined as follows:

Table 18.2

BeOS datatype macros
Name BeOS type Description
caddr_t char * Core address value
cc_t unsigned char Control character
clock_t long Clock tick
cnt_t int Count type
daddr_t int Disk address
dev_t long Device number
fpos_t long long File position
gid_t unsigned int Group ID
ino_t long long Inode number
mode_t unsigned int File permissions
nlink_t int Link count
off_t long long File offset
pid_t long Process ID

Page%303%of%467

ptrdiff_t long Difference between two pointers
sigset_t long Signal set
size_t unsigned long Memory/variable size
speed_t unsigned char Line speed/baud rate
ssize_t long Byte count or error indication
tcflag_t unsigned long Terminal modes
time_t unsigned long Time of day in seconds
uid_t unsigned int User ID
umode_t unsigned int File mode
wchar_t char Wide character type

These macros are used throughout the headers and function definitions
as a standard way of specifying the necessary datatypes. The above list
represents an almost complete subset of the full POSIX standard. Wherever
possible you should use these macros, and not the datatypes shown. This will
avoid problems when the package is ported to a different platform.

Resource Limits
All computers and OS have limits — the figure or range above which a
variable can not exceed. These affect the operation of a program or
application by restricting the range of the variables they need to use. Resource
limits also stop applications for overusing the machine or exceeding practical
limits on the machines capability.

Accessing the resource limit values is important to many programs so
they can limit themselves without affecting the OS. There are two ways of
getting hold of this information, using the macros supplied in the headers, or
using a function to return the limits for the current OS.

Default Values

There are many limits spread across the header file structure used throughout
the OS. Some of them, as we will see, are available not only at the time of
compilation but also during execution using the sysconf command.

The following limits are specified within the POSIX standards and are
defined when you include the limits.h. All these limits can be preceded by
POSIX; for example, ARG_MAX becomes _POSIX_ARG_MAX:

Table 18.3

POSIX and BeOS limits
Macro Value Notes

Page%304%of%467

ARG_MAX 131024 Maximum size for the arguments and
environment to an exec call.

CHILD_MAX 666 Maximum number of processes per real user ID.
This is considerably higher than in most
implementations because the BeOS is not yet
multiuser in the true sense.

LINK_MAX 1 Maximum number of hard links to a single file.
MAX_CANON 255 Maximum bytes in a line for canonical

processing.
MAX_INPUT 255 Maximum number of bytes in the character

input buffer.
NAME_MAX 256 Maximum length of a file name.
NGROUPS_MA
X

32 Maximum number of groups a single user can
be a member of.

OPEN_MAX 128 Maximum number of files open by one process.
PATH_MAX 1024 Maximum length of a path name.
PIPE_MAX 512 Maximum number of bytes written to a pipe in

a single write command.
SSIZE_MAX 32767 Maximum value of ssize_t.
TZNAME_MAX 32 Maximum number of bytes in a time zone

name.
SYMLINKS_MA
X

16 Maximum number of links to be followed. (This
is not a POSIX macro, there is no POSIX
definition.)

Using sysconf

The sysconf function allows you to obtain some of the system limits from
within an application at runtime, rather than using the predefined macros,
which only define the values at compilation time. The synopsis of the
command is
#include <unistd.h>
long sysconf(int name);

The returned value is the limit you have requested. The BeOS defines the
following values for name:

Table 18.4

Limits available when using sysconf
Macro sysconf Name Description
_POSIX_ARG_MAX _SC_ARG_MAX The maximum length of

arguments to the exec() call.

Page%305%of%467

_POSIX_CHILD_MAX _SC_CHILD_MAX The number of simultaneous
threads.

CLK_TCK _SC_CLK_TCK The number of clock ticks per
second.

_POSIX_JOB_CONTROL _SC_JOB_CONTRO
L

Job control functions are
supported.

_POSIX_NGROUPS_MA
X

_SC_NGROUPS_M
AX

Maximum number of
simultaneous group IDs per
user.

_POSIX_OPEN_MAX _SC_OPEN_MAX Maximum number of files
open by one thread
simultaneously.

_POSIX_SAVED_IDS _SC_SAVED_IDS Indicates that each thread has
a saved set-user-ID and a
saved set-group-ID.

STREAM_MAX _SC_STREAM_MAXMaximum number of streams
available to one thread at one
time.

_POSIX_TZNAME_MAX _SC_TZNAME_MA
X

Maximum number of bytes in
a time zone name.

_POSIX_VERSION _SC_VERSION Shows the year (first four
digits) and month (last two
digits) that the POSIX
standard used was approved.

For example, the code fragment below would print the maximum
number of simultaneous streams available to a thread:
printf(“%ld\n”,sysconf(_SC_STREAM_MAX));

setrlimit and getrlimit

getrlimit and setrlimit allow you to set system-based resource limits on the
current process. It is not possible to control these limits within the BeOS and
so neither command exists. The limits that are defined are specified in the
limits.h file, which in turn includes the limits.be.h header file. The synopsis
for the two commands is:
#include <sys/time.h>
#include <sys/limits.h>
struct rlimit {
 int rlim_cur; /* current (soft) limit */
 int rlim_max; /* hard limit */
};
int getrlimit(int resource, struct rlimit *rlp);
int setrlimit(int resource, struct rlimit *rlp);

Each function works by passing an rlimit structure to the function. The
getrlimit function returns this information for the limit specified in the

Page%306%of%467

resource argument, and the setrlimit function attempts to set a new current
value. The full list of limits that should be available using these functions is
shown in table 18.5.

Table 18.5

Limits available with getrlimit/setrlimit
Resource BeOS Limit Description
RLIMIT_CORE Unknown The maximum size of a core image file, in

bytes
RLIMIT_CPU Unknown The maximum amount of Cpu time that a

process may consume
RLIMIT_DATA Unknown The maximum size that the data segment

of an application can be
RLIMIT_FSIZE Unknown The largest size of a file
RLIMIT_MEMLOC
K

Unknown The largest amount of memory that a
process can lock into physcial memory

RLIMIT_NOFILE 128 The maximum number of files a process
can have open at any one time

RLIMIT_NPROC Unknown The maximum number of processes that a
single user can have running at the same
time.

RLIMIT_RSS Unknown The maximum size that the resident set of
a process (physical memory) can consume.

RLIMIT_STACK 262144 The maximum size of the stack segment of
a process, in bytes.

Memory Handling
There are two ways of allocating specific areas of memory. One is to use the
stack space, which is used by all applications to store the values of local
variables, arguments to functions, and the callbacks to previously called
functions. There is a limit to stack space, and so using it for large memory
allocation does not work.

The other method is to use dynamic memory allocation, which allocates
blocks of memory in the heap, an almost unlimited supply of memory
available to all applications. The limit itself is restricted only by the maximum
memory size plus the swap space.

There are two basic sets of commands. The alloca function takes memory
from the stack space. The malloc, calloc and realloc functions take memory
from the heap. The free function releases heap memory allocated using one of
the malloc family of functions.

Page%307%of%467

alloca

The alloca function allocates space from the stack during runtime. It’s
designed so the space will be reclaimed when the calling function or the entire
program exits; there is no other way to free the memory once allocated:
#include <alloca.h>
void *alloca(size_t size);

alloca returns a pointer to the memory area if successful, or NULL if the
allocation failed. Within the BeOS, alloca is a builtin function with the name
__alloca. To use it, you must include the alloca.h header file, which uses a
macro definition to point alloca references to the internal version.

Most GNU tools come with a version of the alloca function supplied
within alloca.c. This version was originally designed to overcome a
performance problem in the emacs package, but has now been extended and
expanded to be supported on a number of platforms and is used across the
entire GNU package set. I advise you to use the BeOS-specific version; it is
more reliable and less prone to errors than the GNU version because of the
specialties built into the BeOS.

Stack space is finite on the BeOS, currently set to 256K. The GNU alloca
is not subject to this limit, but it is good practice to check the size being
allocated by alloca if the program drops into the debugger with a “data access
exception” error. In my experience, alloca is unreliable on the BeOS,
particularly when allocating memory close to or beyond the stack size.
Instead of returning NULL the allocation will cause a drop into the debugger.
If possible, and if you are willing to accept the performance decrease, I would
replace alloca with malloc but remember to incorporate the necessary free
statements to fee up memory after use.

malloc, calloc, and realloc

These three functions allocate or reallocate memory. They are slower than
alloca because they take memory from the heap, rather than from the stack.
This means that the functions must find a suitable “blank” space, and then
keep a record of the free blocks in memory that are available to be used, hence
the performance degradation. On the other hand, these functions can allocate
almost unlimited amounts of memory to be used by an application.

The malloc function is used identically to alloca to allocate a block of
space:
#include <stdlib.h>
void *malloc(size_t size);

Page%308%of%467

A pointer to the allocated memory is returned, or NULL if malloc was unable
to find a suitable block for allocation. The contents of the memory space are
not zeroed, and therefore the contents are completely random. If you need to
zero the memory, either use calloc or use memset on the returned block to
zero the contents.

The calloc function is identical to the malloc function, except that the
memory is set to zero on allocation. You also have the ability to specify the
size of the elements and the number of elements to be stored within the
memory block. This doesn’t produce a different type of memory allocation,
the calloc function still allocates a set number of bytes:
#include <stdlib.h>
void *calloc(size_t nmemb, size_t size);

The code fragment below demonstrates the use of malloc to allocate a
zeroed area of memory:
#include <stdio.h>
#include <stdlib.h>

void main(void)
{
 char *myblock;

 myblock=malloc((16*1024*1024));
 if (myblock==NULL)
 {
 printf(“Couldn’t allocate memory block\n”);
 return;
 }
 else
 {
 memset(myblock,0,(16*1024*1024);
 printf(“Allocated 16Mb\n”);
 }
}

The same code in calloc is:
#include <stdio.h>
#include <stdlib.h>

void main(void)
{
 char *myblock;

 myblock=calloc(16,(1024*1024));
 if (myblock==NULL)
 {
 printf(“Couldn’t allocate memory block\n”);
 return;
 }
 else
 printf(“Allocated 16Mb\n”);
}

The realloc function reallocates an area of memory. This can be an
increase or a decrease:
#include <stdlib.h>
void *realloc(void *ptr, size_t size);

Page%309%of%467

The pointer returned is the new location of the memory block, which
may or may not have moved. The ptr is the pointer returned by a previous
call to malloc, calloc, or realloc. If the size requested is larger than the
previous block then the extra memory will not have been initialized. If it is
smaller, the memory block will be truncated (no checks are made to ensure
the memory block is empty). If you specify a pointer that hasn’t been returned
by one of the allocation family of functions, it could have disastrous results.

Most applications use alloca to specify buffer spaces for reading in files
(compilers for example) where speed is essential. The remainder of the block
memory allocation is via one of these functions. If a program uses a lot of
local/global variables of significant size, use malloc and free in place of alloca
to avoid crashes.

free

Once a block has been allocated using malloc, calloc, or realloc it can be freed
using the free command:
#include <stdlib.h>
void free(void *ptr);

The ptr is the pointer to the previous allocation command. No value is
returned, so it is impossible to tell whether the memory has been freed or not
without attempting to access the previous pointer. You can also simulate the
operation of free using realloc with a size value of 0:
realloc(mybuffer, (size_t) 0);

This is considered by most to be bad programming, especially since
there is a special free function available, but some packages use this method.

Note: Using export MALLOC_DEBUG=true in the shell
will provide debugging information for the malloc
function. This may help to isolate problems in memory
allocation if used in combination with the debugger to
trace the faults.

Users and Groups
Although the BeOS is not a multiuser system, the POSIX definition states that
the system must have a concept of users, even if multiple users aren’t
available. This means that an OS supporting the POSIX standard must have
the ability to return a valid user ID. This appears to be a trivial item, but even
simple operations like listing files cause the user and group information to be
shown.

Page%310%of%467

Results from get Functions

The basic get functions retrieve information from the OS about the current
user and group, the effective user and group, and the user’s name:
#include <sys/types.h>
#include <unistd.h>
uid_t getuid(void);
uid_t geteuid(void);
char *getlogin(void);
gid_t getgid(void);
gid_t getegid(void);

The getuid and getgid functions return the user ID and group ID
respectively. In both cases, the BeOS will always return a figure of 0 (zero),
since there is only one user on the system. Traditionally under UNIX, the
superuser, or root, is the only user to have an ID of zero. However, since root
has access to all parts of the OS and this is effectively the level of access you
have to the BeOS, it makes sense to do it this way.

This may, however, cause you a number of problems with programs that
specifically ask to be run by a user other than root. In these cases, the best
solution is to remove the level of protection by commenting the section out
completely, or by using macro definitions to remove it from the code at
compile time.

Considering what we have already found, it is normal to expect that the
getlogin function, which returns the name of the current user, would return
root. Wrong! Let’s try it:
#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>
void main(void)
{
 printf(“%s\n”,getlogin());
}

If we compile and run this program, it returns:
baron

There is some mystery over exactly where this name comes from.
Needless to say, the origin is not important; what is important is that getlogin
didn’t return what we expected. Worse, the source of this information isn’t
where we would expect it to be either. Under UNIX all user information is
stored within the /etc/passwd file. This contains the user name, ID, real
name, and so on. This file does not exist under the BeOS, and so the
information must come from elsewhere.

If you check the environment variables of the shell you will see the
standard variable USER. To check this, either type set, which displays all the
information, or better, type:
$ echo $USER

Page%311%of%467

The name returned by default is baron. If you change this name within
the shell, subsequent calls to the getlogin command will return the name you
specified:
$ cd /boot/develop/headers
$ ls -l
drwxr-xr-x 1 baron users 2048 Jun 8 08:03 be
drwxr-xr-x 1 baron users 6144 May 29 02:08 cpp
drwxr-xr-x 1 baron users 2048 May 29 02:08 gnu
drwxr-xr-x 1 baron users 2048 May 29 02:08 posix
$ export set USER=martinb
$ ls -l
drwxr-xr-x 1 martinb users 2048 Jun 8 08:03 be
drwxr-xr-x 1 martinb users 6144 May 29 02:08 cpp
drwxr-xr-x 1 martinb users 2048 May 29 02:08 gnu
drwxr-xr-x 1 martinb users 2048 May 29 02:08 posix

To make matters even more confusing, this is true only for the current
shell, and then only for commands run within or from that shell or its
descendants. You can change this setting permanently by putting the
command in the file /boot/home/config/boot/UserSetupEnvironment. This
difference in the source of the information could, potentially, be used to
“create” a number of different user names. Of course, all the names would
refer back to the same user ID!

The whole system just succeeds in creating confusion by allowing
different names to be returned in different shells, even though they are all
being run by the same user. However, looking longer term, it is a quick
solution, dirty though it may be, to providing full multiuser support at some
later stage without introducing new commands, while also allowing software
that expects to find these commands to get real data back.

The effective user and group IDs are provided under UNIX to allow
programs, and therefore users, access to information they wouldn’t normally
have access to. A number of core commands use this feature to provide
information to the user. The ps command traditionally needs access to the
kernel and the running processes in order to extract the information required.
This presents a problem, because only root has access to this information
normally.

To get around this, using the owner of a file and a special permission bit,
an executable will run as the owner of the file, and not the user executing it.
For example, a file owned by root with the standard set of execute
permissions will be executed as the current user, bob. With the set user ID bit
set on the same file, the program will have all the privileges of the superuser.
In the former situation, the effective user ID was bob, the executor of the
program. In the latter example, the effective user ID was root. The same
mechanism can also be used on groups, with the group execute bit defining
the execution status.

Page%312%of%467

This is a necessary evil in UNIX to provide basic users with access to
information and abilities they wouldn’t normally have access to. Under the
BeOS, of course, there isn’t any user except root. The effective user ID is
therefore zero, which matches the standard user ID. To demonstrate this, try
compiling the following code:
#include <sys/types.h>
#include <unistd.h>

void main (void)
{
 printf(“UID: %d\n”, getuid());
 printf(“EUID: %d\n”, geteuid());
 printf(“GID: %d\n”, getgid());
 printf(“EGID: %d\n”, getegid());
}

This should report the following:
UID: 0
EUID: 0
GID: 0
EGID: 0

In order to aid the user and group model, and further support the POSIX
standard, the BeOS also supports the functions for obtaining user and group
information straight from the databases:
#include <sys/types.h>
#include <unistd.h>
#include <grp.h>
int getgroups(size_t size, gid_t list[]);
struct group *getgrgid(gid_t gid);
struct group *getgrnam(const char *name);
struct passwd *getpwuid(uid_t uid);
struct passwd *getpwnam(const char *name);

The getgroups function places the list of group IDs of groups which the
current user is a member of into the array specified. With a size of zero, the
function returns the number of groups the current user is a member of, and
therefore the number to be specified in the next call to the function. In the
current release, this function always returns zero.

This paves the way for the remainder of the functions, all of which
would return a similarly sparse response in the absence of any real user or
group information. If they existed. Although the definitions appear in the
header files, the functions themselves do not appear in the standard BeOS
libraries. If the functions return invalid values, it may be necessary to
comment out the functions and replace the values with fixed entries.

Results of set Functions

If we return to our earlier set user ID example, it would be useful to set a
specific user or group ID during execution. The commands for this are setuid
and setgid:

Page%313%of%467

#include <sys/types.h>
#include <unistd.h>
int setuid(uid_t uid);
int setgid(gid_t gid);

Both commands return 0 (zero) on success, and -1 on failure. In both
cases, the BeOS returns a zero, regardless of the user or group ID specified.

Processes
Aside from the users and groups under which an application is executed,
processes can also be collected into process groups. These are different from
the execution groups, and allow you to group collaborating processes
together. This is especially useful when running a program which spawns a
number of children. They should all be members of the same process group,
and therefore easy to identify and later kill when you no longer need them.

Process Groups

The following functions allow you to create new process groups and add
processes:
#include <sys/types.h>
#include <unistd.h>
pid_t getpgrp(void);
int setpgid(pid_t pid, pid_t pgid);
pid_t setsid(void);

The setpgid function adds the process specified by the pid argument to
the group specified by the pgid argument. The function returns a 0 on success
and -1 on failure. The error number is returned in errno.

If the pid is 0, it will add the current application to the specified process
group. The BeOS supports the System V ability to also specify pgid as 0,
which automatically creates a new group and adds the current application to
the group. This is identical to the setsid function.

setsid creates a new process group. The calling application is the group
leader and is automatically added to the new group. You can find out which
group the calling process is a member of by using the getpgrp function.

The setpgrp function has been implemented differently under BSD and
System V. Under BSD, it has now been replaced by the setpgid function. The
function definitions are identical:
int setpgrp(pid_t pid, pid_t pgrp);

For System V, the setpgrp function used to support the functionality now
provided by setsid; again, the definitions are basically identical:
int setpgrp(void);

Page%314%of%467

The most common use of this function was to create a new process
group before forking off a number of subprocesses. The functions are
completely interchangeable in both cases, and should you need to use
setpgrp, use a macro to substitute the function. The example below comes
from the source for apache, which tries to identify the level of support
provided:
#ifndef NO_SETSID
 if ((pgrp=setsid()) == -1) {
 fprintf(stderr,”httpd: setsid failed\n”);
 perror(“setsid”);
 exit(1);
 }
#else
…

Process IDs

A process ID is the number given to each running process on the machine. It
is sometimes useful to obtain this information within an application for
control purposes. For example, a server process may record it’s parent ID in a
file that can then be referenced by other packages. Many web servers use this
method to make shutting them down easier. You can gain information about
the current process IDs using a small number of utility functions. They are all
defined by the POSIX standard and so should be fairly portable among OSs.
#include <sys/types.h>
#include <unistd.h>
pid_t getppid(void);
pid_t getpid(void);

The getppid function returns the parent process ID of the calling
application. The parent process is the program that called the application. For
example, when you run ls the parent of that application is the shell you are
using. This information is reported by the ps program as the thread ID.

The getpid function returns the current process ID of the application. In
an example of both functions, the following program reports the parent
process and process ID:
#include <sys/types.h>
#include <unistd.h>

void main(void)
{
 printf(“PPID:%d\n”,getppid());
 printf(“PID:%d\n”,getpid());
}

Signals
Signals provide a method for interrupting the normal course of program
execution. They are very difficult to port because so many different

Page%315%of%467

implementations have evolved over the years. This doesn’t extend only to
implementations on different platforms. Even between versions of the same
OS, the implementation has changed enough that signal code has to be
rewritten. For the porter, this creates no end of problems. Under the BeOS, of
course, we’re using POSIX-based signals, but not everybody supports POSIX,
and POSIX doesn’t provide all the functions and facilities of signals within
System V or BSD.

Signals allow you to call functions outside of the normal sequence of
execution. In effect the execution sequence is interrupted. When a process
receives a signal a call is made to a signal handler, a special function designed
to execute a number of commands on receipt of a specific signal. Most
people’s experience of interrupting is killing an errant process using the kill
command.

If no function is attached to a particular signal, then the results will
default to one of two possibilities. Either the signal will be ignored and
execution will continue, or the program will terminate. In the latter case,
under UNIX the program would have exited, and in some cases created a core
file, an image dump of the process before it quit. Under the BeOS, the likely
result of a signal that would normally cause a termination is that the program
will simply quit, usually with a warning.

Apart from the kill command, signals can also come from the keyboard
(Control-C, for example, sends a SIGINT to the current process), from internal
timers (such as alarm()), and from terminal windows, which receive a
SIGWINCH signal when a window is resized.

We’ll start by looking at the signals supported by the BeOS and their
default responses before moving onto the data structures and functions that
enable us to control and manage signals.

Supported Signals

From the signal.be.h file (which is included when using signal.h) we get the
following list of supported signals:
#define SIGHUP 1 /* hangup -- tty is gone! */
#define SIGINT 2 /* interrupt */
#define SIGQUIT 3 /* `quit' special character typed in tty */
#define SIGILL 4 /* illegal instruction */
#define SIGCHLD 5 /* child process exited */
#define SIGABRT 6 /* abort() called, dont' catch */
#define SIGPIPE 7 /* write to a pipe w/no readers */
#define SIGFPE 8 /* floating point exception */
#define SIGKILL 9 /* kill a team (not catchable) */
#define SIGSTOP 10 /* suspend a thread (not catchable) */
#define SIGSEGV 11 /* segmentation violation */
#define SIGCONT 12 /* continue execution if suspended */
#define SIGTSTP 13 /* `stop' special character typed in tty */
#define SIGALRM 14 /* an alarm has gone off (see alarm()) */
#define SIGTERM 15 /* termination requested */

Page%316%of%467

#define SIGTTIN 16 /* read of tty from bg process */
#define SIGTTOU 17 /* write to tty from bg process */
#define SIGUSR1 18 /* app defined signal 1 */
#define SIGUSR2 19 /* app defined signal 2 */
#define SIGWINCH 20 /* tty window size changed */
#define SIGKILLTHR 21 /* be: kill just the thread, not team */

The signals closely match most UNIX variants by name. Not all packages
use the macro definitions here (even though it is bad practice not to do so) but
the basic numbers (for example 9 for SIGKILL and 15 for SIGTERM) are
identical.

There has always been an unwritten policy of supporting user-defined
signals for specific applications. If you need to use a special symbol, use the
numbers from 32 in reverse order, just in case the standard set is expanded.
The maximum number of signals supported is currently 32; specifying a
signal number above this just doesn’t work.

Under UNIX, the result of a signal may be an immediate exit (kill); an
exit and a core dump (core); the program may pause (stop); or the signal may
simply be ignored (ignore). The full list of signals, actions, and their
descriptions as extracted from the sys_siglist variable can be seen below:

Table 18.6

BeOS signals and actions
Signal Action OS Description
SIGHUP Kill Hangup
SIGINT Kill Interrupt
SIGQUIT Kill Quit
SIGILL Kill Illegal instruction
SIGCHLD Ignore Child exited
SIGABRT Kill Abort
SIGPIPE Kill Broken pipe
SIGFPE Kill Floating point exception
SIGKILL Kill Killed (by death)
SIGSTOP Stop Stopped
SIGSEGV Kill Segmentation violation
SIGCONT Ignore Continued
SIGTSTP Ignore Stopped (tty output)
SIGALRM Ignore Alarm
SIGTERM Kill Termination requested
SIGTTIN Stop Stopped (tty input)
SIGTTOU Stop Stopped (tty output)
SIGUSR1 Ignore User-defined signal 1
SIGUSR2 Ignore User-defined signal 2

Page%317%of%467

SIGWINCH Ignore Window size change
SIGKILLTHR Kill Kill thread

Signals are sent to individual threads, except SIGKILL which is sent to
all threads of the specified process. All of the signals can be caught except
SIGKILL, which will always cause a program to quit. Even SIGABRT can be
caught and acted upon, but it is not advised by Be, who say the effects of
doing so are unknown. My own tests haven’t shown anything specific as a
result of catching the signal, but it’s probably best to avoid it if you can.

Signal Data

The text versions of each of the signals are stored in the sys_siglist. There is no
limit, theoretically, but only the first 32 signals are given a description. These
are the standard OS ones and the user-definable signals:
#include <signal.h>
extern const char * const sys_siglist[];
extern const char *strsignal(int sig);

Ironically, accessing beyond 32 will cause a SIGSEGV. The function
strsignal() returns the string matching sig and gives the descriptions for the
signals, as outlined in table 18.6 above.

Under System V, the sys_siglist is also subdivided into messages for the
different actions; these aren’t supported under POSIX, and therefore aren’t
supported by the BeOS either. You should use strsignal rather than relying on
the sys_siglist variable in any case.

Signal Functions

The BeOS supports the standard POSIX functions, with some additions from
both BSD and System V. The BeOS also supports some additional arguments
to the signal handlers.
#include <signal.h>
#include <unistd.h>
int raise(int signal);
int kill(pid_t pid, int sig);
int send_signal(pid_t tid, uint sig);
unsigned int alarm(unsigned int sec);
typedef void (* __signal_func_ptr)(int);__signal_func_ptr signal(int
signal, __signal_func_ptr signal_func);

The signal function traps the specified signal and attaches a function to
be executed at the time the signal is received. The code below will execute
until a SIGQUIT has been sent to the program, either from a kill command or
from one of the signal functions which we will see later.
#include <signal.h>

void myfunc(int signum)

Page%318%of%467

{
 printf(“Im quitting now...%s\n”,strsignal(signum));
 exit(0);
}

void main(void)
{
 signal(SIGQUIT,myfunc);
 raise(SIGQUIT);
 while(1);
}

The signal function is part of Standard C, and not POSIX. It provides a
simple but effective way of trapping signals, but ideally we should be using
the sigaction functions to be POSIX compatible. I also used the raise function,
also part of Standard C, to send the SIGQUIT function to the current process.
The raise function simply sends the specified signal to the current process and
I could have just as easily used the kill function had I specified the process ID,
perhaps using getpid(). The send_signal function is identical to the kill
function. However, kill returns -1 and sets the errno variable in the event of an
error, but send_signal returns a Be style error.

The alarm function sends SIGALRM to the current process after the
number of seconds specified in sec. You can use it as a simple way of creating
a recurring event. I use it within a system monitoring program as the interval
timer between updates. To do this, you need to re-register the SIGALRM trap
on each call of the function handler:
void update_now(void)
{
 treadstats();
 signal(SIGALRM,(void *)update_now);
 alarm(30);
}

Some OS actually require this for all signals. This requires each signal
handler to also respecify the signal each time it is executed.

The remainder of the signal functions are used to support the POSIX
signal handling. We will start by looking at signal sets.

Signal Sets

Inherited into POSIX from BSD, a signal set enables you to define more
than one signal to be assigned to signal handler. The set is defined in a
variable of type sigset_t which is a bitset of the available signals. If the
specified bit is present within the bitset, then the signal is a part of that set.
Using a bitset means one variable can be used to specify any number of
signals.
int sigemptyset(sigset_t *set);
int sigfillset(sigset_t *set);
int sigaddset(sigset_t *set, int signo);
int sigdelset(sigset_t *set, int signo);
int sigismember(sigset_t *set, int signo);

Page%319%of%467

int sigprocmask(int how, const sigset_t *set, sigset_t *oset);

The kernel stores two signal sets as standard. The first defines the signal
mask, the second the pending signal set. The signal mask specifies which
signals are blocked to the current process (those which are not sent, regardless
of any signal handlers). The pending signal set stores the results of any signals
sent to the process while they were blocked. The next call to sigprocmask,
which resets the bit for a blocked signal, causes the signal to be sent to the
process.

The sigprocmask function sets the signal mask for the application. It is a
replacement for the sigsetmask and sigblock functions. They were defined
under BSD as:
#include <sys/signal.h>
int sigsetmask(int mask);
int sigblock(int mask);

and can be replaced using sigprocmask and either SIG_SETMASK or
SIG_BLOCK, as appropriate. For example, the lines
sigset_t newsigset, oldsigset;
memsigset=(1 << SIGQUIT);
sigprocmask(SIG_SETMASK, &newsigset, &oldsigset);

would set the current signal mask based on the signal set in newsigset. The
old mask is returned in oldsigset. The SIG_UNBLOCK flag resets the bits in
the supplied mask. Alternatively you can supply oldsigset as NULL which
discards the old mask entirely. There is no equivalent in the BSD function set.

You add signals to a signal set by shifting and logical “ORing” them
together. An easier way, however, is to use the set functions that are part of
the POSIX standard:

•! sigemptyset resets a set so that no signals are specified.

•! sigfillset sets all signals. This can be useful if you only want to exclude a
few signals from the valid list.

•! sigaddset adds the specified signal to the set.

•! sigdelset removes the signal from the set.
•! sigismember returns a 1 if the specified signal is a member, 0 if it isn’t.

Using these functions we can replace code such as
sigset_t myset;
myset=(1<<SIGQUIT) | (1<<SIGHUP);

with
sigset_t myset;
sigaddset(&myset,SIGQUIT);
sigaddset(&myset,SIGHUP);

This is a simple example that doesn’t work in the functions’ favor.
Updating a set, however, is easier with these functions, and finding the
current signals within a set is also easier.

Page%320%of%467

The reasons for blocking signals are varied. Probably the best reason is to
block signals during a signal handler’s execution. The last thing you want is
for a signal to interrupt a signal handler’s progress. This could potentially
cause all sorts of problems, especially if the signal handler is responsible for
accepting data of a network, or responding to an important event that needs
to be reacted on immediately. Remember that if a signal interrupts program
execution, the signal handler for the signal gets processed first!
#include <signal.h>
int sigpending(sigset_t *set);
int sigsuspend(const sigset_t *mask);

You can use the sigpending function to return the currently pending set
of signals in the variable set. The signals are those that are currently pending
but blocked by the current signal mask. The signals themselves will be
delivered when the signal mask is changed. The return value will be 0 if the
mask can be determined, -1 if there is some sort of error. The error condition
will be returned in errno.

The sigsuspend command sets the mask to the one specified in mask.
The function then waits until a signal within the set is received and resets the
signal mask to its previous value when the signal handler returns. For
example, I may have a signal mask set which ignores all signals. When I want
to pause program execution for a period of time using alarm, I can set up a
signal set to only respond to the SIGALRM signal. Then, once the signal has
been received, the old signal set is reinstated and program execution
continues as normal.

The replacement for the POSIX signal function, which is simple in the
extreme, is the sigaction function. This provides the same basic functionality,
but adds to the information that is passed to the signal handler.
#include <signal.h>
int sigaction(int sig, const struct sigaction *act, \
 struct sigaction *oact);
struct sigaction {
 __signal_func_ptr sa_handler;
 sigset_t sa_mask;
 int sa_flags;
 void *sa_userdata;
};

The sigaction structure is used to specify the details of the signal handler
when the signal is received. The sa_handler specifies the function to be called.
The sa_mask is the signal mask which will be used to block the specified
signals while the signal handler is executing. It is “ORed” with the current
signal mask and so should form a complete block to the signals specified
within the current environment.

The flags stored in sa_flags specify a number of options to the wrapper
around the signal handler. They are not currently supported in full by the
BeOS implementation. The only flag supported by both the BeOS and POSIX

Page%321%of%467

is SIG_NOCLDSTOP. This stops child processes from sending a SIGCLD to
the parent process when it stops. SIGCLD will still be sent when a child
terminates.

The last field of the structure is a pointer to other data. This is different
from the POSIX standard although it is allowed under the POSIX definition.
This data option is not currently supported by the BeOS, although it is
promised for future versions.

The sigaction function can, and should, be used as a direct replacement
for the signal function, save for the addition of the sigaction structure. The sig
argument is the signal to be trapped, act is the new sigaction, and the
previous sigaction data is returned in the structure oact. We can change the
example outlined in “Signal Functions” above to:
#include <signal.h>

void myfunc(int signum)
{
 printf(“Im quitting now...%s\n”,strsignal(signum));
 exit(0);
}

void main(void)
{
 struct sigaction newact = { myfunc, 0, 0 };

 sigaction(SIGQUIT,&newact,NULL);
 raise(SIGQUIT);
 while(1);
}

If NULL is specified for oact then nothing is returned. If NULL is
specified for act then sigaction returns the current sigaction structure for the
specified signal.If NULL is specified for both oact and act then sigaction will
return 0 if the signal is valid, or 1 if the signal is not valid.

Signal Handling

The signal handler is a function which is executed when a specific signal is
received. You’re already aware of how to set this up using either signal or
sigaction.

The signal handler must not return anything, and can only support one
argument, which is the signal number that caused the function to start. You
can then use the argument to identify why the function has been called. In the
above examples, I’ve just used it to print out the signal error text when the
signal handler is called.

In essence, a signal handler can do whatever is required, although some
signals are specific about the behavior of the function that is called. For
example, if a handler is trapped against SIGABRT the function should be as
short and compact as possible, preferably just writing out an error message

Page%322%of%467

and then closing. Other signals can be used to trigger all sorts of actions. The
SIGALRM is popular when used with the alarm function as a way of
regularly executing a command.

The POSIX standard defines a number of functions which are considered
to be safe when used within a signal handler. The reason for the list is that a
signal handler is designed to interrupt the normal progress of a program.
There are some functions, however, that work on multiple calls, saving some
information between invocations. Ideally, the functions should be re-entrant,
an ability which is very difficult to program. Within the BeOS, many of the
functions supported by the POSIX library are not re-entrant, despite its
multithreading, which normally demands such a feature. The only other
solution is to block signals during a function’s execution. This is less reliable,
and can lead to problems if a signal is received more than once. Multiple
signals aren’t stored in the pending signal set.

Reentrant Functions
 A reentrant function is one that can be called by functions it calls. Or,

more specifically, a reentrant function is one that can be called again before it
has properly returned from it’s last call. This means that the function cannot
use the values of external variables (since they may change between
invocations) and cannot store static information (since this may also change
between different invocations).

POSIX defines the following functions as safe:

_exit access alarm cfgetispeed cfgetospeed
cfsetispeed cfsetospeed chdir chmod chown
close creat dup dup2 execle
execve fcntl fork fstat getegid
geteuid getgid getgroups getpgrp getpid
getppid getuid kill link lseek
mkdir mkfifo open pathconf pause
pipe read rename rmdir setgid
setpgid setsid setuid sigaction sigaddset
sigdelset sigemptyset sigfillset sigismember sigpending
sigprocmask sigsuspend sleep stat sysconf
tcdrain tcvflow tcflush tcgetattr tcgetpgrp
tcsendbreak tcsetattr tcsetpgrp time times
umask uname unlink utime wait

Page%323%of%467

waitpid write
Of those listed, only tcvflowis not supported by the BeOS. The safety of

other functions cannot be guaranteed, and it’s probably better to avoid using
them rather than crossing your fingers and hoping for the best.

Interprocess Communication
Much of the core functionality and usefulness of the UNIX OS is based
around interprocess communication (IPC). It allows different applications to
talk amongst themselves, thereby making the interoperability of the OS much
easier. For example, files are submitted to the printing daemon via
interprocess communication. The daemon listens for new jobs, and one or
more other applications can submit files for printing simultaneously. This
removes the reliance on complex queueing mechanisms and file-based
semaphores.

Many systems now implement one or more methods of interprocess
communication. We will take a brief look at the three main forms of
interprocess communication supported by the BeOS: pipes, sockets, and
FIFOs. The problem with porting IPC is that the variety of methods (which go
beyond those described here) makes it difficult to find a standard. Even
within the POSIX standard both pipes and FIFOs are supported, and socket
access is now supported by most OSs (including the BeOS) in order to
support network, rather than single-machine, interaction.

This single problem of too many methods for interprocess
communication leads to a number of difficulties. The biggest of these
problems is that if the method of IPC supported by your package doesn’t
support the methods available on the BeOS, it will take a considerably large
amount of work to convert from one method to another. There are
implementations available in FreeBSD and NetBSD that may be portable.

Pipes

You should already be familiar with the theory of a pipe. In Chapter 4, we
looked at how pipes were to channel information from one process to another.
For example, when viewing the directory listing, we might want to pipe the
output through the more program, which presents us with information a page
at a time:
$ ls -l | more

Most people’s experience with pipes is at this level, when using the
commands within the shell.The same basic principles apply in IPC, a pipe is
used to communicate, or channel information from one process to another.

Page%324%of%467

However, the restriction with IPC is that the pipe function is only really
useful within a single application that has created a number of subprocesses
using fork. Using pipe and fork the subprocesses can communicate with each
other, and, if necessary with the parent application. We’ll take a closer look at
fork in the next section.
#include <unistd.h>
int pipe(int fildes[2]);

The function returns a zero on success. The file descriptors of the read end of
the pipe are placed in fildes[0] and the write end of the pipe in fildes[1].

The file descriptors will be available to all processes forked from the
parent process, but they cannot be shared among more than one invocation of
an application. The file descriptors are also unidirectional, which means you
must always read from and write to the correct file descriptors.

Pipes are often employed as a way of running an external command.
This is a fairly long process because the application has to fork a new process
before using exec to the run the external program. This is messy, and can get
complicated and laborious if you do have to do it frequently.

The popen function is an extension of the pipe command which opens a
pipe, forks a process, and then executes a shell with the specified command,
turning the entire process into a single function:
#include <stdio.h>
FILE *popen(const char *cmd, const char *type);
int pclose(FILE *fp);

The type is either “r” or “w” based on whether you are reading from or
writing to the command you are executing. You cannot do both, as a pipe file
descriptor is unidirectional. In general, popen is a quick way to spawn and
read from or write a command from within some C code. For example, the
program below prints the date as returned by the OS /boot/bin/date
command:
#include <stdio.h>

void main(void)
{
 FILE *fp;
 char buf[1024];

 fp=popen(“date”,”r”);

 printf(fgets(buf,1024,fp));

 pclose(fp);
}

You could open the pipe as write- rather than read-enabled and then
controlled an external application. For example, you could use popen to
control an editor by writing the commands to the command from within
another application. Once the program stream has been opened with popen,
providing the program does not exit immediately, you can continue reading

Page%325%of%467

from the command until either it quits or the pclose function closes the
stream. The file descriptors will also be closed if the program exits normally.

Sockets

Sockets are a BSD invention, based on the TCP/IP networking system for
communicating between machines. If you open a socket to the same machine
you are calling from you effectively have an interprocess communication
system. We will deal with sockets and their use in networking in Chapter 22.

The socket system is defined within posix/sys/socket.h, which itself
includes the file be/net/socket.h. As we shall see later, the implementation is
far from perfect, but it does support the basic socket functions. It doesn’t,
however, support the socketpair function, which simulates the pipe command
using sockets.

FIFOs

A FIFO is a special type of file often referred to as “named pipe.” FIFO stands
for “first in first out” and refers to the method of communication between
different processes. Because the FIFO is a file, it can be opened and read using
standard commands by a number of processes; we are no longer restricted to
one process or reliant on networking systems.

If we return to the earlier example of the printing system under UNIX, it
is often implemented as a FIFO. The FIFO file is read from by the printing
daemon, and the lp program writes files to the FIFO. The FIFO system is
supported by the sys/stat.h header:
#include <sys/stat.h>
int mkfifo(const *path, mode_t mode);

mkfifo returns a 0 on success and -1 on failure.

Despite the support professed in the header file, FIFOs do not work
under the BeOS. Any call to the mkfifo function will return a -1, indicating a
failure.

Others Forms of IPC

There are a number of other forms of IPC which are currently missing on the
BeOS. As far as I am aware, there are no plans to update the support to
include any of these additional forms of IPC in later versions. This may cause
some problems for those already using a specific type of IPC. Let’s take a look
at System V IPC, a much-maligned but very useful form of IPC.

Page%326%of%467

System V IPC is based around one or more blocks of shared memory, a
selection of message queues, and semaphores. It’s supported by all System V
variants of UNIX, and also SunOS 4, FreeBSD and NetBSD. However, it’s not
supported to any level by most other BSD style unices. Despite its acceptance
by a number of major companies, many people still have an aversion to this
technique of IPC because it is very buggy and difficult to work with
effectively. Oracle, for example, uses System V IPC if it’s available as a quick
way of buffering access to the database. Requests are supplied via the
message queues, and the data is returned in the shared area of memory. It’s
fast and convenient for this sort of operation, but often buggy, as any Oracle
DBA will tell you.

There is a free version (by Daniel Boulet) available, but to use it you may
need access to the kernel source code to provide the necessary core code.

System Calls
Beyond standard kernel functions are a number of functions that are classed
as system calls. These are functions which make direct calls to the OS, rather
than using some form of library or other layer on build on top of the OS. They
are used to execute other programs, as in system and exec, to create
subprocesses, as with fork or to get information about the current
environment in which a program is running, as with getenv.

In addition, there are a number of functions that allow you to abort the
current program, or to exit the current program. The difference being the
response returned to the calling application.

system

system is more of a macro than a real function and is not part of the POSIX
definition, although it is part of Standard C. In general, use of system is
actively discouraged because it’s nonstandard and non-portable across
systems, with each one defining a different implementation. On the BeOS,
system closely matches the SVR4 libraries, executing a command within the
standard shell:
#include <stdlib.h>
int system(const char *command);

What happens behind the scenes is that system forks off a new process
using fork and then uses exec to run a shell, which is then used to execute the
application specified in command. The return value is that of the shell which
is executed, not the application which is executed within the shell. If you

Page%327%of%467

specify a NULL string then the standard shell /boot/bin/sh will be run
instead.

exec

The exec family of commands is a friendlier way of executing other
applications from within an application. The exec command itself has long
since been forgotten, and is now replaced by a number of functions offering
varying levels of additional environment and argument support. The full list
supported by the BeOS is:
#include <unistd.h>
int execve(const char *path, char *argv[], char **envp);
int execl(const char *path, const char *arg, ...);
int execv(const char *path, char **argv);
int execlp(const char *file, const char *arg, ...);
int execle(const char *path, const char *arg , ...);
int exect(const char *path, char **argv);
int execvp(const char *file, char **argv);

In all cases, a call to exec will replace the current process with the
application specified in the path or file arguments. Using a path-based
function assumes that you are specifying an absolute pathname for the entire
application. Use of the file argument causes the application to be searched for
in the current PATH set in the environment.

The additional arguments allow you to specify arguments (either as a
series of strings, arg, or as a pointer to a list of NULL terminated strings,
argv). Using the envp variable you can specify a list of environment settings,
or if envp is not available the environment of the calling application is used
instead. Both argv and envp are NULL terminated lists of NULL terminated
strings.

In all cases, the maximum size of the environment, command, and
arguments should not exceed the value specified by ARG_MAX.

The exec series of functions is part of the POSIX specification, except for
exect. This function is from the BSD libraries and enables program tracing,
although this option is not supported by the BeOS. In all other respects, exect
is identical to execv.

fork

fork creates a new process which is identical in nearly all respects to the
parent process. The only difference is that the subprocess has a new process
ID and the parent process ID of its parent. All file descriptors are duplicated
from the parent, but signals and alarms are not inherited:
#include <sys/types.h>
#include <unistd.h>

Page%328%of%467

pid_t fork(void);

The process ID of the child is returned on success, or -1 if the fork failed.
The maximum number of children that can be forked by any one process is
defined by the macro _POSIX_CHILD_MAX.

fork is often used to create a subprocess which is then used to call exec
and execute another program. As such, it is inefficient because the function
must copy the parent’s environment and descriptors before processing can
continue, and the exec functions will automatically replace this information
with that from the called application. For this reason the vfork process was
written. This simply creates a subprocess without copying the information,
therefore improving the performance for executing sub-programs. In
programs like make this can produce a significant increase in performance.
Unfortunately, the BeOS does not support the vfork function, but this
shouldn’t cause any serious problems.

wait

Once you have forked a subprocess, you may want to check the status of the
process before proceeding. This is especially true when you come to the end
of a program. Using the wait command you can wait for all forked
subprocesses to finish executing before continuing:
#include <sys/wait.h>
pid_t wait(int *statloc);

The status argument should be an integer which you pass to the
command for the status of the process to be returned in. The information is
returned as a bit field and the information can be extracted by using a number
of macros:

•! WIFEXITED(status) returns true if the process exited normally;
WIFEXITSTATUS(status) will return the exit value.

•! WIFSIGNALED(status) returns true if the process exited because of a
signal.

•! WTERMSIG(status) evaluates to the signal number that caused the
process to exit.

•! WIFCORED(status) is true if the program caused a core dump (not
applicable to the BeOS).

An additional command, waitpid, allows you to monitor a specific
process ID:
#include <sys/wait.h>
pid_t waitpid(pid_t pid, int *stat_loc, int options);

where pid is the process number to wait for, stat_loc is the variable to return
the status in, and options is a bitwise variable (values should be inclusive

Page%329%of%467

“ORed” together) which defines what to monitor. The WNOHANG option
will cause the function to return immediately if the status cannot be
determined. The WUNTRACED option reports whether the process has been
stopped and is used by shells to handle job control.

When you use waitpid these status macros are available:

•! WIFSTOPPED(status) returns a non-zero value if the process is currently
stopped.

•! WIFSTOPSIG(status) will return the signal that caused the process to
stop.

unexec

The unexec command is used most notably by emacs to create an executable
version of the application from the combination of the base application and
the loaded LISP programs. It is defined by the emacs package source and is
not a standard function, but, as emacs is such a major package, I thought it
worth a mention. The problem is that the linking method used to create
applications on the BeOS is called PEF (Preferred Executable Format) and is
protected under copyright, hence the problem developing a set of public
domain routines to generate the necessary executables. This will affect
alternative linkers for exactly the same reason. Even the gcc port by Fred Fish
uses the Metrowerks linker to create the final executable. This should only
affect PowerPC versions of the BeOS, as Intel versions will use the publicly
available PE format.

getenv and putenv

The getenv function retrieves the value of an environment variable by its
name:
#include <stdlib.h>
char *getenv(const char *name);

The data is returned as a character string, or NULL if the variable name
isn’t found. For example, to print the value of the variable PATH you could
use this code fragment:
printf(“%s\n”,getenv(“PATH”));

If you are copying the value to a string, you should ensure that the string
is large enough to contain the value. The maximum size possible is specified
by the macro ARG_MAX. See “Resource Limits,” earlier in this chapter.

The function putenv is the opposite of getenv and places a variable into
the program’s environment. The function comes from the SVR4

Page%330%of%467

implementation of UNIX. putenv is not part of Standard C or POSIX, but is
supported under the BeOS:
#include <stdlib.h>
int putenv(const char *string);

The function works by accepting a string of the form
VAR=VALUE

and therefore works the same as creating a variable within the shell.

abort

The abort command causes abnormal program termination:
#include <stdlib.h>
void abort(void);

The only exception to the rule is if the SIGABRT signal is being caught by a
signal handler. In this situation the signal can be acted upon, but the program
should exit soon after the signal has been called. Functions registered with the
atexit function are not called.

exit and atexit

exit is a Standard C function which immediately quits a program, supplying a
return code (specified by the status argument) to the calling application:
#include <stdlib.h>
void exit(int status);
void _exit(int status);

The function causes normal program termination, calling the functions
defined by atexit() (in reverse order), flushing and closing all open streams,
and then calling the function _exit().

The _exit function closes all open files, sends the appropriate signal to
the parent if it is waiting using wait, sends a SIGCHLD signal to the parent
process, closes all associated process groups (if it is controlling any) and then
closes itself.

The atexit function registers a list of functions to be executed when the
program terminates normally (via the exit() command), or at the end of the
main() function if the exit() function is not used.
#include <stdlib.h>
int atexit(void (*func)(void));

Within the BeOS you can specify up to 63 functions to be called, with atexit
returning a 0 for success and a 1 for failure.

Page%331%of%467

Regular Expressions
The regular expression library, which consists of the functions compile, step,
and advance, is not supported by the BeOS. However, the GNU regex regular
expression library does compile with little trouble on the BeOS. It is slightly
more complicated to use, but supports the GNU standard regular expressions
that you will be familiar with from using gawk, perl, and such, and is
therefore a better solution to most needs.

Non-Local Jumps
Although they are almost as taboo as the infamous goto statement, non-local
jumps are a sometimes-used necessary evil. The advantage of non-local jumps
is that, as the name suggests, they can span more than one source file. A goto
statement is only applicable within a single source file.

The principle is that the settings—specifically the registers—or the
current instance are recorded using setjmp and then recalled at some later
stage using longjmp. The BeOS supports this as part of its POSIX support
with some minor differences from the standard implementations.

setjmp and longjmp

The setjmp function records the current instance into the specified jump
buffer:
#include <setjmp.h>
typedef long *jmp_buf[70];
int setjmp(jmp_buf buffer);
void longjmp(jmp_buf buffer, int val);
int sigsetjmp(jmp_buf buffer);
void siglongjmp(jmp_buf buffer, int val);

As you can see, the buffer is just an array of long numbers used to record the
register, program counter, and other processor-specific values.

The longjmp command is used to return to the point at which the buffer
was recorded. This effectively returns program execution to the point at
which the setjmp call was invoked. The val argument is used as the number
returned by the setjmp function, and this is how you identify whether this is
the first call to the setjmp function or not.

For example, consider this code:
#include <setjmp.h>

void main(void)
{
 jmp_buf mybuf;
 if ((setjmp(mybuf))==0)

Page%332%of%467

 longjmp(mybuf,1);
}

The first time the function is called, setjmp returns 0 and the longjmp
function is called. This returns execution to the setjmp function, this time
causing the setjmp command to return 1. The if test has failed and the
program exits as normal.

It should be remembered that a setjmp function records the settings of
the current function, so writing a wrapper to go around the setjmp call will
not work as expected.

One of the problems with setjmp is that although it restores all the
processor values, it doesn’t restore any local variables and, more specifically,
doesn’t restore the current signal mask. Two other functions specified by the
POSIX standard allow the signal mask to be recorded and restored. They are
sigsetjmp and siglongjmp respectively.

Under the BeOS, the sigsetjmp and siglongjmp commands are
supported, but do not currently record the signal mask.This is identical to
SVR4, which does not save the signal information as standard. You may have
to provide a workaround for the signal mask problem if you want the code to
work on other platforms. When working with source code from other
packages, they should have already taken into account the effects of BSD style
and SVR4 style jumps.

Moving and copying memory
There are two basic trains of thought on copying sections of memory. The first
is the BSD style, using bcopy to copy the binary information from one
variable or area of memory to another. The second, is to use memcpy to copy
the information. The BeOS supports both, but there are some minor
differences in their operation and expected use.

bcopy and bzero

bcopy copies an area of memory from one location to another. The name
arises from the term “binary copy.” It is essentially identical to the memmove
function (see below). The synopsis of the command is:
#include <bsd_mem.h>
void bcopy(const void *src, void *dst, size_t len);

Although bcopy isn’t supported directly by the BeOS, you can access it
by using the bsd_mem.h header, which defines it as:
#define bcopy(s, d, l) memmove(d, s, l)

Page%333%of%467

This maps it to the memmove function; note the difference in the order
of the arguments. Don’t use memcpy as a substitute; both bcopy and
memmove ensure that overlapping areas of memory are copied correctly.

Alternatively, you can use the source code below:
void bcopy(register char *src, register char *dst
 register int length)
{
 while (length-- > 0)
 *dest++ = *src++;
}

The bzero command is used to set an area of memory to zero:
#include <bsd_mem.h>
void bzero(void *b, size_t len);

 It is identical to the memset command and is defined in the bsd_mem.h
header as:
#define bzero(d, l) memset(d, ‘\0’, l)

The source code is similar to bcopy:
void bzero(register char *b, register int length)
{
 while (length-- >)
 *b++ = 0;
}

memcpy, memmove, and memset

The memcpy function copies an area of memory:
#include <string.h>
void *memcpy(void *dst, const void *src, size_t len);

It can be destructive on overlapping areas of memory and you should use
memmove, which copies the information from low to high or high to low
order in order to prevent destroying any information in the destination:
#include <string.h>
void *memcpy(void *dst, const void *src, size_t len)

memset sets an area of memory to a specific value:
#include <string.h>
void *memset(void *dst, int val, size_t len);

The POSIX specification uses memcpy, memmove, and memset instead
of the BSD-style bcopy. If a program specifies bcopy then use the config files
to include the bsd_mem.h header file, which should also get you out of some
other pickles.

memchr

You can search for a byte in a block of memory using the memchr function:
#include <string.h>

Page%334%of%467

void *memchr(const void *s, int c, size_t n);

The function searches the memory pointed to by s for the byte c for n bytes,
returning a pointer to the found byte.

String Handling
You can’t very far in programming without having to use a string or
collection of characters somewhere. A number of string functions exist which
convert strings to and from numeric values. There are also a number of utility
functions which provide information on the length of a string (strlen) and
enable you to separate a string into component parts (strtok). Finally we’ll
look at the strerror function, and the errors reported and available under the
BeOS.

Data Conversions

The BeOS supports the full range of Standard C conversions of strings to
numbers, with the addition of two further functions for converting strings to
type long long:
#include <stdlib.h>
double atof(const char *str);
int atoi(const char *str);
long atol(const char *str);
double strtod(const char *str, char **end);
long strtol(const char *str, char **end, int base);
unsigned long strtoul(const char *str, char **end, int base);
long long strtoll(const char *str, char **end, int base);
unsigned long long strtoull(const char *str, char **end, int base);

strlen and Other Basic String Functions

The basic string functions are part of Standard C, and not part of POSIX.
Those supported by the BeOS are:
#include <string.h>
size_t strlen(const char *);
char *strcpy(char *dst, const char *src);
char *strncpy(char *dst, const char *src, size_t len);
char *strcat(char *dst, const char *src);
char *strncat(char *dst, const char *src, size_t len);
int strcmp(const char *str1, const char *str2);
int strncmp(const char *str1, const char *str2, size_t len);
int strcasecmp(const char *str1, const char *str2);
int strncasecmp(const char *str1, const char *str2, size_t len);
int strcoll(const char *str1, const char *str2);
size_t strxfrm(char *str1, const char *str2, size_t len);
char *strchr(const char *str, int chr);
char *strrchr(const char *str, int chr);
char *strpbrk(const char *str, const char *set);
size_t strspn(const char *str, const char *set);
size_t strcspn(const char *str, const char *set);
char *strtok(char *str, const char *set);

Page%335%of%467

char *strstr(const char *str, const char *pat);
int strcasecmp(const char *str1, const char *str2);
int strncasecmp(const char *str1, const char *str2, unsigned nchars);
char *strdup(const char *str);
char *stpcpy(char *dest, const char *src);

In the following sections, we will take a closer look at the more regularly
used functions and how they differ from other OSs implementation of the
same function. If I don’t specifically mention a function, then it forms part of
the basic functionality of most OSs and you shouldn’t have any compatibility
problems.

strcasecmp and strncasecmp

These two functions compare two strings, returning a value that is less than,
equal to, or greater than zero, based on whether str1 is less than, equal to, or
greater than str2:
#include <string.h>
int strcasecmp(const char *str1, const char *str2);
int strncasecmp(const char *str1, const char *str2, unsigned nchars);

The strncasecmp function is identical, but only checks the first nchars
characters. You may also find references to the functions stricmp and
strnicmp, which are identical to their respective cousins.

These functions are not part of the POSIX or Standard C definitions.

stpcpy

This function is identical to strcpy except that it returns a pointer to the end of
the string, rather than the beginning:
#include <string.h>
char *stpcpy(const char *str1, const char *str2);

You can use this to make the process of concatenating strings together
much easier than using strcpy and strcat:
#include <string.h>
#include <stdio.h>

void main(void)
{
 char mystring[20];
 char *strptr=mystring;
 strptr=stpcpy(strptr, “Hello “);
 strptr=stpcpy(strptr, “World”);
 printf(“%s\n”,mystring);
}

This function is not part of either Standard C or POSIX, although it is usually
defined in public C libraries such as GNU and NetBSD.

strdup

Page%336%of%467

strdup allocates a block of memory using calloc and then copies the string
into it, returning the pointer to the memory block. This effectively duplicates
the string without using the clumsy strcpy function, making it especially
useful on larger strings:
#include <string.h>
char *strdup(const char *str);

This is not part of POSIX or Standard C.

strtok

The strtok command provides a simple way to separate strings using a
specified set of characters:
#include <string.h>
char *strtok(char *s1, const char *s2);

With the first call to the strtok function, it returns the string of characters
from s1 up to, but not including, the first matching character from s2. If no
character from s2 is found then NULL is returned. Subsequent calls to strtok
with a NULL value for s1 will match further strings from the position of the
last match to the next matching character from s2. For example, the program
below separates the string “Hello World again!” with spaces:
#include <stdio.h>
#include <string.h>

void main(void)
{
 printf(“%s\n”,strtok(“Hello world again!”,” “));
 printf(“%s\n”,strtok(NULL,” “));
 printf(“%s\n”,strtok(NULL,” “));
}

which produces:
Hello
world
again!

strtok is used as a quick way to extract or separate information from
strings, and many of the kernel functions use it to determine information in
configuration files. The function is not supported under BSD and so you may
find that some packages will try to introduce their own versions.

strchr, index, strrchr, and rindex

strchr and strrchr search a string forwards and backwards, respectively, for a
specified character:
#include <string.h>
char *strchr(const char *str, int chr);
char *strrchr(const char *str, int chr);

Page%337%of%467

In both functions, the return value is the pointer to the first or last
character specified by chr in the string str. For example:
printf(“%s\n”,strchr(“Hello World”,’o’);

prints
o World

whereas
printf(“%s\n”,strrchr(“Hello World”,’o’);

prints
orld

The index and rindex commands are alternative versions of strchr and
strrchr respectively. They work in identical ways and even use the same
arguments to the functions. The compatibility header bsd_mem.h defines
macros for these as:
#include <bsd_mem.h>
#define index(str, chr) strchr(str, chr)
#define rindex(str, chr) strrchr(str, chr)

The POSIX standard uses strchr in preference to index. Most packages
will prefer to use the POSIX definition. Some older packages will actually
request to use the index version (perl v4, for example). Since both functions
are essentially identical there is no reason not to substitute or mix and match,
providing this doesn’t upset other functions by the inclusion of the
bsd_mem.h header. Of course, if you are writing new code, then you should
use the POSIX compatible versions to remain as portable as possible.

strerror

You can print the string associated with an error using strerror:
#include <string.h>
char *strerror(int errnum);

Where errnum is the error number, the string equivalent of the error is
returned. If no error message is found, NULL is returned. The error messages
are stored within the libraries in a character string array:
extern int sys_nerr;
extern char *sys_errlist[];

The sys_nerr variable specifies the maximum number of errors
represented, and the sys_errlist contains the error messages. However, on the
BeOS these structures don’t contain the error messages or the figures you
expect. The variables are only made available for identification purposes and
so you need to use the strerror command wherever possible. For example, the
code fragment
#include <stdio.h>
#include <string.h>
#include <errno.h>

void main(void)

Page%338%of%467

{
printf(“%s\n”,sterror(EACCES));
}

prints
Permission denied

Using a simple program it is possible to identify the error range and
their errors. In PR, errors are calculated from LONG_MIN upwards, and so
the program takes a significant amount of time to execute:
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <errno.h>

void main(void)
{
 register long I=0;

 for (i=LONG_MIN;i<=LONG_MAX;i++)
 if ((strncmp(strerror(i),”Unknown Error”,13))!=0)
 printf(“%ld: %s\n”,i,strerror(i));
}

To save you time, the program equates to the following list in PR:
-2147483648: No memory
-2147483647: I/O error
-2147483646: Permission denied
-2147483645: General file error
-2147483644: File not found
-2147483643: Index not in range for the data set
-2147483642: Bad argument type passed to function
-2147483641: Bad value passed to function
-2147483640: Mismatched values passed to function
-2147483639: Name not found
-2147483638: Name in use
-2147483637: Operation timed out
-2147483636: Interrupted system call
-2147483635: Operation would block
-2147483634: Operation canceled
-2147483633: Initialization failed
-2147479552: Bad semaphore ID
-2147479551: No more semaphores
-2147479296: Bad thread ID
-2147479295: No more threads
-2147479294: Thread is inappropriate state
-2147479293: Operation on invalid team
-2147479292: No more teams
-2147479040: Bad port ID
-2147479039: No more ports
-2147478784: Bad image ID
-2147478528: Debugger already installed for this team
-2147475456: Invalid or unwanted reply
-2147475455: Duplicate reply
-2147475454: Can't send message to self
-2147475453: Bad handler
-2147475452: Already running
-2147475451: Launch failed
-2147475450: Ambiguous app launch
-2147475449: Unknown MIME type
-2147475448: Bad script syntax
-2147467264: Stream not found
-2147467263: Server not found
-2147467262: Resource not found
-2147467261: Resource unavailable
-2147467260: Bad subscriber

Page%339%of%467

-2147467259: Subscriber not entered
-2147467258: Buffer not available
-2147467257: Last buffer
-2147454975: Argument too big
-2147454972: Bad file descriptor
-2147454971: Device/File/Resource busy
-2147454970: No child process
-2147454969: Resource deadlock
-2147454968: File or Directory already exists
-2147454967: Bad address
-2147454966: File too large
-2147454964: Invalid argument
-2147454962: Is a directory
-2147454961: Too many open files
-2147454960: Too many links
-2147454959: File name too long
-2147454958: File table overflow
-2147454957: No such device
-2147454956: No such file or directory
-2147454955: Not an executable
-2147454954: No record locks available
-2147454953: No space left on device
-2147454952: Function not implemented
-2147454951: Not a directory
-2147454950: Directory not empty
-2147454949: Too many symbolic links
-2147454948: Not a tty
-2147454947: No such device
-2147454946: Operation not allowed
-2147454945: Broken pipe
-2147454944: Read-only file system
-2147454943: Seek not allowed on file descriptor
-2147454942: No such process
-2147454941: Cross-device link
-2147454940: File Position Error
-2147454939: Signal Error
-2147454938: Domain Error
-2147454937: Range Error
-2147454936: Protocol wrong type for socket
-2147454935: Protocol not supported
-2147454934: Protocol family not supported
-2147454933: Address family not supported by protocol family
-2147454932: Address already in use
-2147454931: Can't assign requested address
-2147454930: Network is down
-2147454929: Network is unreachable
-2147454928: Network dropped connection on reset
-2147454927: Software caused connected abort
-2147454926: Connection reset by peer
-2147454925: Socket is already connected
-2147454924: Socket is not connected
-2147454923: Can't send after socket shutdown
-2147454921: Connection refused
-2147454920: No route to host
-2147454919: Protocol option not available
-2147454918: No buffer space available
-2147450880: No mail daemon
-2147450879: Unknown mail user
-2147450878: Wrong password (mail)
-2147450877: Mail unknown host
-2147450876: Mail access error
-2147450875: Unknown mail field
-2147450874: No mail recipient
-2147450873: Invaild mail
-2147446784: No print server
-2147442688: Invalid device ioctl
-2147442687: No device memory
-2147442686: Bad drive number
-2147442685: No media present

Page%340%of%467

-2147442684: Device unreadable
-2147442683: Device format error
-2147442682: Device timeout
-2147442681: Device recalibrate error
-2147442680: Device seek error
-2147442679: Device ID error
-2147442678: Device read error
-2147442677: Device write error
-2147442676: Device not ready
-2147442675: Device media changed
-1: General OS error
0: No Error

These numbers are useful for debugging purposes, and in this list you’ll
find a number of BeApp error messages; most applications use the error
macros defined in errno.h. Under the BeOS the error numbers are remapped
using the header file contained in be/support/Error.h. The full list of error
macros under the BeOS (which matches the full POSIX specification)
supported under the BeOS is shown in Table 22.7.

Table 22.7

POSIX error macros
Macro Message
E2BIG The combined size of the argument and environment lists

has exceeded ARG_MAX bytes.
EACCES Search permission is denied on the directory.
EAGAIN On file operations, the O_NONBLOCK flag is set and the

program would be delayed if the operation took place.
When using fork it indicates that the system is unable to
spawn another process.

EBADF Bad file descriptor.
EBUSY The directory, file or device is in use.
ECHILD There are no children of this process.
EDEADLK Deadlock; file has been write locked with F_SETLKW.
EDOM Argument was out of the mathematical range.
EEXIST File name already exists. Can also be returned by rmdir()

when the directory is not empty.
EFAULT Invalid address or argument out of memory range.
EFBIG File exceeds maximum file size.
EINTR Function was interrupted by a signal.
EINVAL Invalid argument to function.
EIO I/O error.
EISDIR Attempted write to a directory instead of a file.
EMFILE Process has too many open file descriptors.
EMLINK Number of links to actual file location exceeded.

Page%341%of%467

ENAMETOOLO
NG

File name too long.

ENFILE System has too many open file descriptors.
ENODEV Device does not exist, or bad operation for selected device

type.
ENOENT File/directory does not exist.
ENOEXEC File cannot be executed.
ENOLCK No locks available.
ENOMEM No memory available for execution.
ENOSPC File system full.
ENOSYS Function not implemented.
ENOTDIR Argument not a directory.
ENOEMPTY Directory is not empty (when using the rmdir() command).
ENOTTY Not a terminal.
ENXIO Device does not exist, or device is not ready.
EPERM Operation not permitted.
EPIPE Pipe or FIFO has no read channel available to allow the

write operation.
ERANGE Result is too large.
EROFS Attempted an operation on a read-only file system.
ESPIPE An lseek() operation was attempted on a pipe or FIFO.
ESRCH No such process.
EXDEV Attempt to link a file to another file system.

Unfortunately, for its POSIX compatibility the BeOS scores well, but
other UNIX platforms and therefore other packages will expect a different or
additional set of macros. Solaris, for example, specifies no less than 119
different macros as opposed to the 37 specified here. When you can’t find a
matching macro, it is best to look for the next best guess. If there still isn’t
anything suitable, check the code and see if it’s something that can be checked
some other way or, in extreme examples, ignored completely. A lot of the time
the additional macros are OS- or functionality-dependent. In these cases, you
may be missing more than the macro and so writing or sourcing additional
code should enable you to plug the gap.

It is also possible, but highly unlikely, that a package is checking for
error numbers directly without using the macros for the post-error checks. In
these situations you need to compare the error numbers (found in the header
files, usually errno.h or sys/errno.h) for the platform the package was
originally written on. This will mean a lot of manual modifications to the
source code, but it might be the only way to resolve the problems.

Page%342%of%467

Note: Remember to tell the author when you make such a
significant modification.
The strerror function is an SVR4 invention, now part of Standard C. Most

packages, however, expect to use the function, or provide a simulation where
it’s not available. If the configuration system incorrectly identifies the
existence of the function, or rather the non-existence of the function, you
should set the configuration manually

Variable Argument Lists
Variable argument lists allow you to recreate the variable-length functions like
printf within your own programs. The method for doing this is different on
most platforms, although the principles remain the same.

The prototype of a function using variable argument lists is
void myvafunc(int realarg, ...)

The three periods indicate the start of variable arguments. You can place as
many fixed arguments as you like before the variable arguments list, but you
cannot place any arguments after the variable argument list.

Under POSIX (and the BeOS) the use of variable arguments is supported
by the stdarg.h header file. A range of commands can then be used to support
the use of variable arguments:
#include <stdarg.h>
#include <stdio.h>
void va_start(va_list ap, parmN);
void va_end(va_list ap);
type va_arg(va_list ap, type);
int vfprintf(FILE *stream, const char *format, va_list arg);
int vprintf(const char *format, va_list arg);
int vsprintf(char *s, const char *format, va_list arg);

Before using variable arguments you have to initialize the variable
argument list using va_start. The parmN specifies the last argument before
the variable list. Once the list is initialized, calls to va_arg return the next
variable in the list in the specified type. Usually the reason for using variable
arguments involves reformatting or repackaging a string with the variable
information using vprintf, vsprintf, or vfprintf, which are compatible versions
of printf, sprintf, and fprintf respectively. Once the function has completed,
you should call va_end to finish the variable arguments.

For example, here’s a function which writes an error message to a file:
#include <stdio.h>
#include <stdarg.h>

void writelog(char *filename, ...)
{
 va_list args;
 char *format;
 char str[1000];
 FILE *errlog;

Page%343%of%467

 va_start(args, filename);

 format=va_arg(args, char*);

 vsprintf(str,format,args);

 if ((errlog=fopen(filename,”a”)) == NULL)
 {
 fprintf(stdout,”Fatal Error\n”);
 exit(1);
 }

 fprintf(errlog,”%s\n”,str);

 fclose(errlog);
 va_end(args);
}

BSD UNIX and nonstandard C compilers use the header file varargs.h
and a slightly different layout for initializing the variable argument list.
Here’s the same function from a BSD version:
#include <stdio.h>
#include <varargs.h>

void writelog(char *filename, va_alist)
va_dcl
{
 va_list args;
 char *format;
 char str[1000];
 FILE *errlog;

 va_start(args);

 format=va_arg(args, char*);

 vsprintf(str,format,args);

 if ((errlog=fopen(filename,"a")) == NULL)
 {
 fprintf(stdout," Fatal Error\n");
 exit(1);
 }

 fprintf(errlog," %s\n",str);

 fclose(errlog);

}

Most SVR4- and POSIX-compatible packages will use the stdarg.h header file
and format.

Porting the core of any application will touch on at least one of the sections
within this chapter. The BeOS supports the POSIX standard relatively closely,
and it also supports the complementary Standard C libraries, which are also
now defined within the same set of POSIX standards. Unfortunately, it
doesn’t support the standard as fully as possible, and in many places it is
even missing core components of the POSIX standard.

Page%344%of%467

Chapter 19. - Time Support

Page%345%of%467

Time on most computers is handled
by some simple variables and
structures, and these have been
built upon using a number of
functions to produce what we call
time under UNIX and now POSIX.
The BeOS supports the basic POSIX
types, with some additional UNIX
functions thrown in for good
measure.

Standard Variables and Defines
The epoch is the point at which time began. As far as UNIX and most other
operating systems are concerned this is January 1st, 1970, otherwise known as
the epoch. The value is the basic unit of time and is stored as an long which
has been typed:
#include <time.h>
typedef long time_t;

Using a 32-bit integer should make the counter last about 68 years
because it is a signed integer value (231). This allows the timer to specify a
time up to January 18th, 2038 based on the epoch.. This is more than long
enough to last most people!

The difficulty with time_t is that the figure is calculated in seconds when
it is often useful to be able to count in milliseconds. The timeval structure is
used to describe the same basic figure as that described using time_t, but the
granularity has been reduced to milliseconds:
#include <sys/time.h>
struct timeval {
 long tv_sec;
 long tv_usec;
}

The clock_t type is used to specify the number of clock cycles used by
the current process. The CLOCKS_PER_SEC defines the number of clock

Page%346%of%467

cycles per second. The clock_t type can used in combination with clock() to
calculate the amount of time of spent calculating by a particular process.

The tm structure defines specific information about the date and time:
struct tm {
int tm_sec;
int tm_min;
int tm_hour;
int tm_mday;
int tm_mon;
int tm_year;
int tm_wday;
int tm_yday;
int tm_isdst;
};

The individual members are specified as follows:
Table 19.1

Time types and value ranges
Type Member Range Description
int tm_sec 0-61 Seconds after the minute
int tm_min 0-59 Minutes after the hour
int tm_hour 0-23 Hours after midnight
int tm_mday 1-31 Day of the month
int tm_mon 0-11 Months since January
int tm_year Years since 1900
int tm_wday 0-6 Days since Sunday
int tm_yday 0-365 Days since January 1st
int tm_isdst Daylight Savings Time flag:

>0 if DST is in effect
=0 if DST is not in effect
<0 if DST status cannot be determined

int tm_gmtoff Number of hours offset from GMT.
char * tm_zone Timezone abbreviation

The tm_gmtoff member is not included in all implementations, but is
within the BeOS. Others define it not as tm_gmtoff but as a long called
tm_isdst which specifies the offset value.

The last member is the time zone abbreviation. This is stored as the
character pointer tm_zone.

Time Zones
The problem with worldwide use of computers is that different countries and
even different areas of the same country have different time zones.

Page%347%of%467

Each time zone specifies the number of hours difference between the
current location and UTC. UTC stands for the French equivalent of
“coordinated universal time.” It used to be called GMT (Greenwich mean
time) after Greenwich, UK, the location of the atomic clock at the Greenwich
Observatory. When it was agreed that Greenwich should continue being the
point of reference, the name was changed from GMT to UTC. Although many
believe it was political decision to put the name in French, it probably has
more to do with the fact that French is the language of and France is the home
of the European standards. It is here that the reference items used to specify
the length of a meter, and the weight of a gram, and other measurements are
stored, so it’s fitting that the measure of time should also have a French bias.

Time zones are named by a three-letter abbreviation describing the
location. We already know two of them, GMT and UTC but you will also
come across BST (British summer time), PST (Pacific standard time), and EST
(eastern standard time).

The tzset function does actually work on the BeOS, but it makes little
difference to the operation of the machine:
#include <time.h>
void tzset(void);
extern char *tzname[2];

Upon execution, the tzset function should set the time conversion
information used by the time functions localtime, ctime, strftime, and mktime
based on the information provided in the environment variable TZ. If the TZ
variable is not set (as is always the case under BeOS), the default time zone is
used instead. We can check the result using the tzname variable, which stores
two strings: tzname[0] specifies the standard time zone and tzname[1] the
daylight savings time zone. The following code will display the results:
#include <time.h>

void main(void)
{
 tzset();
 printf(“Standard: %s, Daylight Savings: %s
\n”,tzname[0],tzname[1]);
}

The time zone structure is used by gettimeofday to store the current time
zone information:
#include <sys/time.h>
struct timezone {
 int tz_minuteswest;
 int tz_dsttime;
};

The tz_minuteswest member contains the number of minutes west of
UTC of the current time zone. The tz_dsttime member shows whether the
current zone supports daylight savings time, and how many hours to
advance.

Page%348%of%467

Time Calculations
Calculating time involves a number of problems. We already know that the
basic form of time calculation is to take the number of seconds elapsed from
January 1, 1970. This is not a perfect calculation, but it has been inherited from
the older UNIX variants where recording the time relied on counting the
number of clock cycles produced by the processor and then dividing that by a
suitable number to generate the number of seconds.

As time progressed, the external clocks (or Real Time Clocks) became
more complex, but the legacy system for calculating time remained the same.
It is for this reason that time is so complicated a product to extract from a
machine, and there isn’t a standard function available on all machines which
can be used to return a time value.

The process is made even more complicated by two other factors, time
zones and daylight savings time. Time zones are relatively easy to handle,
providing you know what the numbers are for a given time zone. Daylight
savings time, however, is more difficult to work with.

The principle behind daylight savings time is to make the days last
longer in the summer by putting the clocks forward in the spring, and putting
the clocks back again in the autumn. Not all countries, and therefore not all
timezones actually support the notion of daylight savings time (or Summer
time as it is referred to in some countries) and this makes the time
implementation even more difficult to handle.

Taking all of this into account you can see why the calculation of time is
slightly more difficult than it first appears. Internally, every time a user
requests the time from the kernel, it has to find out how many seconds have
elapsed since the epoch, add or take off the necessary time difference based
on the time zone, and then calculate when daylight savings time comes into
force and how many hours to add or take away from the figure.

All of this happens instantaneously, but it can lead to problems with
software that has to be aware of the different time zones and the effects on the
times displayed.

It also affects the operation of the kernel, and most of the operations of
the libraries and functions built around the kernel. For example, files are
stored with both an access time and a modified time. The values stored are
based on the number of seconds since the epoch. In other words, they are
completely unaware of the time zone or daylight savings in operation at the
time they were saved. It is only when the dates are printed that the
calculations are made to show them in the local time format.

Page%349%of%467

The method of calculation also affects the outside operation of programs,
and you need to make sure you are aware of the limits and effects when using
the various time functions.

Probably the hottest topic in the computer world at the moment is the
millennium time bomb. The “year 2000 problem” is another name for the fear
currently afflicting systems managers around the world.

Many of the old legacy systems have stored the year value as only two
digits, rather than using a four-digit figure. The original reason for this was
that data storage was expensive and processor time was sparse. The extra
space required and additional processor time needed to process four digits
instead of two caused the programmers to ignore the first two digits. It didn’t
seem to matter, since most people only use two digits anyway (for example,
writing 97 instead of 1997), , and in the 60s, the thought of the year 2000, some
30 or so years hence, felt like the distant future.

But can it really affect us now? Well, imagine your date of birth is 1972
but is entered into a computer using only two digits, 72. When you come to
the year 2000, the computer will take 00 from 72 and calculate that you are
-72 years old, not 28.

You are probably thinking that all modern systems account for this, and
you are right, but that doesn’t mean you can blindly program your machine
without being aware of the dangers. The way to stop this is to ensure that you
store all four digits of a date. More to the point, you need to be aware of the
limits on calculations made on your behalf internally. Calculations from the
epoch are from January 1, 1970. Add 30 years and you should be showing the
year 2000, not the year 30.

When calculating numbers using the tm structure, you should remember
that calculations of the year work forward from the year 1900. Therefore, to
enter the year 2010, the value needs to be 110.

In all cases, the BeOS and most other new systems are aware of the
millennium problem and what happens at 23:59:59 on December 31, 1999, but
make sure your programs are aware of it as well.

Granularity

As we have already seen, most systems base their time calculation on the
number of seconds that have elapsed since a particular date. Many systems
are now required to be ‘real-time’ based, especially with the modern
requirements of multimedia systems. Although this is not a direct concern
under standard UNIX, the use of real time operating systems is expanding as
companies introduce modern computers in to time critical applications such
as manufacturing and control.

Page%350%of%467

Under the BeOS, the smallest time unit is the microsecond, supported by
bigtime_t datatype. However, the BeOS is not designed for operating in a real
time environment without some work in the kernel. Real time operation relies
on timing and adjusting the time of certain functions and system calls.

Getting the Time
There is no standard way of extracting the current, local time from the array
of OSs available. There are, however, some functions which will help you
along the way.

The function you use will depend greatly on the number and format you
are trying to get. For most people, strftime does everything they need,
supplying them with a formatted string of the time specified by the tm struct,
which itself can be gleaned from the localtime function.

time

The time function returns the number of seconds since 00:00:00 on January 1,
1970:
#include <time.h>
time_t time(time _t *timer);

The timer value is returned and stored in the variable pointed to by
timer if specified. A call of the form time(NULL) simply returns the time
value.

gmtime and localtime

Most programmers will have come across the problem of calculating a specific
day or date based on a reference date and a number of seconds, minutes,
hours, and so on. To avoid having different programmers develop a range of
such functions, two standard functions were developed. The gmtime function
returns the time in struct tm format based on the UTC time. The localtime
function returns the local time, also in a struct tm based on the current time
zone. In both cases, the calculation is made based on the supplied time_t
value:
#include <time.h>
struct tm *gmtime(const time_t *timer);
struct tm *localtime(const time_t*timer);

The struct tm type was described earlier in this chapter.

difftime

Page%351%of%467

The difftime function returns the difference between time1 and time2 as a
double:
#include <time.h>
double difftime(time_t time1, time_t time2);

It’s part of Standard C, but may have previously been expressed with a cast:
double timediff;
timediff=(double)(time1-time2);

mktime

The complete reverse of the localtime function, mktime converts a struct tm
variable into time_t format:
#include <time.h>
time_t mktime(struct tm *timeptr);

The mktime function can also be used to calculate the day of the week on
which a particular date falls. This is because it ignores the values of tm_wday
and tm_yday. You can use this trick by passing mktime a struct tm variable
containing the specified date, and then checking the values again. For
example, the code below works out what day the specified date falls on:
#include <time.h>

void main(int argc, char **argv)
{
 struct tm t;
 char *days[7] = {“Sunday”, “Monday”, “Tuesday”,
 “Wednesday”, “Thursday”, “Friday”, “Saturday” };
 t.tm_sec = t.tm_min = t.tm_hour =0;
 t.tm_mday=(int)atoi(argv[1]);
 t.tm_mon=(int)atoi(argv[2])-1;
 t.tm_year=(int)atoi(argv[3]);
 t.tm_isdst = -1;
 mktime(&t);
 printf(“That date falls on %s\n”,days[t.tm_wday]);
}

Note that you have to take one off the month specified because the range
of tm_mon is 0 to 11. Also note that because of the way the time calculation
works the year has to be specified as a number from 1900, so to put the year
2000 in you would type:
$ timeday 1 1 100

not
$ timeday 1 1 0

We looked at the effects of the millennium in “Time Zones,” earlier in this
chapter.

The effects of passing mktime bad dates make it something to avoid.
While mktime checks the values to make sure the figures are not outside the
range, (the function returns -12 if they aren’t), leap year calculations are not
checked. Under the BeOS a date like 2/29/97 causes a data exception and a

Page%352%of%467

drop into the debugger. This isn’t really very useful; giving mktime an invalid
date should return an error.

ctime and asctime

ctime returns a formatted string version of the time value specified by timer
in the following format:
Sat Jun 21 21:08:35 1997\n\0

asctime returns the same value, but bases its calculation on the supplied
struct tm variable:
#include <time.h>
char *ctime(const time_t *timer);
char *asctime(const struct tm *timeptr);

We can use either function to help us calculate the upper and lower
limits of the timer values:
#include <time.h>
#include <limits.h>
#include <stdio.h>
void main(void)
{
 const time_t high=LONG_MAX,low=0;
 printf(“%s to “,ctime(&low));
 printf(“%s”,ctime(&high));
}

This example will display the latest date support by the BeOS. More
usually, however, it is used with the time function to return a string
containing the current time:
#include <time.h>
#include <stdio.h>
void main(void)
{
 time_t now = time(NULL);
 printf(“%s”,ctime(&now));
}

You will notice that the string returned includes a newline character (\n)
as well as the terminating null. This is frustrating, and more than likely you’ll
want to remove this before printing it. Better still, use strftime with either
localtime or gmtime, returning the necessary tm structure based on the timer
value given.

strftime

Both asctime and ctime print the same string, formatted in a standard format.
This isn’t very useful, as it is highly likely that you will want to format your
string, and at the very least you will want to remove the newline appended to
each string.

Page%353%of%467

Older UNIX variants used the cftime and ascftime functions to format
the string in much the same way that printf formats other information for
printing. Under POSIX, the standard defines a new function, strftime:
#include <sys/types.h>
#include <time.h>
#include <string.h>
size_t strftime(char *s, size_t maxsize, char *format, struct tm *tm);

The strftime function is basically identical to the cftime and ascftime
functions except that it allows you to supply a maximum length for the string.
The date and time, taken from tm, are formatted using format and copied to
the string pointed to by s up to the length specified by maxsize.

The list of specifiers used within format is shown in Table 19.2.
Table 19.2

String specifiers in strftime
Specifier String It Is Replaced By Example
%a Abbreviated weekday name Mon
%A Full weekday name Monday
%b Abbreviated month name Aug
%B Full month name August
%c Date and time Sun Aug 17

16:56:37 BST 1997
%d Day of the month as a decimal number 17
%H Hour as a decimal number, 24-hour format 16
%I Hour as a decimal number, 12-hour format. 4
%j Day of the year as a decimal number 229
%m Month as a decimal number 08
%M Minute as a decimal number 56
%p AM/PM PM
%S Second as a decimal number 37
%U Week of the year as a decimal number, using the

first Sunday as day 1 of week 1
34

%w Weekday as a decimal number (0=Sunday) 0
%W Week of the year as a decimal number, using the

first Monday as day 1 of week 1
33

%x Date 8/17/97
%X Time 16:56:37
%y Year without century 97
%Y Year with century 1997
%z Time zone BST
%% The % character %

Page%354%of%467

Using these specifiers you can produce a number of the standard formats
that are used regularly:

Format Result
%Y%m%d 19970622
%H:%M 15:55
%c Sun Jun 22 15:55:23 1997
%a %b %d %H:%M:%S %Y Sun Jun 22 15:55:23 1997
%x 6/22/97
%X 3:55 PM

gettimeofday

The gettimeofday function returns the current time in the timeval structure
pointed to by tv.
#include <sys/time.h>
#include <time.h>
int gettimeofday(struct timeval *tv, struct timezone *tz);
struct timezone {
 int tz_minuteswest;
 int tz_dsttime;
};

The function also returns the current timezone information in the timezone
structure pointed to by the variable tz, although this information isn’t really
all that useful.

Setting the Time
POSIX doesn’t define any specific functions for setting the time on a system.
This is probably because different systems, and specifically different
hardware, all manage their time differently; but it doesn’t help programmers
who need to set the time. This makes it particularly difficult to port packages
such as xntpd, an implementation of the Network Time Protocol (NTP), which
is used across networks and the Internet to set the dates and times of
machines.

Most UNIX implementations include a small collection of functions used
for setting the time, but the BeOS doesn’t support any of them. It does,
however, support two functions as part of the Kernel kit:
#include <OS.h>
void set_real_time_clock(uint32 secs_since_jan1_1970);
void set_timezone(char *str);

The set_real_time_clock sets the number of seconds from the epoch into
the real-time clock. The set_timezone function sets the current timezone using
the 3 letter timezone abbreviations.

Page%355%of%467

The settimeofday function as defined in SVR4 is the opposite of the
gettimeofday function (which, for some curious reason, does exist under the
BeOS):
#include <sys/time.h>
int gettimeofday(struct timeval *tv, struct timezone *tz);
int settimeofday(struct timeval *tv, struct timezone *tz);

The replacement code could look as follows:
#include <sys/time.h>
#include <OS.h>
int settimeofday(struct timeval *tv, struct timezone *tz)
{
 set_real_time_clock(tv->tv_sec);
 return(0); /* Always return 0, set_real_time_clock
 doesn’t give us any feedback. /*
}

The stime function is also part of System V, and is supported by the
BeOS:

#include <time.h>
int stime(time_t *t);

The last function, adjtime, gradually changes the time, rather than
simply jumping forward or back by a number of hours or days. This is most
useful in a networked environment where all the clocks of individual
machines will drift slightly. It’s also safe when used on machines running
cron where skipping ahead or back by a number of hours could cause the
same program to be run twice, or never to be run at all.

The problem with adjtime is that it’s a UNIX daemon, and therefore
doesn’t lend itself to porting to the BeOS very easily. A daemon usually uses
some form of messaging system between itself and the outside world to
perform it’s tasks, and it is the messaging which causes the most problems.
There is a version of adjtime supplied with xntpd for those systems that are
missing it (such as HP-UX). However, the implementation uses System V
messages to confer information between requests and the daemon that does
the work. Under the BeOS, this messaging system isn’t supported, although it
could probably be implemented under a BApp.

Timers
Timers are used in a number of programs where you probably don’t expect to
see them. Essentially, a timer provides a way of either pausing execution of a
program or part of a program, or as a way of delaying the execution of a
particular element until a set point. For example, the egg timers (on Windows)
and watch (on MacOS) both use timers to set the interval between different
elements of the animation.

Page%356%of%467

One of my first porting exercises was to port the xv image editor to HP-
UX. The most trouble I had with the package was getting the mouse cursor to
display properly. It used a rotating fish to show that the program was busy
and required timers to animate the fish smoothly without interrupting the
processing of the images.

alarm

We already looked at the alarm function in the last chapter. Although it
doesn’t pause execution of a program as such, it can be used to generate
repeating events. The timer can only be specified in seconds and so isn’t
thoroughly useful.

Also, the alarm function relies on a signal handler, a simple function
which is executed at the time the alarmsignal is received by the program. This
can cause difficulties as it really only lends itself to simple operations, or
complex signal handlers to respond to the alarm signal.

itimers

An interval timer can be used to pause execution for a very specific period of
time. It’s more reliable and precise than alarm or sleep, but unfortunately not
supported by the BeOS as yet. There are versions floating about the Internet;
you can try porting the versions from NetBSD or the GNU libc package.

sleep and usleep

The sleep function is part of the POSIX standard and pauses execution for the
number of seconds specified.
#include <unistd.h>
unsigned int sleep(unsigned int seconds);

The function is far from perfect and it is likely that the timer pause will be
longer than the number of seconds specified.

The usleep function suspends execution for the number of microseconds
specified, instead of seconds. It is not supported under the BeOS and
although a version exists under the NetBSD distribution, it uses the itimer
function. It is also possible to fake the usleep function using select, but this
doesn’t work under the BeOS because the select function has not been
implemented properly. We take a closer look at select in Chapter 22.

There is a BeOS specific timer function that can be used as a substitute to
the usleep function. The function is called snooze and uses the bigtime_t
variable type to specify the wait time.

Page%357%of%467

#include <OS.h>
typedef long long bigtime_t;
long snooze(bigtime_t microseconds);

The snooze period is specified in microseconds, and, using an long long
the delay period could be as much as 2^61-1 seconds, which equates to over
73 million years!

System Information
Getting information about how long a particular part of a program has taken
can be useful. The classic application is to use it for timing how long a
calculation takes. Of course, the real reason behind that is to test the
performance of a machine. A much less critical reason, though, can be found
for timing the execution of certain functions.

The profiling library for the Metrowerks C compiler, uses these to test
the execution speed of a program, or indeed parts of a program.

Other programs also use similar functions to test the execution time of a
program as a whole. The time and timex functions, both part of System V, can
be used for exactly this purpose. Since they are not related to the actual date
or time, these operations are really obtaining information about the system’s
execution.

There are two functions that can aid us in timing. The clock function
returns the number of clock ticks since the clock was reset. Each process has
its own clock, but there is no specification (or information) about when the
clock is reset. The difference between the point at which the program was
loaded and when the main() function was executed could be seconds on a
slow system and so the function is not really reliable:
#include <time.h>
clock_t clock(void);

The value returned can be divided by the CLOCKS_PER_SEC macro to
get the number of seconds. Note that the name is different from the
CLOCKS_PER_SECOND macro, which is what the POSIX standard defines.
A better use of the function is to run it once at the start of the timed function
and once at the end. Calculating the difference between the two should give a
much better representation of the time taken. The example below tests the
time taken to perform a relatively simple integer calculation:
#include <stdio.h>
#include <time.h>

void main(void)
{
 register long i=0;
 long cplxres;
 clock_t end,start;
 float total;

Page%358%of%467

 start=clock();

 for (i=0;i<2000000;i++)
 cplxres=((i*(i-99))/((i*i*i)-(i*i)));
 end=clock();

 total=(float)end-(float)start;
 printf("Time was %f seconds\n",(float)(total/CLOCKS_PER_SEC));
}

The problem with clock is that it only tells us the time taken for the user
portion of the application. It doesn’t include the time taken for functions and
calls that are part of the kernel. Calls made to system libraries are still counted
as user time however..

If we were trying to time the execution time of our part of an application,
not the time taken to execute system functions, it would be very difficult to
get the time information we needed. For this, however, we can use the times
function. Also POSIX-specified, it is related to the clock function in that it
calculates time from the point of execution of a program.

However, the function is more reliable, and generally more useful,
because it times the user CPU time, the system CPU time, and the user and
system CPU times for any child processes.
#include <times.h>
struct tms {
clock_t tms_utime;
clock_t tms_stime;
clock_t tms_cutime;
clock_t tms_cstime;
};
clock_t times(struct tms *buffer);

User time is calculated as the time taken to execute user processes and
functions. System time is calculated as the time taken executing system
functions and processes on behalf of the process. There is no standard for
defining what is classed as a system process, and so its only an approximate
value. We can modify the above example to look like this:
#include <stdio.h>
#include <time.h>
#include <sys/times.h>

void main(void)
{
 register long i=0;
 long cplxres;
 struct tms start, end;

 times(&start);

 for (i=0;i<2000000;i++)
 cplxres=((i*(i-99))/((i*i*i)-(i*i)));

 times(&end);

 printf("User %.2f, System %.2f\n",
 (((float)end.tms_utime-(float)start.tms_utime)/
CLOCKS_PER_SEC),

Page%359%of%467

 (((float)end.tms_stime-(float)start.tms_stime)/
CLOCKS_PER_SEC));

}

This gives us a far more useful figure. Using both these functions, it
would be possible to build a substantial timing engine for executing
individual processes, and in fact this is precisely what profiling systems do
when the compiler adds in the profiling options.

Chapter%20.%8%Terminals%and%Devices

Devices can take a number of different forms. The strict definition of a device
is any hardware component attached to the computer. Generally, devices are
further subdivided into input devices (such as keyboards) and output devices
(such as monitors). Some pieces of equipment, such as disk drives and
terminals, can be classed as both input and output devices,. There are some
exceptions to this general rule. We can also expand the definition of a device
to include some special types of program or server which respond to requests
in the same way as other devices, but don’t transfer the information to or
from a specific piece of hardware.

Using and working with devices relies on a few core routines, many of
which will be familiar to UNIX programmers. Under the BeOS, UNIX and
POSIX models, devices have the same basic interface as files, so using them at
a basic level should not be too different from what we are already used to. In
this chapter, we will take a general look at using I/O devices before moving
on to take an in-depth look at the input/output device most people will
encounter when porting software: the terminal. Finally, we will take a brief
look at the issues involved in writing device drivers under the BeOS.

Using I/O Devices
Although you may not appreciate it, you use I/O devices all the time. The
keyboard is an input device; your monitor is an output device. For most
people, using these and other devices requires a simple call to a function
provided by the operating system.

For example, to print some information to the screen, you use printf, and
to read some information from the keyboard, you probably use scanf or gets.
If you are opening, creating, or using files on disk drives, you use the
corresponding stream functions such as fopen and fprintf. Occasionally,
however, you have cause to read and write to devices directly, or you need
more control over the device you are writing to.

In these instances you talk to the device using a set of functions that
control the device at a hardware level. These functions may take the form of a

Page%360%of%467

single function controlling many separate elements or many functions
controlling individual elements. In more extreme examples, you may be
required to read or write information to a device directly using the read and
write functions.

When you use the latter method of accessing the device directly, chances
are you will be using UNIX-style file descriptors to open the device file, rather
than using streams. A device file is a special type of file that forms a logical
link between a file and the physical device to which the file is attached. Under
UNIX and the BeOS, these files are stored under /dev. You can see the
directory listing of my BeBox machine below:
$ ls -l /dev
total 0
drw-r--r-- 1 users 0 Aug 31 07:30 beboxhw
drw-r--r-- 1 users 0 Aug 31 07:29 disk
crw-r--r-- 1 users 0, 0 Aug 31 07:29 dprintf
crw-r--r-- 1 users 0, 0 Aug 31 07:30 ether
crw-r--r-- 1 users 0, 0 Aug 31 07:30 flash
crw-r--r-- 1 users 0, 0 Aug 31 07:29 hack
crw-r--r-- 1 users 0, 0 Aug 31 07:30 kb_mouse
crw-r--r-- 1 users 0, 0 Aug 31 07:30 midi1
crw-r--r-- 1 users 0, 0 Aug 31 07:30 midi2
crw-r--r-- 1 users 0, 0 Aug 31 07:29 null
crw-r--r-- 1 users 0, 0 Aug 31 07:30 parallel1
crw-r--r-- 1 users 0, 0 Aug 31 07:30 parallel2
crw-r--r-- 1 users 0, 0 Aug 31 07:30 parallel3
drw-r--r-- 1 users 0 Aug 31 07:30 ports
drw-r--r-- 1 users 0 Aug 31 07:30 pt
crw-r--r-- 1 users 0, 0 Aug 31 07:30 scsiprobe
crw-r--r-- 1 users 0, 0 Aug 31 07:30 sound
drw-r--r-- 1 users 0 Aug 31 07:30 tt
crw-r--r-- 1 users 0, 0 Aug 31 07:30 tulip
crw-r--r-- 1 users 0, 0 Aug 31 07:29 zero

The first character in the output shows you the file type, which for all of
the device files shown here is “c,” meaning that it is a character-based device.
The other possibilities are “b“ for a block-based device and “p“ for a pipe.

UNIX users will have spotted a major difference. Under UNIX the two
numbers shown (before the date) for each device file usually point to a major
and a minor device number. The major and minor device numbers can be used
to uniquely identify an individual device, and this information is attached to
the device file so that the OS can select the correct device driver when the file
is used.

Beyond this difference, the files under UNIX and the BeOS are largely
identical, although the names may be different:

•! The disk directory contains the SCSI (Small Computer Systems Interface)
and IDE (Integrated Drive Electronics) device files. They are subdivided
into these two categories, and then further divided by number and
master/slave respectively. The disk directory also stores the floppy
device file. This is equivalent to the /dev/dsk directory under SVR4 for

Page%361%of%467

SCSI devices, and the /dev/fd0 device file for the first floppy drive on a
machine.

•! The ether device file is the Ethernet adaptor attached to your machine.
This is equivalent to /dev/le0 under SVR4.

•! The midi1 and midi2 device files refer to the MIDI interfaces supported
on the BeBox. Although these files will exist on the Mac, they are simply
aliases to the serial ports. On the PC, the MIDI device files will exist if
you have one or more MIDI devices, usually a sound card installed in
your machine.

•! The parallel files refer to the parallel ports on a machine and are
synonymous with the /dev/bpp or /dev/lp device under SVR4. For
Mac users this device file will not exist.

•! The /dev/ports directory contains the device files for the serial ports on
your machine, referenced as /dev/ports/serial1 through /dev/ports/
serial4 for a BeBox owner, or through to only /dev/ports/serial2 for a
standard PC. For a Mac user, the ports are labelled /dev/ports/modem
and /dev/ports/printer.

•! Finally, the /dev/pt and /dev/tt directories contain the device files for
the individual pseudo-terminals. These are the device files used by
multiple instances of the Terminal application, or by Telnet connections
to the machine. The device files are synonymous with the /dev/pty*
and /dev/tty* range of device files under UNIX.

As you can see, the BeOS supports many of the ports and functions of
the UNIX world, making it simple to work with devices. When working with
terminals, the devices you use will be the stdin and stdout streams or file
descriptors, rather than the direct device files.

Working with Terminals
Typically, the device most people will want more control over is the terminal,
or a serial device if they are writing a communications program. Although
most of the references in this section refer to using terminals, the same
principles and functions can be used to communicate with modems and other
serial devices.

If there is one single area of UNIX development that has caused porters
problems, it is driving terminals. This is a strange occurrence, since many of
the early UNIX systems only had one way of communicating with the outside
world: the text-based terminal. Such advanced systems as keyboards directly
attached to the UNIX machines and built-in video drivers to display the
output to a monitor didn’t exist.

Page%362%of%467

Over the years, a number of different systems and function sets have
been introduced with the specific aim of supporting terminals. The method
for driving terminals can be logically split into two basic areas:

•! The functions used to control and pass information to and from the
terminal drivers. This can be split into termio, as developed for System
V, and termios, which was developed for the POSIX standard and is
based on the termio functions.

•! The data structures used to store information about the abilities and
codes of the terminals you are using, and the functions which make use
of these codes. The structures are further split into a two groups: a
terminal’s capability database, better known as termcap, and a terminal
info database, better known as terminfo.

In this section, we’ll take a look at all four systems and how they interact with
each other.

termio and termios

There are three basic systems for using and controlling terminals, Seventh
Edition UNIX, System V termio and POSIX termios. The old Seventh Edition
UNIX system is no longer in general use, and so in this book we shall ignore
it. The termio system was introduced with System V as a coherent way of
using terminals. The termio system was built on and expanded and
eventually became the termios functions that are defined in the POSIX
standard. The BeOS does not support termio either, but some discussion of it
will help you understand how to interact with this type of machine.

The BeOS, via its POSIX interface, supports the termios system for
working with terminals. However, since many systems still expect to find
ioctl, the BeOS also supports the full ioctl terminal functionality. Even so, for
compatibility it is best to the use the termios functions rather than the ioctl
equivalents.

Basic Principles

It is important to understand some of the basic principles of terminal
configuration and use before we move on to actually using the termio and
termios systems. There are a number of new terms that you will encounter
throughout this section; see the sidebar for a list of these terms and their
meanings.

Page%363%of%467

Terminal Terminology
Here are some basic terms you will come across when using terminals and
terminal-like devices.

•! Queues are used by the terminal drivers to buffer the input and output
between the machine and the terminal. The input queue buffers all
characters typed that have not been read by the currently controlling
process. The output queue buffers all characters that have been sent to
the terminal but not actually written to the output device. The queues
are supported directly by the terminal drivers and are not related to any
buffers set up by the programmer on the individual file descriptor or
stream.

•! Flush means to discard the contents of a queue. This erases any data
waiting to be read or any data not yet displayed by the terminal.

•! Drain means to wait for the input or output on a queue to be read or
written before continuing.

•! Control characters are special characters interpreted by the terminal driver
on input before passing the data onto the controlling process. A good
example is Ctrl-C, which interrupts the progress of a program.

•! Break refers to the action of “dropping” the physical connection between
the machine and the terminal at a hardware level for a fraction of a
second.

•! Baud rate is the number of units of information a modem can send per
second. It is not the same as, but is often confused with, the bit rate,
which refers to the number of bits transmitted by a serial device per
second.

The basic settings of a terminal or serial driver are based on the
hardware settings (baud rate, hardware/software flow control, and so on) and
terminal settings (processed or raw). We will look at setting the terminal
driver using the termio and termios function sets shortly, but first let’s take a
brief look at how characters are interpreted by the terminal drivers.

Both termio and termios specify two settings for how input data is
processed as it flows from the terminal. Canonical mode processes the input
based on a number of rules built into the OS before passing the information to
the calling function. The characters processed by the BeOS and their effects
are shown in Table 20.1. In non-canonical mode, the driver doesn’t interpret
any characters except a newline. Canonical mode is roughly equivalent to the
BSD “cooked” mode and non-canonical mode is roughly equivalent to the
BSD “cbreak” mode. The BSD “raw” mode, which differs from the cbreak

Page%364%of%467

mode in that newline characters are not interpreted, is not supported by the
termio or termios systems.

Table 20.1

Special Characters Interpreted by termio and termios
Name Keyboard Equivalent Description
VINTR Ctrl-C Generate a SIGINT signal
VQUIT Ctrl-\ Generate a SIGQUIT signal
VERASE Backspace Erase the last character
VKILL Ctrl-U Erase the current line
VEOF Ctrl-D Send EOF character
VEOL Ctrl-@ Send alternative end of line
VEOL2 Ctrl-@ Send alternative end of line
VSWTCH Ctrl-@ Switch shell
VSTART Ctrl-Q Resume output after stop
VSTOP Ctrl-S Stop output
VSUSP Ctrl-@ Generate SIGTSTP signal

termio

The termio system relies on the termio structure and a number of supporting
functions which control the device you have opened. The termio structure is
usually defined in the termio.h header file as follows:
struct termio {
 unsigned short c_iflag; /* input modes */
 unsigned short c_oflag; /* output modes */
 unsigned short c_cflag; /* control modes */
 unsigned short c_lflag; /* line discipline modes */
 char c_line; /* line discipline */
 unsigned char c_cc[NCC]; /* control chars */
};

Although the BeOS doesn’t support termio, the same basic macros and
values can be used on both termio and termios. I will list the values here
along with the functions that use them so that comparisons can be made
between the termios functions used on the BeOS and the termio functions
supported on other machines.

The c_iflag variable sets the input modes for the terminal driver. These
are described in Table 20.2. The c_oflag variable sets the behavior of data
output; its values can be seen in Table 20.3

Table 20.2

Flags for c_iflag

Page%365%of%467

Parameter BeOS Value Description
IGNBRK 0x01 Ignore breaks
BRKINT 0x02 Break sends interrupt
IGNPAR 0x04 Ignore characters with parity errors
PARMRK 0x08 Mark parity errors
INPCK 0x10 Enable input parity checking
ISTRIP 0x20 Strip high bit from characters
INLCR 0x40 Map newline to CR on input
IGNCR 0x80 Ignore carriage returns
ICRNL 0x100 Map CR to newline on input
IUCLC 0x200 Map all uppercase to lowercase
IXON 0x400 Enable input SW flow control
IXANY 0x800 Any character will restart input
IXOFF 0x1000 Enables output SW flow control

Table 20.3

Flags for c_oflag
Parameter BeOSValue Description
OPOST 0x01 Enable post-processing of output
OLCUC 0x02 Map lowercase to uppercase
ONLCR 0x04 Map newline (NL) to carriage-return (CR),

newline on output
OCRNL 0x08 Map CR to NL on output
ONOCR 0x10 No CR output when at column 0
ONLRET 0x20 Newline performs CR function
OFILL 0x40 Use fill characters for delays
OFDEL 0x80 Fills are DEL, otherwise NUL
NLDLY 0x100 Newline delay mask
NL0 0x000 No delay after newline
NL1 0x100 One character delay after newline
CRDLY 0x600 Carriage return delay mask
CR0 0x000 No delay after carriage return
CR1 0x200 One character delay after carriage return
CR2 0x400 Two character delay after carriage return
CR3 0x600 Three character delay after carriage return
TABDLY 0x1800 Horizontal tab delay mask
TAB0 0x0000 No delay after tab
TAB1 0x0800 One character delay after tab
TAB2 0x1000 Two character delay after tab

Page%366%of%467

TAB3 0x1800 Expand tabs to spaces
BSDLY 0x2000 Backspace delay mask
BS0 0x0000 No delay after backspace
BS1 0x2000 One character delay after backspace
VTDLY 0x4000 Vertical tab delay mask
VT0 0x0000 No delay after vertical tab
VT1 0x4000 One character delay after vertical tab
FFDLY 0x8000 Form-feed delay mask
FF0 0x0000 No delay after form-feed
FF1 0x8000 One character delay after form-feed

The c_cflag variable sets up the hardware parameters of the terminal
interface. I’ve split these into the bit rate settings, shown in Table 20.4, and
other settings, shown in Table 20.5. Finally, the c_lflag variable sets the line
discipline. The values supported by the BeOS are shown in Table 20.6.

Table 20.4

Bit Rate Settings for c_cflag
Parameter BeOS Value Description
CBAUD 0x1F Line speed mask
B0 0x00 Hang up
B50 0x01 50 bps
B75 0x02 75 bps
B110 Ox03 110 bps
B134 0x04 134 bps
B150 0x05 150 bps
B200 0x06 200 bps
B300 0x07 300 bps
B600 0x08 600 bps
B1200 0x09 1200 bps
B1800 0x0A 1800 bps
B2400 0x0B 2400 bps
B4800 0x0C 4800 bps
B9600 0x0D 9600 bps
B19200 0x0E 19200 bps
B38400 0x0F 38400 bps
B57600 0x10 57600 bps
B115200 0x11 115200 bps
B230400 0x12 230400 bps

Page%367%of%467

B31250 0x13 31250 bps (for MIDI)
Table 20.5

Hardware Settings for c_cflag
Parameter BeOS Value Description
CSIZE 0x20 Character size mask
CS5 0x00 5 bits (not supported by the BeOS)
CS6 0x00 6 bits (not supported by the BeOS)
CS7 0x00 7 bits
CS8 0x20 8 bits
CSTOPB 0x40 Send 2 stop bits, not 1
CREAD 0x80 Enable receiver
PARENB 0x100 Transmit parity enable
PARODD 0x200 Odd parity, else even
HUPCL 0x400 Hangs up on last close
CLOCAL 0x800 Indicates local line
XLOBLK 0x1000 Block layer output
CTSFLOW 0x2000 Enable CTS flow
RTSFLOW 0x4000 Enable RTS flow
CRTSFL 0x6000 Enable RTS/CTS flow
ORTSFL 0x100000 Unidirectional RTS flow control

Table 20.6

Flags for c_lflag
Parameter Value Description
ISIG 0x01 Enable signals
ICANON 0x02 Canonical input
XCASE 0x04 Canonical upper/lowercase
ECHO 0x08 Enable echo
ECHOE 0x10 Echo erase as bs-sp-bs
ECHOK 0x20 Echo newline after kill
ECHONL 0x40 Echo newline
NOFLSH 0x80 Disable flush after interrupt or quit
TOSTOP 0x100 Stop background processes that write to terminal

Using these flags is as easy as setting the individual variables to match
the bitmask you require. However, it is good practice to get the existing
settings of the terminal. You can then set your parameters before returning the
terminal to its previous state.

Page%368%of%467

Using ioctl
Setting up the terminal using the settings shown in the previous tables
requires the use of a function to set up the various parameters for the terminal
or device you are using. Like the fcntl function that we will see in Chapter 22,
ioctl is a catchall function for setting and controlling the parameters on a file
descriptor at a device level. The ioctl function performs so many different
tasks that it is not possible to go into every single one in this book. However,
what we will do is look at the main functionality provided by ioctl,
particularly with reference to the support for driving serial and terminal
devices with termio structures. As I have already stated, the BeOS does not
support termio fully, but it does support some of the abilities of the ioctl
function. It should be pointed out that ioctl is not part of the POSIX
specification, and although it is found on most systems, it is not really a
portable function.

The synopsis for the ioctl command is defined in unistd.h:
#include <unistd.h>
int ioctl(int fd, int op, ...);

The fd argument is the terminal or device to use. The op argument
specifies the operation to perform and, if applicable, the command can also
accept further arguments based on the operation. The list of operations
supported varies from implementation to implementation. In Table 20.7 you
can see a list of operations that you may come across which are supported
under the BeOS, and the values of the corresponding third arguments. In
Table 20.8, you can see the differences between the operation names used for
setting terminal attributes on various OSs.

Table 20.7

Operations for ioctl
Operation Description Final Argument
TCGETA Get attributes struct termios *
TCSETA Set attributes struct termios *
TCSETAF Drain I/O and set state struct termios *
TCSETAW Drain output only and set state struct termios *
TCWAITEVENTGet the current wait state int *
TCSBRK Drain output and send break int *
TCFLSH Flush I/O int *
TCXONC Set flow control int *
TCGETBITS Return the hardware states of the

device
int *

TCSETDTR Set DTR (data terminal ready) None
TCSETRTS Set RTS (ready to send) None

Page%369%of%467

TIOCGWINSZ Get window size struct winsize *
TIOCSWINSZ Set window size struct winsize *

Table 20.8

Setting Terminal Attributes under Different OS
Function termio

request

termios

request

(BSD)

termios

request

(SVR4)

termios

request

(BeOS)
Get current state TCGETA TIOCGETA TCGETS TCGETA
Get special characters TCGETA TIOCGETA TCGETS TCGETA
Set terminal state
immediately

TCSETA TIOCSETA TCSETS TCSETA

Set terminal state (drain
output)

TCSETAW TIOCSETAW TCSETSW TCSETAW

Set terminal state (drain
I/O)

TCSETAF TIOCSETAF TCSETSF TCSETAF

Set special characters TCSETAF TIOCSETAF TCSETSF TCSETAF
In all the descriptions below, ioctl returns a zero on success and -1 on

failure with the error code supplied in the global variable errno.

TCGETA
The TCGETA operation returns the current setting for the specified terminal
in the termios structure pointed to by termstat:
int ioctl(fd, TCGETA, struct termios *termstat);

TCSETA
The TCSETA operation sets the parameters for the specified terminal using
the termios structure specified by termstat:
int ioctl(fd, TCSETA, struct termios *termstat);

TCSETAF
The TCSETAF operation flushes the current input queue. All the characters in
the current output queue are written to the terminal. The function then sets
the parameters for the specified terminal using the termios structure specified
by termstat.
int ioctl(fd, TCSETAF, struct termios *termstat);

TCSETAW
The TCSETAW operation sets the parameters for the specified terminal using
the termios structure specified by termstat after draining the output queue:
int ioctl(fd, TCSETAW, struct termios *termstat);

Page%370%of%467

TCWAITEVENT
The TCWAITEVENT operation returns the current wait state for the specified
device into the int pointed to by event:
int ioctl(fd, TCWAITEVENT, int *event);

The result can be compared against the following predefined macros:

EV_RING Ring condition
EV_BREAK Break condition
EV_CARRIER Carrier detected
EV_CARRIERLOST Carrier lost

TCSBRK
The TCSBRK operation sends a break signal (hardware disconnect) to the
specified terminal:
int ioctl(fd, TCSBRK, NULL);

TCFLSH
The TCFLSH command flushes the input or output queue, depending on the
options specified in the third argument, queue:
int ioctl(fd, TCFLSH, int queue);

Options for queue are shown below:

TCIFLUSH Flush the input queue
TCOFLUSH Flush the output queue
TCIOFLUSH Flush the input and output queues

TCXONC
The TCXONC call sets the software flow control for the terminal specified by
fd based on the third argument, flow:
int ioctl(fd, TCXONC, int flow);

Options for flow are shown below:

TCOOFF Suspend output (Xoff)
TCOON Restart output (Xon)
TCIOFF Suspend input (Xoff)
TCION Restart input (Xon)

TCGETBITS
The TCGETBITS call returns the current status of the serial driver at a
hardware level into the int pointed to by bits:
int ioctl(fd, TCGETBITS, int *bits);

You can check the return value against the following predefined macros:

TCGB_CTS Clear to send is active

Page%371%of%467

TCGB_DSR Data set ready is active
TCGB_RI Ring indicator is active
TCGB_DCD Data carrier detect is active
This is roughly equivalent to the TIOCMGET operation supported under BSD
and SVR4.

TCSETDTR
The TCSETDTR operation sets the data terminal ready signal on the serial
hardware:
int ioctl(fd, TCSETDTR, NULL);

TCSETRTS
The TCSETRTS operation sets the ready to send signal on the serial hardware:
int ioctl(fd, TCSETRTS, NULL);

TIOCGWINSZ
The TIOCGWINSZ returns the current window size into the winsize structure
pointed to by window:
int ioctl(fd, TIOCGWINSZ, struct winsize *window);

The winsize structure specifies the number of columns and rows in the
current window, and, if applicable, the number of pixels (horizontal and
vertical). Programs like jove and emacs use the TIOCGWINSZ call to
determine the size of the window and format the screen accordingly. The
winsize structure is defined as follows:
struct winsize {
 unsigned short ws_row;
 unsigned short ws_col;
 unsigned short ws_xpixel;
 unsigned short ws_ypixel;
};

TIOCSWINSZ
The TIOCSWINSZ call sets the window size based on the winsize structure
window supplied in the third argument:
int ioctl(fd, TIOCSWINSZ, struct winsize *window);

If the size of the window specified is different from the previous setting, a
SIGWINCH signal is sent to the controlling process.

termios

The POSIX standard built on termio and standardized the functions and
structures used with the terminals. One fundamental difference between
termio and termios is that in termios some of the ioctl functionality has been
replaced by a number of individual functions.

The termios system uses the termios structure, which is defined in the
termios.h header file. It is almost identical to the termio structure, the

Page%372%of%467

difference being that individual variables within the structure have a special
variable type:
#include <termios.h>
typedef unsigned long tcflag_t;
typedef unsigned char speed_t;
typedef unsigned char cc_t;

struct termios {
 tcflag_t c_iflag; /* input modes */
 tcflag_t c_oflag; /* output modes */
 tcflag_t c_cflag; /* control modes */
 tcflag_t c_lflag; /* local modes */
 char c_line; /* line discipline */
 speed_t c_ispeed; /* line discipline */
 speed_t c_ospeed; /* line discipline */
 cc_t c_cc[NCC]; /* control chars */
};

The POSIX specification of the structure does not include the c_line
variable, but some systems (the BeOS included) specify it anyway. The only
other difference from the termio structure is that line speeds are set using the
two variables c_ispeed and c_ospeed. They control, individually, the line
speed for the incoming and outgoing data.

The same macros and values can be used to set the same features that
were described for termio above.

tcdrain
The tcdrain function suspends the process until all the data written to a
terminal has been sent:
#include <termios.h>
int tcdrain(int fd);

The function is identical to the ioctl call TIOCDRAIN. The fd argument
should be a currently open terminal and the function returns zero on success
or -1 on failure. The errno variable stores the reason for the error.

tcflow
The tcflow function suspends and restarts terminal output:
#include <termios.h>
int tcflow(int fd, int action);

The function is identical to the TCXONC call to ioctl. The fd argument should
be a currently open terminal. See the TCXONC section under “termio” for
details on the action argument. The function returns zero on success or -1 on
failure. The errno variable stores the reason for the error.

tcflush
The tcflush function flushes the input or output queues for the specified
terminal descriptor. It is synonymous with the TCFLSH call to ioctl:
#include <termios.h>
int tcflush(int fd, int queue_selector);

Page%373%of%467

The fd argument should be a currently open terminal, and the queue_selector
argument specifies the queue to flush. The values are based on the macros
TCIFLUSH, TCOFLUSH, and TCIOFLUSH. TCIFLUSH specifies the input
queue, TCOFLUSH specifies the output queue, and TCIOFLUSH specifies
that both the input and output queues should be flushed. The function
returns zero on success or -1 on failure. The errno variable stores the reason
for the error.

tcgetattr
The tcgetattr function corresponds exactly to the TCGETA call to ioctl and
returns the current status of the terminal into the structure pointed to by term:
#include <termios.h>
int tcgetattr(int fd, struct termios *term);

In fact, the BeOS termios.h header defines it as a macro to the ioctl call:
#define tcgetattr(f, t) ioctl(f, TCGETA, (char *)t)

The function returns zero on success or -1 on failure. The errno variable stores
the reason for the error.

tcgetpgrp
The tcgetpgrp function returns the current process group for the terminal
specified by fd:
#include <termios.h>
#include <unistd.h>
pid_t tcgetpgrp(int fd);

This function is equivalent to the TIOCGPGRP call to ioctl, and returns the
process ID. The function returns zero on success or -1 on failure. The errno
variable stores the reason for the error.

tcsendbreak
The tcsendbreak function sends a break indication on the line to the terminal.
This is equivalent to the ioctl call TCSBRK:
#include <termios.h>
int tcsendbreak(int fd, int duration);

The function returns zero on success or -1 on failure. The errno variable stores
the reason for the error.

tcsetattr
The tcsetattr function corresponds exactly to the TCSETA call to ioctl and sets
the current status of the terminal to the structure pointed to by tp:
#include <termios.h>
int tcsetattr(int fd, int opt, const struct termios *tp);

The function returns zero on success or -1 on failure. The errno variable stores
the reason for the error.

Page%374%of%467

tcsetpgrp
The tcsetpgrp function sets the process group specified by pgrpid for the
terminal specified by fd :
#include <termios.h>
#include <unistd.h>
int tcsetpgrp(int fd, pid_t pgrpid);

This function is equivalent to the TIOCSPGRP call to ioctl, and returns zero on
success or -1 on failure. The errno variable stores the reason for the error.

Additional termios Functions
In addition to the replacements for the ioctl calls, the POSIX definition of
termios also defines six functions specially designed to control the connection
speed values in a termios structure. The remaining function resets the termios
structure to the default values.

The BeOS supports four of the six functions, those designed to set the
input and output speed of the terminal:
#include <termios.h>
speed_t cfgetispeed(struct termios *t);
int cfsetispeed(struct termios *t, speed_t speed);
speed_t cfgetospeed(struct termios *t);
int cfsetospeed(struct termios *t, speed_t speed);

The cfgetispeed and cfgetospeed functions return the input and output
speed, respectively, stored in the termios structure pointed to by t. The
cfsetispeed and cfsetospeed functions set the input and output speed in the
structures pointed to by t to the speed specified by speed. In the latter case,
using the set functions does not actually alter the speed, it only modifies the
speed setting the structure. You still need to use the tcsetattr function to
change the speed of the connection.

Like most functions designed to manipulate variables, the functions are
in fact macros:
#define cfgetispeed(tp) ((tp)->c_ispeed)
#define cfgetospeed(tp) ((tp)->c_ospeed)
#define cfsetispeed(tp, sp) ((tp)->c_ispeed = sp)
#define cfsetospeed(tp, sp) ((tp)->c_ospeed = sp)

Moving from termio to termios

Moving from the System V-based termio system to the POSIX termios system
is relatively straightforward:

•! Change references to termio.h to termios.h

•! Change references to the termio structure to termios

•! Replace calls to ioctl with the corresponding tc* series of individual
functions

Page%375%of%467

•! References to the c_line variable in the termio structure should be
removed. Although this variable is defined in the BeOS, the POSIX
specification doesn’t require it.

termcap and terminfo

In the early years of UNIX development, editing was handled by ed. The ed
program was advanced for its time, allowing you to edit individual lines of a
document. You could even search for text and replace it. Unfortunately,
working on a document more than ten lines long when you can only view
and edit one line at a time becomes tedious.

Editors progressed in the late seventies with the introduction of vi, the
visual version of ed. The same basic functionality remained; what was
different was that you were able to view multiple lines of the document, and
move around them in a way never before possible. This presented something
of a problem for the developer of vi, Bill Joy. The problem was that different
terminals used different sets of control characters and control codes to
perform even basic tasks like moving the cursor around the screen. Out of the
vi project grew the termcap terminal capabilities database. This described the
abilities of each terminal and used a set of functions allowed a programmer to
access the functions in a standard way.

The termcap system was eventually improved upon and became the
curses package. This package offered the same basic functionality, but with
some higher-level and more complex functions added to take advantage of
the clever features being introduced to the newer terminals. The next
development phase was carried out by the UNIX Systems Group (USG)
which improved upon the curses package to produce terminfo. Like curses
before it, terminfo provided the same basic interface to the terminal as
termcap, albeit via a different set of functions. Also like curses, terminfo was
intended to eliminate some of the shortcomings of the termcap system.

The ncurses package has been ported to the BeOS, and can be used as a
direct replacement for curses. It is available from GeekGadgets, details of
which can be found in Appendix A.

The result is that we now have two basic systems for using terminals.
The termcap system is found largely on BSD-based UNIX variants. The
terminfo package is found mainly on System V-based UNIX variants. Some
UNIX systems, such as Solaris, SunOS and HP-UX, supply both termcap and
terminfo. Most application software will have chosen a particular system, or if
you’re particularly lucky will have support built in for both—making them
compatible with a number of systems.

Page%376%of%467

The BeOS supports termcap in favor of terminfo. Below we’ll take a close
look at termcap, and a brief look at terminfo and how it differs from the
termcap system.

termcap

The terminal capabilities database relies on the contents of a single data file
which describes the functions and features of the terminals you want to use.
The identifier used to configure your terminal is the environment variable
TERM; this variable is checked when you first start a shell or other application
and the terminal specified is checked for within the terminal capabilities
database. The BeOS stores the termcap file in /boot/beos/etc/termcap, and
the first entry looks something like this:
ansi|ANSI BeBox Terminal:\
 :al=\E[L:bs:cd=\E[J:ce=\E[K:cl=\E[2J\E[H:cm=\E[%i%d;%dH:co#80:\
 :dc=\E[P:dl=\E[M:do=\E[B:bt=\E[Z:ei=:ho=\E[H:ic=\E[@:im=:li#25:\
 :nd=\E[C:pt:so=\E[7m:se=\E[m:us=\E[4m:ue=\E[m:up=\E[A:\
 :k1=\E[M:k2=\E[N:k3=\E[O:k4=\E[P:k5=\E[Q:k6=\E[R:\
 :k7=\E[S:k8=\E[T:k9=\E[U:k0=\E[V:\
 :kb=^h:ku=\E[A:kd=\E[B:kl=\E[D:kr=\E[C:eo:sf=\E[S:sr=\E[T:\
 :mb=\E[5m:md=\E[1m:me=\E[m:\
 :GS=\E[12m:GE=\E[10m:GV=\63:GH=D:\
 :GC=E:GL=\64:GR=C:RT=^J:G1=?:G2=Z:G3=@:G4=Y:G5=;:G6=I:G7=H:G8=<:\
 :GU=A:GD=B:\
 :CW=\E[M:NU=\E[N:RF=\E[O:RC=\E[P:\
 :WL=\E[S:WR=\E[T:CL=\E[U:CR=\E[V:\
 :HM=\E[H:EN=\E[F:PU=\E[I:PD=\E[G:\
 :Gc=N:Gd=K:Gh=M:Gl=L:Gu=J:Gv=\072:

This entry defines the basic terminal used by the Terminal application
under the BeOS. The file itself contains definitions of all the terminals
supported by the BeOS. In this case, the file is derived from the GNU termcap
package, which is probably as good a starting point as any for aiding the
porting process, especially when porting GNU packages. Lets just have a
quick look at a more familiar entry for a vt220 terminal:
vt220:
This vt220 description maps F5--F9 to the second block of function
keys
at the top of the keyboard. The "DO" key is used as F10 to avoid
conflict
with the key marked (ESC) on the vt220. See vt220d for an alternate
mapping.
PF1--PF4 are used as F1--F4.
#
vt220|DEC VT220 in vt100 emulation mode:\
 :am:mi:xn:xo:\
 :co#80:li#24:vt#3:\
 :@7=\E[4~:ac=kkllmmjjnnwwqquuttvvxx:ae=\E(B:al=\E[L:\
 :as=\E(0:bl=^G:cd=\E[J:ce=\E[K:cl=\E[H\E[2J:\
 :cm=\E[%i%d;%dH:cr=^M:cs=\E[%i%d;%dr:dc=\E[P:dl=\E[M:\
 :do=\E[B:ei=\E[4l:ho=\E[H:if=/usr/lib/tabset/vt100:\
 :im=\E[4h:is=\E[1;24r\E[24;1H:k1=\EOP:k2=\EOQ:\
 :k3=\EOR:k4=\EOS:k5=\E[17~:k6=\E[18~:k7=\E[19~:\
 :k8=\E[20~:k9=\E[21~:k;=\E[29~:kD=\E[3~:kI=\E[2~:\
 :kN=\E[6~:kP=\E[5~:kb=^H:kd=\E[B:kh=\E[1~:kl=\E[D:\
 :kr=\E[C:ku=\E[A:le=^H:mb=\E[5m:md=\E[1m:me=\E[m:\
 :mr=\E[7m:nd=\E[C:\
 :r2=\E>\E[?3l\E[?4l\E[?5l\E[?7h\E[?8h:rc=\E8:\

Page%377%of%467

 :rf=/usr/lib/tabset/vt100:\
 :..sa=\E[0%?%p6%t;1%;%?%p2%t;4%;%?%p4%t;5%;%?%p1%p3%|%t;7%;\
 m%?%p9%t\E(0%e\E(B%;:\
 :sc=\E7:se=\E[m:sf=20\ED:so=\E[7m:sr=14\EM:ta=^I:\
 :ue=\E[m:up=\E[A:us=\E[4m:ve=\E[?25h:vi=\E[?25l:
#
vt220d:
This vt220 description regards F6--F10 as the second block of
function keys
at the top of the keyboard. This mapping follows the description
given
in the VT220 Programmer Reference Manual and agrees with the
labeling
on some terminals that emulate the vt220. There is no support for
an F5.
See vt220 for an alternate mapping.
#
vt220d|DEC VT220 in vt100 mode with DEC function key labeling:\
 :F1=\E[23~:F2=\E[24~:F3=\E[25~:F4=\E[26~:F5=\E[28~:\
 :F6=\E[29~:F7=\E[31~:F8=\E[32~:F9=\E[33~:FA=\E[34~:\
 :k5@:k6=\E[17~:k7=\E[18~:k8=\E[19~:k9=\E[20~:\
 :k;=\E[21~:tc=vt220:

Lines starting with the hash sign (#) are comments and are ignored. The
first line of the terminal description gives the terminal name, as it would be
matched with the TERM environment variable. Any number of names,
separated by the pipe symbol, can be specified. The last entry is the
description of the terminal. Fields are then separated by colons, with each
field specifying the various capabilities of the terminal. The format of these
capabilities is capability=definition. The capability is specified by two letters,
and the case is significant.

The definition specifies the capability by specifying a true or false value,
a number, or a string. In the case of a string, the string specified is the
character sequence to be matched, or the character sequence to be sent to the
terminal to produce the specified capability.

Part of the problem with termcap is that there is no form or structure to
the database. Because of this, there are a couple of pitfalls you should be
aware of when using termcap:

First of all, a definition is freeform; it is up to the program using the
termcap database to select the right type of value from the capabilities list. For
example, the capability could specify a number, but it is up to the program to
use the tgetnum function to return a number.

Also, there is no specification that defines what capabilities should be
described for all terminals within the database. This means that the potential
for using a capability on one terminal that is not available on another terminal
is very high. More seriously, if a basic capability is not specified in the
termcap database but is requested by the program you may get unexpected
results.

Because there is no formal structure, the termcap database is infinitely
expandable. As new terminals are developed, you can easily add features to

Page%378%of%467

the database specifying the different capabilities without being restricted by
standards and required elements. Unfortunately, this unlimited expandability
also leads to the problems already discussed—using unsupported features is
fraught with difficulties.

A number of functions are supplied as part of overall termcap
functionality to support the termcap database. The functions and variables are
defined in the termcap.h header file as follows:
char *UP;
char *BC;
char PC;
short ospeed;

int tgetent (char *buffer, const char *termtype);
int tgetnum (const char *name);
int tgetflag (const char *name);
char *tgetstr (const char *name, char **area);
char *tgoto (const char *cstring, int hpos, int vpos);
void tputs (const char *string, int nlines, int (*outfun) (int));

To use the termcap functions you need to set up two variables. The first
is the buffer which will contain the information from the termcap entry. The
variable should be a character array of 1K in size. Call this buffer tbuf. You
also need a buffer to contain the capability definition. Again, this needs to be a
character array of a suitable size (1K should be sufficient); let’s call this
variable tcbuf. Finally, you also need a character pointer which points to the
start of the capability definition variable, which we’ll call tcptr.

Using these functions looks complicated, but ultimately it is really very
easy and matches the flexible nature of the termcap database. The tgetent
function searches the termcap database for the terminal specified in termtype.
The result, if found, is returned in the character array pointed to by the buffer
argument. This should be the buffer variable (tbuf) we’ve already discussed.
This buffer is used by the rest of the termcap functions by referring to the
buffer via an internal pointer. The tgetent function returns 1 on success, zero if
the terminal you specified couldn’t be found, or -1 if the termcap database
couldn’t be found.

The tgetnum function looks in the tbuf character array for the capability
specified by name and, if it finds it, returns the number stored in that
definition. A -1 is returned if the capability can’t be found in the buffer. The
tgetflag function returns a Boolean value for the capability specified by name.
The function returns 1 if the capability is found or zero if it isn’t found.

To obtain the string for a specified capability, you use the tgetstr
function. The capability is specified by name and is copied into the buffer
pointed to by the argument area. In our example this is tcptr. The tcptr pointer
is then updated to point to the end of the capability buffer. A pointer to the
start of the capability buffer is returned, or NULL if the capability specified is
not found.

Page%379%of%467

From this description, we can summarize the basic process of getting
terminal information from the terminal database:

11.1.!Initialize tbuf with the termcap entry for the specified terminal using
tgetent.

12.2.!Get specific capabilities from tbuf by using tgetstr to copy the individual

entries in tcbuf.

Two final functions provide some additional specific functionality
relevant to the termcap database:

•! tgoto generates a positioning string which can be used in other programs
to place the cursor at a specific location on the screen. The string
returned contains the necessary array of characters to move the cursor to
the position specified by hpos (column) and vpos (line) using the
capability string contained in cstring. All tgoto does is format the string
correctly; it doesn’t actually output the string to the screen.

•! tputs sends the string string to the terminal. The nlines argument
specifies the number of lines that will be affected by the string, and
outfun is the address of a function which can send individual characters
to the terminal. You can usually specify this as putchar.

Whenever you use termcap you must specify the termcap library using
the -l option to the compiler, for example:
$ mwcc tctest.c -ltermcap

to incorporate the termcap functions.

Most problems with termcap center around the terminal description
rather than the functions that support them. Since, essentially, the functions
perform no useful purpose without the database, getting a package which
uses termcap to compile is not usually the problem.

Having said that, of course, I’ve already explained how the definitions
themselves can be misleading, unhelpful, or just plain incomplete. It is the
TERM variable that is usually used to specify which termcap entry to use, so
ensure that your TERM variable is set to ansi if you are using the Terminal
application, or to vt100 or vt220 if you’re using Telnet to access the BeOS
machine.

terminfo and termcap

At its most basic level, terminfo is identical to the termcap system. The
terminfo system also specifies the capabilities of individual terminals in a
terminal database. The major difference is that the terminal information has to
be “compiled” into files for use by the terminfo functions. The terminal
database is also split into individual files, one for each major group of
terminals. Below is the terminfo definition for the vt220 terminal:

Page%380%of%467

vt220|dec vt220 8 bit terminal,
 am, mc5i, mir, msgr, xenl, xon,
 cols#80, it#8, lines#24,
 acsc=``aaffggjjkkllmmnnooppqqrrssttuuvvwwxxyyzz{{||}}~~,
 bel=^G, blink=\E[5m, bold=\E[1m, clear=\E[H\E[J,
 cr=\r, csr=\E[%i%p1%d;%p2%dr, cub=\E[%p1%dD, cub1=\b,
 cud=\E[%p1%dB, cud1=\n, cuf=\E[%p1%dC, cuf1=\E[C,
 cup=\E[%i%p1%d;%p2%dH, cuu=\E[%p1%dA, cuu1=\E[A,
 dch=\E[%p1%dP, dch1=\E[P, dl=\E[%p1%dM, dl1=\E[M,
 ech=\E[%p1%dX, ed=\E[J, el=\E[K, el1=\E[1K,
 enacs=\E)0, flash=\E[?5h$<200>\E[?5l, home=\E[H,
 ht=\t, hts=\EH, ich=\E[%p1%d@, il=\E[%p1%dL, il1=\E[L,
 ind=\ED, is2=\E[?7h\E[>\E[?1h\E\sF\E[?4l, kbs=\b,
 kcub1=\E[D, kcud1=\E[B, kcuf1=\E[C, kcuu1=\E[A,
 kf1=\EOP, kf10=\E[21~, kf11=\E[23~, kf12=\E[24~,
 kf13=\E[25~, kf14=\E[26~, kf17=\E[31~, kf18=\E[32~,
 kf19=\E[33~, kf2=\EOQ, kf20=\E[34~, kf3=\EOR,
 kf4=\EOS, kf6=\E[17~, kf7=\E[18~, kf8=\E[19~,
 kf9=\E[20~, kfnd=\E[1~, khlp=\E[28~, kich1=\E[2~,
 knp=\E[6~, kpp=\E[5~, krdo=\E[29~, kslt=\E[4~,
 lf1=pf1, lf2=pf2, lf3=pf3, lf4=pf4, mc0=\E[i,
 mc4=\E[4i, mc5=\E[5i, nel=\EE, rc=\E8, rev=\E[7m,
 ri=\EM, rmacs=^O, rmam=\E[?7l, rmir=\E[4l,
 rmso=\E[27m, rmul=\E[24m, rs1=\E[?3l, sc=\E7,
 sgr=\E[0%?%p1%p6%|%t;1%;%?%p2%t;4%;%?%p1%p3%|%t;
 7%;%?%p4%t;5%;m%?%p9%t^N%e^O%;,
 sgr0=\E[0m, smacs=^N, smam=\E[?7h, smir=\E[4h,
 smso=\E[7m, smul=\E[4m, tbc=\E[3g,

You can see that the basic information and layout are the same as for
termcap. The minor differences are:

•! Individual definitions are now separated by commas, not colons.

•! Capabilities can be up to five characters long.

•! Definitions can extend to multiple lines without requiring the use of the
backslash character.

•! Individual definitions are terminated using a semicolon, which must be
the last character of the definition.

The text file is compiled using a program called tic (terminal info compiler)
which converts the definitions into a binary format for faster loading and
searching. You can usually also find an untic program which converts a
compiled file into an uncompiled (text) version.

The terminfo functions are also very similar to their termcap cousins:
#include <curses.h>
#include <term.h>
TERMINAL *cur_term;

int setupterm(char *term, int fd, int *error);
int setterm(char *term);
int set_curterm(TERMINAL *nterm);
int del_curterm(TERMINAL *oterm);
int restartterm(char *term, int fildes, int *errret);
char *tparm(char *str, long int p1 ... long int p9);
int tputs(char *str, int affcnt, int (*putc) (char));
int putp(char *str);
int vidputs(chtype attrs, int (*putc) (char));
int vidattr(chtype attrs);
int mvcur(int oldrow, int oldcol, int newrow, int newcol);
int tigetflag(char *capname);

Page%381%of%467

int tigetnum(char *capname);
int tigetstr(char *capname);

The setupterm function is basically identical to the termcap tgetent
function; it sets up the necessary information to be used by the remainder of
the functions. The current terminal is stored in cur_term. The setterm function
is equivalent to setupterm(term, 1, NULL), setting up the terminal for the
standard output device.

The set_curterm function sets the current terminal to the specified
terminal entry, resetting the value of cur_term. The del_curterm function
deallocates the memory allocated for cur_term. To reset the terminal, you use
the restartterm function, which restores the abilities of cur_term, but accounts
for differences in the terminal type or the transmission speed of the terminal.

You can use the tparm function to return the string equivalents of up to
nine capabilities (specified by p1 to p9). This is similar to tgoto but can be
used on any number of parameters, not just setting the cursor position.

The terminfo tputs function is identical to the termcap tputs function,
and putp places the specified string on stdout using putchar. The vidputs and
vidattr functions set up attributes for video terminals. The mvcur function
moves the cursor from the old position to the new position using the best
method available on the current terminal.

Finally, the tigetflag, tigetnum, and tigetstr functions are identical to the
tgetflag, tgetnum, and tgetstr functions under termcap.

With a little work, it shouldn’t be hard to convert a terminfo-based
system to termcap. Since terminfo is the more recent of the two systems it is
highly likely that a package will support termcap in preference to terminfo.

Moving from /dev/pty to /dev/pt

Many UNIX programs will expect to use the /dev/pty and /dev/tty
directories for pseudo-terminals. Most systems, including BSD based and
Solaris, use a simple search sequence to find an available pair of terminal files.
Others will use a function such as ptyopen to automatically search for and
provide the pseudo terminals.

For the BeOS, the former method will have to be used, as no pseudo
terminal functions are provided. In this instance, you can simply substitute /
dev/pty with /dev/pt/ and /dev/tty with /dev/tt/.

Page%382%of%467

Device Drivers
A device driver is a piece of software that drives a hardware device. The driver
itself can be as simple as some functions that interface between standard
programs and the device, like the terminal drivers discussed above, or as
complicated as the function required by the OS to control the hardware device
at its lowest level. A good example of this last type is the graphics display
driver, which is a core component of the OS, allowing the user to interact with
the computer via the normal monitor.

Beyond the “standard” abilities of a programmer, a device driver
programmer, must be capable of working on what I class as a different (but
not necessarily more difficult) plane of programming.

With a standard program, or even a standard function, you are working
within some known limit, probably using nothing more than Standard C
functions to provide the functionality you require. The scope of the program
probably never includes any of the physical devices or facilities provided by
the OS as anything more than an abstraction of the idea—using the functions
supported by the OS to control the device. For example, a file can be opened
by fopen; what goes on behind the scenes is not your concern.

With a device driver, you are going beyond this and actually writing
code that affects the operation of a physical device. You could be writing the
code that controls the disk drive that reads the information about the file off
the disk. This level of programming requires of the programmer a slightly
different view of the world. You need to be on the other side of the fence, no
longer a user of core functionality, but a writer of core functionality.

Of course, all this makes the process seem arcane, and open to only a
select few. In fact, the truth is that writing device drivers is relatively easy,
provided you know how to program and how to control the device you are
writing the driver for.

Writing a device driver for the BeOS is no different from writing one for
a UNIX machine. The same principles apply to the process, even if the
interface to the kernel is different.

The BeOS is supplied (in the /boot/optional directory) with some very
good source examples of how to write device drivers for the BeOS. You
should also be able to find a number of sample device drivers on the Be
website. I have included below the code for the Zero device driver. This is a
simple driver that sets up a device file that will always return zero when
accessed. This should be compiled and then inserted into the /boot/home/
config/add-ons/kernel/drivers. In addition to this file, a server, which is
required to answer the requests, is built by the full project, available on the
website.

Page%383%of%467

/* ++++++++++
 zero.c
 A driver that zeroes things.
++++++++++ */

#include <SupportDefs.h>
#include <KernelExport.h>
#include <Errors.h>
#include <Drivers.h>
#include <string.h>
#include <fcntl.h>

/* -----
 foward declarations for hook functions
----- */

static status_t zero_open(const char *name, uint32 flags,
 void **cookie);
static status_t zero_close(void *cookie);
static status_t zero_free(void *cookie);
static status_t zero_control(void *cookie, uint32 op,
 void *data, size_t len);
static status_t zero_read(void *cookie, off_t pos,
 void *data, size_t *len);
static status_t zero_write(void *cookie, off_t pos,
 const void *data, size_t *len);

/* -----
 device_hooks structure - has function pointers to the
 various entry points for device operations
----- */

static device_hooks my_device_hooks = {
 &zero_open,
 &zero_close,
 &zero_free,
 &zero_control,
 &zero_read,
 &zero_write
};

/* -----
 list of device names to be returned by publish_devices()
----- */

static char *device_name_list[] = {
 "my_zero",
 0
};

/* ----------
 publish_devices - return list of device names implemented by
 this driver.
----- */

const char **
publish_devices(void)
{
 return device_name_list;
}

/* ----------
 find_device - return device hooks for a specific device name
----- */

device_hooks *
find_device (const char *name)
{

Page%384%of%467

 if (!strcmp (name, device_name_list[0]))
 return &my_device_hooks;

 return NULL;
}

/* ----------
 zero_open - hook function for the open call.
----- */

static status_t
zero_open(const char *name, uint32 flags, void **cookie)
{
 if ((flags & O_RWMASK) != O_RDONLY)
 return B_NOT_ALLOWED;
 return B_OK;
}

/* ----------
 zero_close - hook function for the close call.
----- */

static status_t
zero_close(void *cookie)
{
 return B_OK;
}

/* ----------
 zero_free - hook function to free the cookie returned
 by the open hook. SInce the open hook did not return
 a cookie, this is a no-op.
----- */

static status_t
zero_free(void *cookie)
{
 return B_OK;
}

/* ----------
 zero-control - hook function for the ioctl call. No
 control calls are implemented for this device.
----- */

static status_t
zero_control(void *cookie, uint32 op, void *data, size_t len)
{
 return EINVAL;
}

/* ----------
 zero_read - hook function for the read call. Zeros the
 passed buffer. Note that the position parameter, pos, is
 ignored - there is no 'position' for this device.

 We use the memset() function exported from the kernel
 to zero the buffer.
----- */

static status_t
zero_read(void *cookie, off_t pos, void *data, size_t *len)
{
 memset (data, 0, *len);
 return B_OK;

Page%385%of%467

}

/* ----------
 zero_write - hook function for the write call. This will
 never be called, because we catch it in the open hook.
----- */

static status_t
zero_write(void *cookie, off_t pos, const void *data, size_t *len)
{
 return B_READ_ONLY_DEVICE;
}

The basis of all device drivers is the two global functions,
publish_devices and find_device. The publish_devices function is used by the
kernel to find out what devices are supported by this driver. The find_device
function is used by the kernel to find out information about the device when
it is being opened by a calling program. Additional functions are then used to
initialize, un-initialize and access and control the device. Obviously, the
standard set of functions which should be supported are open, close, read,
write, and control.

There are some things that need to be considered however when
developing device drivers under the BeOS. The most significant consideration
is to take account of the multi-threaded operation of the kernel. To help get
round this problem you should use re-entrant functions to prevent device
driver operation for affecting or interrupting the operation of multiple
threads, or even multiple processors. With a more complex driver, you will
need to use semaphores to manage the interaction between the client calls and
the interrupt handler which marks the read as completed.

With a memory mapped device such as PCI card you will also need to
control the interaction between the virtual memory system and the physical
memory. This is because the device driver will expect to copy information
from a section of system memory to the device. If the memory address has
been moved by the virtual memory system you will be copying invalid data
to the device.

Since the process of developing device drivers is very closely linked to
the core BeOS API, I have not gone in to too much detail in this book.
Hopefully this should not cause too much of a problem as there are plenty of
resources available on the internet. The chances of you having to write a
device driver for use within the POSIX environment under the BeOS are rare,
unless you intend to also move some form of hardware over to the new OS as
well. Most hardware that you use in everyday situations is probably attached
by the serial port of the machine, or one of the other ports, and is therefore
easy to communicate with anyway.

There is no arcane magic to using devices, but there is some difficulty and
confusion over how you use terminals. Other the years the methods for using

Page%386%of%467

and controlling terminals and, more recently, serial and modem connections
has changed dramatically.

The differences between the termio and termios support are minimal.
For compatibility the BeOS supports both styles of programming, and so
porting should not be too much of a difficulty. What will be more difficult is
finding a suitable terminal definition in the termcap file to enable you to
control the functionality of the terminal you want to use.

Page%387%of%467

Chapter 21 - Files and Directories

Page%388%of%467

In this chapter we will look at
directory and file access. The
discussion covers five general
topics: General Functions; Streams,
UNIX File Descriptors, Utility
Functions and Filesystems.

The first section deals with the general access functions, which allow you
to set ownership and modes and rename files, among many other things. The
second section deals with streams, and describes the interface to files using
the Standard C stream function set. UNIX-style file descriptors are discussed
in the third section. Then we’ll take a look at some utility functions for
accessing directories, getting information about files, and using file locking. In
the last section we’ll take a quick look at extracting information about
filesystems.

General Functions
Handling files from a user’s perspective—renaming, deleting, and navigating
around directories—involves a collection of routines not vastly different from
the commands used within a shell. All are simple and easy to use, and in the
following sections we’ll take a brief look at each one.

rename

The rename function is the same as the mv command. If you specify the name
of a file or directory it will move it to the new location. The function prototype
is specified in the unistd.h header as follows:
#include <unistd.h>
int rename(const char *old_name, const char *new_name);

The function returns zero on success, nonzero on failure. The error detail is
returned in the global variable errno.

Below is the source for a program I use to quickly convert filenames with
uppercase characters to be entirely lowercase. This is particularly when
working with files from DOS disks. The program itself is easy to follow,
taking in a filename, converting each character and then using the rename
function to actually rename the file.

Page%389%of%467

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

int main(int argc, char **argv) {

 char oldname[255];
 char name[256];
 int n=0;
 int i;

 if (argc>0) {
 for(i=1;i<argc;i++) { /* for each file on the command line */

 oldname[0]=name[0]='\0'; /* Gets round a Sun bug */
 n=0;

 strcpy(oldname,argv[i]); /* Safer to duplicate the arg string
 * than use it directly */

 do {
 name[n]=tolower(oldname[n]); /* convert each
 * character of the
 * filename to lowercase */
 n++;
 } while(oldname[n]!=NULL); /* until we run out of names */
 name[n]='\0'; /* Terminate the string correctly */

 /* Inform the user */

 printf("Changing %s to %s\n",oldname,name);
 rename(oldname,name); /* Actually rename the file */
 }
 }

}

link and symlink

The link function creates a new link to a file. The link created is a hard link (a
duplicate name linked to the same physical file), not a symbolic link (which is
just a pointer to a file). The function prototype is as follows:
#include <unistd.h>
int link(const char *name, const char *new_name);
int symlink(const char *from, const char *to);

The BeOS does not currently support hard links, so this function will always
return -1 (failure). The error number is returned in errno. The BeOS does,
however, support symbolic links which can be created using the symlink
function, also prototyped in the unistd.h header file.

The operation of the symlink function is identical to the link function.
The from argument specifies the name of the file to link to, and the to
argument is the name of the new link. The file being linked does not need to
exist for the link to be created — no checking is performed to make sure the
file exists. The function returns zero on success, non-zero on failure with the
result being placed in errno.

Page%390%of%467

remove

A file can be deleted in two ways. Both are POSIX-specified functions, but
they have their roots in two different trains of thought. The first method is to
use remove, which deletes the specified file. The second method is to use the
unlink function (see below). The function prototype for remove is:
#include <stdio.h>
int remove(const char *name);

The name argument to the remove function specifies the name of the file to
delete. The function returns a zero on success or a nonzero on failure, and
returns the error in errno.

unlink

The unlink function is the companion to the remove function. It removes the
named link, which under the BeOS deletes the specified file (see sidebar):
#include <unistd.h>
int unlink(const char *name);

unlink returns zero on success, and nonzero on failure. The error number is
returned in errno.

At first glance, the unlink and remove functions perform the same
service. In fact, unlink is specially designed to remove symbolic and hard
links. Because of this it is unable to delete a directory, but it can be used to
remove a file. The remove function can be used for both files and directories.
It is identical to the unlink function for files, and the rmdir function for
directories.

Why link?
The terms “link” and “unlink” come from the way the original UNIX Seventh
Edition file system was organized. The basics of the original file system still
exist today, even in systems as advanced as Be’s Journalled File System (BFS).
The BFS uses a journal to record all changes to files. The journal is written to a
special part of the disk when a write operation is requested, but the
modification to the actual file occurs in the background. This allows the write
operation to occur when the drive is less busy, thereby freeing up contention
for the disk and improving the overall speed. A journal file system also allows
a machine to crash and then startup without requiring any special software to
fix potential problems such as fsck under or Disk First Aid on the Mac.
Instead, the OS can simply update the files when the machine has started up
by just processing the outstanding journal entries.

Page%391%of%467

 Like other UNIX based file systems, at the lowest point within the file
system all files are referred to by a number. This is different from most other
OSs, where the file name is the unique identifier. The file number is called an
“inode.” Each inode specifies the logical location (block number) that the file
uses on the disk and the space it uses, and this information is stored in the
inode table. This is essentially no different from the desktop databases used
by the Mac, or the file allocation tables (FAT) used by DOS and Windows.

At the higher, user, level a directory table links the directory names, as
we see them, to the inode numbers, as the OS sees them—hence the term
“link.” Therefore, linking to an inode creates a file. Adding another link to the
same inode generates two file names, both of which point to the same file.
Unlinking an inode deletes the link, or if it is the last link it deletes the file and
frees the physical space on the storage device. You can see the inode numbers
of files by using the -i option to ls, although the information is of little use.

mkdir, chdir, and rmdir

These three functions are identical to the three commands mkdir, cd, and
rmdir available in the shell:
#include <sys/types>
#include <sys/stat.h>
#include <unistd.h>
int mkdir(const char *path, mode_t mode);
int chdir(const char *path);
int rmdir(const char *path);

The mkdir function creates a new directory with the name specified in
the path argument. The mode argument is specified using a bitset. See the
section on open later in this chapter for more information. The rmdir
command only removes “empty” directories, that is, directories with no files
in them. The function does not recursively delete directories like using rm -r
in the shell. The chdir function changes the current working directory to the
directory specified in the path argument for the current process.

With all three functions, the number returned is zero on success and
nonzero on failure with the error contained in errno.

getcwd/getwd

pwd, the built-in function available in the shell, runs the getcwd command to
return the current working directory:
#include <unistd.h>
char *getcwd(char *buffer, size_t size);

Page%392%of%467

The getcwd function copies the name of the current working directory
into the string pointed to by buffer, up to the maximum size specified by size.
The function should return a pointer to the string, or NULL if the function
failed. The error is returned in errno.

The getwd function is the older version, but doesn’t support a fixed size
for the return string. Using a macro you can define the getwd function as:
#include getwd(x) getcwd(x, MAXPATHLEN)

Make sure if you use this macro that you include sys/param.h so that the
MAXPATHLEN macro is available.

Streams
The term “streams” comes from the original functions for accessing files and
the data contained in them from the C standard specified by Kernighan and
Ritchie. They refer to a stream as “a source or destination of data that may be
associated with a disk or other peripheral.” In short, at least as far as we are
concerned, it is a method of accessing, using, and storing data in files.

The basic variable type when using streams is the FILE structure. This
describes the file you have open, its current status, and your position within
the file.In this section we’ll look at the FILE structure, how to access files,
using the setvbuf and setbuf functions, how to create and use temporary files,
how to position yourself within a file and how to handle errors.

The FILE Structure

The FILE structure stores information about a stream. The stdio.h header
supplies the details of the necessary structures and function prototypes, and
contains the following definition for the FILE structure:
struct FILE {
 __file_handle handle;
 __file_modes mode;
 __file_state state;
 unsigned char char_buffer;
 unsigned char char_buffer_overflow;
 unsigned char ungetc_buffer[__ungetc_buffer_size];
 fpos_t position;
 unsigned char * buffer;
 unsigned long buffer_size;
 unsigned char * buffer_ptr;
 unsigned long buffer_len;
 unsigned long buffer_alignment;
 unsigned long saved_buffer_len;
 fpos_t buffer_pos;
 __pos_proc position_proc;
 __io_proc read_proc;
 __io_proc write_proc;
 __close_proc close_proc;
 __idle_proc idle_proc;
};

Page%393%of%467

A lot of this information is only of any use to the system calls and system
libraries that use the FILE structure. It is very rare to come across a program
that wants to use the information stored in the structure, but if you are
porting something like glibc you’ll need to be able to identify at least some of
the fields in the structure. For example, the file positioning functions will need
to know the name of the field which describes the position (which, in this
case, is position!).

The first three lines are more structures: handle, which defines the
system information about the file; mode, which stores the different modes of
the file (open, buffer mode, file kind, and so on); and state, which stores the
current state of the file (for example, the end-of-file condition is stored in this
structure). The current read/write position is stored in the position field. The
FILE structure then goes on to specify the buffer information used by the
internal functions. Finally, a number of function pointers are defined for
describing how the stream is used.

fopen and fclose

You open and close files using fopen and fclose:
#include <stdio.h>
FILE *fopen(const char *name, const char *mode);
int fclose(FILE *file);

The fopen command opens the file specified by name. It returns the
information about the file in the form of a FILE structure, or returns NULL on
error. The error number is stored in errno.

The mode is a character string consisting of one or more of the following:

Mode Description
r Open file for reading.
w Open file for writing.
a Append to file (writes at end of file).
r+ Update, read, and write; all data is preserved.
w+ Truncate to zero length and open for update.
a+ For append update (read anywhere, writes at end of file).
b Use for binary mode. This is not applicable in the POSIX

specification, but is supported for portability reasons. Files are always
opened in binary mode on newer systems so the specification is
largely invalid.

If you specify append mode, all writes will occur at the end of a file,
regardless of the current location returned by ftell. This is true even if you
change the location using fseek. So, for example if you open a file with the
mode “rwa” when you read in the file, reading will start from the first byte of

Page%394%of%467

information. If you start writing to the file, writes will occur at the end of the
file.

The fclose function closes the specified file. It flushes any buffer
information in the process. See the section on fflush, below, for more
information.

An additional function, freopen, will close and then reopen a file. This is
useful if you want to change the mode in which the file has been opened,
something not otherwise achievable without manually closing and reopening
it:
#include <stdio.h>
FILE *freopen(const char *filename, const char *mode, FILE *file);

The file is the current stream to be modified, filename is the path of the
file to open, and mode is the mode to use when opening the new file.
Although it is targeted for use when changing stream modes, it’s possible to
use it to open a different file on the same stream using a code fragment similar
to the one below:
fp=freopen(“newfile”,”r+”,fp);

This helps to reduce program size, although it’s hard to see how much of a
benefit this would be when used with a small number of open files.

fdopen

The fdopen command is regularly used by portable packages. Using fdopen
you can open a stream based on an existing, open, file descriptor:
#include <stdio.h>
FILE *fdopen(int fildes, const char *type);

fildes is the file descriptor, and type is one of the modes outlined above.
On error, NULL is returned; otherwise the new FILE structure is returned.

fileno

The fileno function returns the file descriptor for a given file:
#include <stdio.h>
int fileno(FILE *fd);

fd must be a valid FILE. The function returns the file descriptor number
on success or zero on error.

fflush

You can force a flush using the fflush command. Any pending data to be
written to a file is written, and data to be read in from a file is lost:

Page%395%of%467

#include <stdio.h>
int fflush(FILE *stream);

The function returns EOF (End of File) on error and zero on success. Any
error is returned in the errno variable.

You can also specify NULL to the fflush command, which flushes the
buffers of all the open streams which support buffers.

setbuf and setvbuf

The setbuf and setvbuf commands are used to set up the I/O buffering on
individual streams:
#include <stdio.h>
int setvbuf(FILE *file, char *buff, int mode, size_t size);
int setbuf(FILE *file, char *buff);

The setvbuf command sets up the buffering for the stream file. buff
should be a pointer to an area of memory that can be used as the buffer, the
size being specified by size. The mode describes how the buffer should be
used and is one of the following macros:

_IOFBF! Full buffering

_IOLBF! Line buffering

_IONBF! No buffering

If you specify NULL as the buffer, but a nonzero value for size, then
setvbuf will allocate its own buffer of the size specified. If buff is NULL and
size is zero, then buffering is switched off. In all cases, a zero is returned for
success and nonzero for failure.

Using setvbuf is straightforward, but you need to be careful. It should be
used after the stream has been opened, and before any data has been read
from or written to the stream. The effects of modifying the buffer after reading
to or writing from the stream aren’t documented, but it’s not difficult to
hypothesize about what would happen. Modifying the contents of a buffer
before it has been written, for example, would result in the wrong information
being stored on disk, and quite probably some loss or even corruption of
information.

The setbuf command is a simpler version of the setvbuf command and is
roughly equivalent to:
if (buff ==NULL)
 return(setvbuf(file, NULL, _IONBF, 0));
else
 return(setvbuf(file, buff, _IOFBF, sizeof(buff));

Both functions are replacements for the BSD function setbuffer and
setlinebuf commands:
#include <stdio.h>

Page%396%of%467

void setbuffer(FILE *stream, char *abuf, size_t size);
void setlinebuf(FILE *stream);

The setbuffer command is equivalent to setvbuf command, although it
automatically sets up full buffering. The setlinebuf command sets up a line-
based buffer. Both are supported by the BeOS, but are not part of POSIX or
Standard C.

The most common problem with all these functions is incorrectly
specifying a buffer. If we look at the function open_file below, it sets buffering
using a local variable.

Everything works, until the function returns to the calling function. The
buffer has been lost, because the variable used to store the buffer, mybuf is
longer in memory. The results of reading or writing a stream with a
nonexistent buffer could be catastrophic. The code may actually start writing
to areas of memory that it shouldn’t do, including the program itself. Because
the BeOS uses a protected memory space for the kernel, it is safe to assume
that this would remain intact, but the contents of the calling program, or
indeed any other program or data in use by the user is open to being
overwritten by an overzealous buffering system.
FILE *open_file(char *file);
{
 FILE *fp;
 char mybuf[1024]; /* Local buffer */

 if ((fp=fopen(file,”r+”))==NULL)
 return(NULL);

 setvbuf(fp,mybuf,_IOFBF,1024);
 return(fp);
}

There are three possible solutions. Define the buffer as static, which will
cause the block used by the variable to permanently remain in memory; use
malloc to point to a general area of memory that won’t get lost when the
function exits; or use a global variable to store the buffer. Of all these, option
two is preferred, and it has the added advantage of allowing you to specify
large buffers without affecting stack size. The other two methods are prone to
possible problems. Either memory area could be overwritten by another
process, although it’s unlikely. In addition, the latter case is considered to be
bad programming and adds an unnecessary memory overhead to the entire
program, not just when the buffer is being used.

Temporary Files

Creating and using temporary files always causes problems. Ignoring the
portability issues for the moment, you still need to find a location to store the
file. You could use /tmp under UNIX, but the file system has limited space on
most systems and you don’t want to cause a file system error. Once you’ve

Page%397%of%467

found a suitable directory, then you need to generate a random and unique
name.

If we include the portability issues, then finding a suitable location that
works across a number of platforms is difficult. Not all versions of UNIX
allow users access to /tmp, although they should, and /var/tmp or /usr/
tmp are equally difficult to get access to as they often preserved for OS or
SuperUser access only.

To get around this problem, a number of functions were developed as
part of the original C specification to provide a simple way of either
supplying a pathname to a unique temporary file or opening a temporary file
directly.

tmpnam returns the name of a temporary file that is both in a valid
directory and not the name of an existing file:
#include <stdio.h>
char *tmpnam(char *s);

The name will be returned and copied into the string pointed to by s. If
NULL is specified, then the function returns a pointer to a static string. Using
this function, it’s possible to quickly open and use a temporary file. However,
because the function only returns the name, the file is not automatically
deleted when you close it. You will need to use remove to delete the file.

Although tmpnam is roughly equivalent to the mktemp BSD command,
it isn’t possible to specify a template for the files name to the function.

The tmpfile function is an extension of the tmpnam function that
automatically opens a temporary file returning a FILE structure:
#include <stdio.h>
FILE *tmpfile(void);

The file is opened with a mode of “wb+”, and is automatically deleted
when you close the file with fclose.

File Positioning

There are five basic commands for positioning a stream within a specific file.
The three that most people are familiar with are
#include <stdio.h>
void rewind(FILE *file);
long ftell(FILE *file);
int fseek(FILE *file, long offset, int mode);
fpos_t _ftell(FILE * file);

int _fseek(FILE * file, fpos_t offset, int mode);The rewind function
rewinds the specified file, and clears the end-of-file error (see “Error
Handling,” below). ftell returns a long representing the current position

Page%398%of%467

within the stream, and fseek searches to the position specified by offset using
the reference point specified by mode. The values for mode are:

SEEK_SET Move to the offset relative to the beginning of the file
SEEK_CUR Move to the offset relative to the current location
SEEK_END Move to the offset relative to the end of the file

For example, the call
fseek(fp, 0L, SEEK_SET);

would move to the start of the file, but
fseek(fp, 0L, SEEK_END);

would move to the end.
fseek(fp, -100L, SEEK_END);

would move to 100 bytes from the end of the file (note the negative offset
value), and finally
fseek(fp, 100L, SEEK_CUR);

would move 100 bytes forward from the current position. In all cases, fseek
returns nonzero on an error.

Using these three commands it is possible to move around a file very
accurately, and because we use longs to record the location, we can store this
information easily and portably for use later.

The versions of ftell and fseek that start with an underscore work with
the fpos_t data type. This is defined as a long long and therefore allows us to
specify very large (i.e. larger than LONG_MAX) offsets for large files using
the familiar functions.

The less well-used functions for getting and setting the position within a
stream are fgetpos and fsetpos. They work in much the same way, but the
position is returned in a variable of type fpos_t as defined in Standard C.
However, there is no standard variable type for fpos_t. In the original C
specification it was a long; under BeOS it is a long long in preparation for
support of very large files.
#include <stdio.h>
int fgetpos(FILE *stream, fpos_t *pos);
int fsetpos(FILE *stream, const fpos_t *pos);

fgetpos returns the current location into the variable pointed to by pos
and returns zero on success or nonzero on failure. fsetpos sets the position to
the value of the object pointed to by pos, returning zero on success or nonzero
on failure. fsetpos always clears the end-of-file condition on the stream.

The disadvantage of fgetpos and fsetpos is that they can only be used in
conjunction with one another. Unless you know the position of the start or the
end of the file, you can’t use fsetpos to set the location to either of them.
However, for very large files, using fgetpos and fsetpos is a much faster and
more effective way of moving about a stream.

Page%399%of%467

Error Handling

Most errors that occur in using streams can be identified by a combination of
the return value and the value of errno.

As a generalization, any return of NULL or EOF can be considered an
error; any other value is a success. On an error, you need to decide how to
handle the situation based on the error returned in errno.

Here is a common mistake that is made when using fgets:
FILE *fp;
char buf[256];
fp=fopen(“myfile”,”r”);
while (!feof(fp))
{
 fgets(buf,256,fp);
…
}

Run the program with a file that isn’t a multiple of 256 bytes, and it will
crash on the last block it reads from the file when you try to use it. The
problem is simple enough: The programmer hasn’t checked the result from
fgets, and expecting the feof command in the while statement to identify the
end of file just doesn’t work.

Instead, what you need is:
FILE *fp;
char buf[256];
fp=fopen(“myfile”,”r”);
while (!feof(fp))
{
 if (fgets(buf,256,fp)==NULL)
 break;
 else
 …
}

The error here, highlights one of the basic misconceptions that people
have when using streams. An end of file on a stream is not automatically
identified even if you surround the program section in a catchall statement
like the one I used above.

Once the end-of-file (EOF) condition has been set the stream cannot be
used until you clear the condition. This is true even when you move the
pointer using ftell or fsetpos—it doesn’t reset the EOF condition. For rewind
it’s a different matter; rewind automatically clears the EOF condition as part
of the return to the start of the file. The full list of error handling functions is:
#include <stdio.h>
int feof(FILE *file);
int ferror(FILE *file);
void clearerr(FILE *file);

The feof function, as you already know, returns nonzero if the specified
stream has the EOF condition set. The ferror function returns a nonzero if the

Page%400%of%467

error condition (including EOF) is set on the specified stream. Using clearerr
clears all error conditions for the specified stream.

Other regular errors you’ll come across when opening and accessing files
are problems with file permissions (EPERM), problems with access
permissions to directories in the file’s path (EACCES), no space left on device
errors (ENOSPC), or trying to create a new file on a read-only file system
(EROFS). Checking for these is easy; just compare the value of errno with one
of the predefined error conditions. A full list was given in Chapter 18 when
we looked at the use of strerror.
#include <errno.h>
extern int errno;
if ((errno==EPERM)||(errno==EACCES))
 printf(“Panic!: %s\n”,strerror(errno));

Unix File Descriptors
A UNIX file descriptor is another way of accessing and using the data in files.
In practice, the UNIX-style file descriptors are the basis for most forms of
communication. This is true not only for files, but also for networking (sockets
use UNIX file descriptors) and for the basic access to streams, although
generally you are not aware of this when you open a stream.

When you open a file descriptor you establish a link between the file or
network connection and the file descriptor, which is an integer. There are
three basic file descriptors available in all applications:

Number Stream
Equivalent

Description

0 stdin Standard input, usually the keyboard or the
redirected input from a file

1 stdout Standard output, usually the monitor or terminal
2 stderr Standard error, usually the monitor or terminal

All other file descriptors are given a number above these three basic file
descriptors. Further calls to open new file descriptors increase the number
until the maximum is reached (128, as specified by OPEN_MAX in limits.h).

As you close a file descriptor, it is marked as free, and the next time you
open a new file descriptor it will be given the lowest available free number.
For example, take the code below, which opens 128 file descriptors, and then
closes the descriptors 45 and 67. The next two descriptors opened are 45 and
67, in that order.
#include <stdio.h>
#include <fcntl.h>

void main(void)
{
 int basefd;

Page%401%of%467

 int lastfd;

 basefd=open(“fdtest.c”, O_RDONLY);

 while ((lastfd=dup(basefd))>0)
 printf(“%d\n”,lastfd);

 close(45);
 close(67);

 while ((lastfd=dup(basefd))>0)
 printf(“%d\n”,lastfd);
}

If you compile and run this program you should get output identical to
this:
4
5
6
7
…
126
127
45
67

You can see how the descriptors are opened, then the two specific
descriptors are closed (45 and 67). The next two opened have the two ‘free’
numbers.

open and creat

The two basic commands are open and creat, which open an existing file or
create a new file. respectively:
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
int open(const char *pathnames, int oflags, ...);
int creat(const char *path, mode_t mode);

The oflags argument is a bitwise OR of some predefined macros. You
must specify only one of the following:

•! O_RDONLY! Open for reading only

•! O_WRONLY! Open for writing only
•! O_RDWR! Open for reading and writing

You can then add any number of the following macros:

O_APPEND Set the mode to append; this is equal to the “+” symbol when
used with streams. It sets the file pointer to the end of file prior
to each write operation.

O_CREAT If the file doesn’t exist, allow it to be created. This adds the
mode argument as used by the creat function to the end of the
function definition. See below for the mode specifications.

Page%402%of%467

O_EXCL This can only be used with O_CREAT and causes the open call
to fail if the file already exists.

O_NOCTTY Not currently supported, but it is defined. If set and the file is a
terminal, the terminal will not be allocated as the calling
processes controlling terminal.

AU: So, what does it do normally?

How the heck should I know! :))
O_NONBLOC
K

Do not wait for the device or file to be ready or available.

O_TRUNC This truncates the file to zero length before opening it.
The open command returns -1 if there is an error, with the error number

being placed in errno. Otherwise, a valid, positive file descriptor is returned.
For example, to open a file for reading and writing:
int outfile;
extern int errno;
if ((outfile=open(“out.txt”,O_RDWR))>0)
 printf(“Cant open file: %s\n”,strerror(errno));

The creat function creates a new file with the specified mode, which is a
bitwise OR of one or more of the macros shown in table 21.1.

Table 21.1

Permissions for creat
Macro Value Description
S_ISUID 04000 Set user ID on execution
S_ISGID 02000 Set group ID on execution
S_ISVTX 01000 Save swapped text even after use (forces data or an

application to be stored in physical memory, even after
the application may have quit)

S_IRWXU 00700 Read, write, execute: owner
S_IRUSR 00400 Read permission: owner
S_IWUSR 00200 Write permission: owner
S_IXUSR 00100 Execute permission: owner
S_IRWXG 00070 Read, write, execute: group
S_IRGRP 00040 Read permission: group
S_IWGRP 00020 Write permission: group
S_IXGRP 00010 Execute permission: group
S_IRWXO 00007 Read, write, execute: other
S_IROTH 00004 Read permission: other
S_IWOTH 00002 Write permission: other
S_IXOTH 00001 Execute permission: other

For example, to create a new file with read permissions for all users:

Page%403%of%467

creat(“out.txt”,S_IRUSR|S_IRGRP|S_IROTH);

The creat command can be written in terms of the open command, where
creat(path, mode);

is equivalent to
open(path, O_WRONLY|O_CREAT|O_TRUNC, mode);

close

The close function closes the file associated with a file descriptor and
deallocates the file descriptor to be used by the system again:
#include <unistd.h>
int close(int fildes);

The function returns 0 on success and -1 on failure.

read and write

The read and write functions read to and write from the file associated with
the specified file descriptor:
#include <unistd.h>
ssize_t read(int fd, void *buf, size_t count);
ssize_t write(int fd, const void *buf, size_t count);

The read function reads count bytes from the file associated with the file
descriptor pointed to by fd into the buffer pointed to by buf. The function
returns the number of bytes read, which will be less than count if the number
of bytes left in the file is less than count or if the function was interrupted by a
signal. A -1 is returned on error, with the error returned in errno.

The write function writes count bytes of buf to the file associated with
fd. The function returns the number of bytes written. If the value returned is
-1 or less than count there was an error which will be returned in errno.

If blocking is set on the file descriptor, write will wait until the data can
be written. If blocking is not set, write will write as many bytes as possible
and return the number of bytes written. If blocking is not set and no bytes
could be written, write will return -1 with errno set to EAGAIN.

dup and dup2

It is often useful to duplicate a file descriptor. The dup function duplicates the
specified file descriptor, but just returns the next available number that isn’t
being used. The dup2 command duplicates a file descriptor with the new
number matching the number specified. The dup functions are often used
when creating sub processes with fork so that open files can be shared among
many different processes.:

Page%404%of%467

#include <unistd.h>
int dup(int fd);
int dup2(int fd1, int fd2);

 dup2 first closes fd2, and returns the duplicate file descriptor or -1 on error.

fpathconf

You can use fpathconf to get configuration limits for a specified file or
directory. It works in much the same way as sysconf does on system limits:
#include <unistd.h>
long fpathconf(int fd, int name);
long pathconf(char *path, int name);

The corresponding pathconf returns the information for the file specified by
path.

The predefined macros for returning the limits of the file specified by fd
are:

Table 21.2

Macros for pathconf
Name Description
_PC_CHOWN_RESTRICTE
D

Modifications by chown are not allowed on this
file or directory.

_PC_MAX_CANON Maximum length of a formatted line.
_PC_MAX_INPUT Maximum length of an input line.
_PC_NAME_MAX Maximum length of a file name for this directory
_PC_NO_TRUNC Creating a file in the named directory will fail if

the file name would be truncated, placing
ENAMETOOLONG in errno.

_PC_PATH_MAX Maximum length of a relative pathname from the
specified directory.

_PC_PIPE_BUF Size of the buffer used with the specified pipe.
_PC_VDISABLE Special character processing can be disabled.
_PC_LINK_MAX Maximum number of links to this file.

fcntl

Like its cousin ioctl, fcntl is a catchall function for all the facilities not
supported by other functions. It’s prototype and use is a little more
complicated than your average function too.
#include <sys/types.h>
#include <fcntl.h>
#include <unistd.h>
int fcntl(int fd, int op, ...);

Page%405%of%467

The descriptor on which to act is specified by fd, and op specifies the
operation to be performed. Each operation is selected using a set of
predefined macros:

F_DUPFD! Duplicates the specified file descriptor, returning the
lowest-numbered file descriptor not currently in use. This is equivalent to the
dup function.

F_GETFD! Returns the FD_CLOEXEC flag associated with fd. The
FD_CLOEXEC flag forces calls to exec to close the file descriptors with the
flag set. This is useful when you don’t want certain file descriptors to be
inherited by the program called by exec.

F_SETFD! Sets the state of the FD_CLOEXEC flag based on the third
argument. The correct way to set the flag is to check the flag first and then set
it based on the result. This solves any problems if other flags are already set
on the file descriptor that we may not want to upset. The POSIX Programmers
Guide by Donald Lewine suggests the following code:
flags=fnctl(fd, F_GETFD);
flags |= FD_CLOEXEC;
fcntl(fd, FSETFD, flags);

F_GETFL! Gets the current flags for the specified file descriptor. The
flags returned match those supplied when the file was opened or created:

O_APPEND! File is opened in append mode.

O_NONBLOCK! File does not block when writing data.

O_RDONLY! File is open in read only mode.

O_RDWR! File is open in read/write mode.

O_WRONLY! File is open in write only mode.

F_SETFL! Sets the flags for the file descriptor. Only O_NONBLOCK
and O_APPEND can be set in this way. You should use the same technique as
outlined under F_SETFD above.

We will look at the last three, F_GETLK, F_SETLK, and F_SETLKW,
when we look at file locking later in this chapter.

mmap

The mmap function maps the contents of a specified file descriptor into
memory. This allows you to access the file directly without using read and
write. The full range of functions supporting this is:
#include <sys/types.h>
#include <sys/mman.h>
caddr_t mmap(caddr_t, int len , int prot, int flags, int fd, off_t
offset);
void msync(caddr_t addr, int len);

Page%406%of%467

void munmap(caddr_r addr, int len);

Memory mapped files using mmap are part of the POSIX standard, but are
not part of the supported functions of the BeOS. Unfortunately, it is a function
often used by database code, as it allows memory style access to files, making
database code faster in operation.

It is impossible to simulate the function, and very difficult to provide a
set of functions to support the notion, of memory-mapped files. Even glibc
tends to skip over the functionality, although a version is a supplied with the
package. The mmap functions major disadvantage, and the reason it’s not
often seen, is that it can be memory-hungry and is an incompatible model
when used with devices instead of files.

lseek

lseek is the file descriptor version of the fseek command:
#include <unistd.h>
off_t lseek(int fd, off_t offset, int whence);

The offset argument specifies the position in bytes from the location
specified by whence, which is set using one of the predefined macros:

SEEK_SET Offset from beginning of file
SEEK_CUR Offset from current position
SEEK_END Add offset to end of file
It is identical to the fseek function in every respect except from the
specification of the offset. The fseek function takes a long offset argument,
allowing you to specify 4 terabytes (a terabyte is equal to 1024 gigabytes) of
information. The lseek function uses the off_t type for the offset which is
specified as a long long. This provides a maximum addressable size of 16384
exabytes (an exabyte is equal to over a million terabytes!). Neither limit is
likely to present too much of a problem in the short term.

Utility Functions
Beyond the standard functions for controlling files, using streams and using
file descriptors, there are some utility functions which can help to provide
further useful operations. Accessing and using directory entries is something
that DOS, Windows and MacOS users have to do all the time if you want
support wildcard filenames in your programs. For the UNIX user, much of
this funcationality is supported via the shell and not the via the programs
which are used on top of it.

Page%407%of%467

Once we have found our files, getting information about them, and
protecting the files for being used by other applications is an important
consideration. We will look at the functions, supported and otherwise, that
support these operations in this next section.

Under the BeOS, we also have the added functionality of the attributed
file system. We will take a greater look at file attributes and how to access and
use them at the end of this section.

Directories

Accessing directories is like many functions of the modern UNIX-like OS. It
looks complicated, but is in fact simplicity itself. Everything is controlled by
just four functions, and using them couldn’t be easier.

We’ll look briefly at older implementations of the same functions later,
but it’s worth comparing the simplicity of these functions to the very much
older method of accessing directory contents.

In the original Seventh Edition UNIX, every directory entry was 16 bytes
long, and consisted of the 2-byte inode number and the 14-byte file name. The
Berkeley Fast File System was the first alternative to this original file system
format. As well as increasing the number of bits in an inode from 16 to 32, it
also increased the length of a file name from 14 bytes to 255 bytes. The change
led to the introduction of the direct structure, which itself evolved into the
dirent structure now endorsed by the POSIX standard.

 Even today, this is still considered a relatively recent invention, although
not many UNIX variants are now supplied with 14-character file name limits.

dirent

A directory is defined by the DIR structure specified in dirent.h; also in this
header file is dirent, the specification for a directory entry:
typedef struct {
 int fd;
 struct dirent ent;
} DIR;

struct dirent {
 dev_t d_dev;
 dev_t d_pdev;
 ino_t d_ino;
 ino_t d_pino;
 unsigned short d_reclen;
 char d_name[1];
};

As far as we are concerned, the only useful piece of information in either
structure is the d_name member of dirent. This is the name of the file within
the directory.

Page%408%of%467

opendir, readdir, and closedir

Accessing the directories is relatively simple. You first open a directory using
opendir, which returns a DIR structure, and then this structure is passed to
readdir, which returns a dirent structure containing the file name. Each
subsequent call to readdir returns the next file within the directory. There is a
problem with this method of accessing directory entries. If another
application is creating and/or deleting files in the same directory, you may
miss new files, or try to open a deleted file. This is because you are selecting
individual directory entires, instead of getting an entire listing.
#include <dirent.h>
DIR *opendir(const char *dirname);
struct dirent *readdir(DIR *dirp);
int closedir(DIR *dirp);
void rewinddir(DIR *dirp);

NULL is returned by readdir when there are no more files to be read.
Once you’ve finished reading the directory names, you can go back to the
beginning using rewinddir or close the directory using closedir.

A simple version of ls can be produced in just a few lines:
#include <dirent.h>

void main(int argc, char **argv)
{
 DIR *dirp;
 struct dirent *direntp;

 if (argc<2)
 dirp=opendir(“.”);
 else
 dirp=opendir(argv[1]);
 while ((direntp=readdir(dirp)) != NULL)
 {
 printf(“%s\n”,direntp->d_name);
 }
 closedir(dirp);
}

Of course, all this does is output the list of files in the current or specified
directory, and we haven’t included any of the additional file information
normally supplied by ls. Those of you who are expecting to see some form of
pattern matching have to remember that it is not ls that generates the names
of files based on wildcards, it’s the shell which generates this information and
passes it on to ls as command-line arguments. Getting the additional
information is a little more difficult, but still uses some relatively basic
functions.

Most programs now expect to use the POSIX-compatible dirent
structures and functions. The functions themselves were taken almost without
modification from the System V libraries. Even between System V and BSD,
which eventually agreed on the use of dirent, there are differences in the
structure contents. Going even further back, BSD used to specify direct, not

Page%409%of%467

dirent, although I doubt that you will find many packages using the older
direct structures.

stat, fstat, and lstat

The stat group of functions provide you with information about the status of
files:
#include <sys/stat.h>
int stat(const char *path, struct stat *buf);
int lstat(const char *path, struct stat *st);
int fstat(int fd, struct stat *buf);

stat returns the status of the file specified by path into the structure
pointed to by buf. Each function returns a zero on success or nonzero on
failure, with the error being recorded in errno. The stat structure is defined
within the BeOS as follows:
struct stat {
 dev_t st_dev;
 ino_t st_ino;
 mode_t st_mode;
 nlink_t st_nlink;
 uid_t st_uid;
 gid_t st_gid;
 off_t st_size;
 dev_t st_rdev;
 size_t st_blksize;
 time_t st_atime;
 time_t st_mtime;
 time_t st_ctime;
};

The description of each member is as follows:
Table 21.3

Members of the stat structure.
Member Description
st_dev ID of the device containing the file
st_ino Inode number
st_mode File mode (permissions)
st_nlink Number of hard links to this file
st_uid User ID of file’s owner
st_gid Group ID of file’s owner
st_size File size (not the physical space it uses on the disk)
st_rdev ID of device for character special or block special files (that is,

the devices in /dev)
st_atime Last access time (equal to st_mtime under the BeOS)
st_mtime Last modification time
st_ctime Last status change time

Page%410%of%467

To extract the information about certain elements of the stat structure
you will need to perform a logical AND against the file mode with the file
modes we’ve already looked at such as ST_ISLINK.

The lstat command is identical to the stat command except when used
on a file that may be a symbolic link. If you use stat on a symbolic link it will
return the information about the file the link points to, but if you use lstat, it
returns the information about the link. fstat is also identical to stat, but it
returns the information about an open file descriptor.

Using fstat it’s possible to expand our simple ls to include information
about the file’s size, modes, and times and the other information we are
familiar with from the normal ls. I’ve modified our original ls example to also
display the modification time. It’s not the quickest, or cleanest, piece of code,
but it does demonstrate how easy it is to re-create the functionality of ls:
#include <dirent.h>
#include <sys/stat.h>
#include <time.h>

void main(int argc, char **argv)
{
 DIR *dirp;
 struct dirent *direntp;
 struct stat mystat;
 char namebuf[255], filename[255];
 time_t *mtime;

 namebuf[0]='\0';
 filename[0]='\0';

 if (argc <2)
 {
 dirp=opendir(".");
 strcat(namebuf,"./");
 }
 else
 {
 dirp=opendir(argv[1]);
 strcat(namebuf,argv[1]);
 }
 while ((direntp=readdir(dirp)) != NULL)
 {
 strcpy(filename,namebuf);
 strcat(filename,direntp->d_name);
 stat(filename,&mystat);
 *mtime=mystat.st_mtime;
 printf("%-20s %s",filename,ctime(mtime));

 }
 closedir(dirp);
}

Obviously, there’s lots more to the ls command than I’ve demonstrated
here; even using the stat commands doesn’t give us all the information we
need. If you’d like to know how the ls command works, check out the fileutils
package from GNU, which includes ls and a number of other shell tools you
use regularly such as chmod and chown.

Page%411%of%467

Locking Files

In a multiple-process or multiuser situation you need to be able to lock files to
prevent the same file being written to simultaneously by more than one
process or user. A number of such systems exist, but it’s worth covering how
locking works and what types of lock exist.

There are two basic ways in which you can implement some form of
locking system. The first method is to use lock files, the traditional method of
locking files between processes. First introduced in the Seventh Edition of
UNIX, it was primarily used with the uucp package to prevent more than one
dial-out connection from using the same modem. It operates very simply. For
each file that you want to edit, a lock file is created, either in the same location
with an LCK appended or prepended to the file name, or in a different
directory location altogether.

An application which also wants to open the file first checks for the
existence of the the lock file before attempting to open the real file. If the lock
file exists, the program either exits with an error, or waits a set period of time
before trying again. This method is still in use today and both public packages
(such as emacs) and commercial packages (including Netscape Navigator) use
lock files to prevent multiple accesses to the same file or multiple instances of
a single application.

The second method for locking files is to use a collection of system
functions which set and query the lock status of individual files. This requires
a greater system overhead, as the OS has to keep track of the files that have
locks on, but using the functions is quick and easy. They also provide the
ability to lock sections of a file instead of the entire file.

Lock files have the advantage that, apart from the call to open the lock
file, there is little overhead in the application and the operating system, which
doesn’t have to keep a ‘mental’ track of files with and without locks.
However, the filesystem needs to be accessed to discover the status of the
lock. Although this isn’t a major problem, on a busy filesystem this may slow
down access. Lock files also offer the best cross-platform portability; the
ability to create new files and open them once created is supported on all
platforms.

On the other hand, lock files are difficult to use effectively and not really
very system friendly. They don’t stop another process from opening the file,
either, and so an application could simply ignore the lock file altogether. For
each file you might have to open, you also need to open a lock file, and with
lots of users opening lots of files this could get messy. Using a locking
function which comes as part of the system is a much cleaner idea, and has
slightly less effect on the the filesystem because it doesn’t need to be

Page%412%of%467

interrogated to discover the lock status. The downside is that the OS must be
capable of storing the lock status, and of responding to requests for the
information. However, a locking system is not very portable; not all systems
support all the locking functions, and some don’t support any of them.

When using locks there are a number of terms you should be aware of.
All relate to the type of lock you want to use on a file, and they can be almost
hierarchically arranged. At the top level we have file and record locking. A file
lock applies to the entire file. A record lock applies to a record within a single
file. A record specifies a range of data (specified in bytes) within a single file
and so record locking should really be referred to as range locking.

At the next level is the type of lock. Again these are split into two, and
locks are either advisory (the lock is made, but not enforced) or mandatory (the
lock is made and enforced). The enforcement method involves blocking the
process when it tries to place a lock on a file with an existing advisory lock, or
blocking read/write access if the lock on the file is mandatory.

At the last level you have the opportunity to either share locks on a file
or make a lock exclusive. An exclusive lock can only be held by one process. A
shared lock can be held by multiple processes, but does not allow exclusive
locks to be placed on the file.

So, to recap, it is possible for a process to have an advisory shared lock
on a file or a mandatory exclusive lock on a range of data within that file, or
any combination thereof. Not all lock types are supported by all functions,
however.

Lock files are easy to implement, so next we’ll take a look at the three
system functions commonly used to lock files under UNIX and see which of
these are supported under the BeOS.

flock

The flock function provides an advisory lock on the specified file descriptor.
#include <sys/file.h>
int flock(int fd, int operation);

It supports both shared and exclusive locks on the specified file, but is
not able to enforce the locks by setting an exclusive lock on the file. The
operation is specified by one of the predefined macros:

LOCK_SH Shared lock
LOCK_EX Exclusive lock
LOCK_NB Don’t block when locking
LOCK_UN Unlock

Page%413%of%467

flock is not supported by the BeOS, and most would consider that it
wasn’t a great loss. However, it is used by most of the database libraries, such
Berkeley DB and gdbm.

lockf

From System V comes lockf, a function which allows you to set exclusive
locks on records (or ranges) within a file.
#include <unistd.h>
int lockf(int fd, int function, long size);

The locks can be mandatory or advisory. The function sets the lock from
the current position (you have to use lseek to search to the start point) for size
bytes. Like flock, function is a combination of a set of predefined macros:

F_ULOCK Unlock the range specified
F_LOCK Exclusive lock
F_TLOCK Set lock, or return status if lock cannot be set
F_TEST Test range for locks
Also like flock, lockf isn’t currently supported by the BeOS.

Using fcntl

We looked earlier at the catchall function fcntl, but one of the features we
didn’t look at was file locking. fcntl is actually the best method of locking files
or ranges. Although the BeOS allows the use of the fcntl command for file
locking it will return -1 for all calls. File locking with fcntl is due to be
supported in a future version. For reference, the full range of file-locking
facilities within fcntl is as follows:
#include <fcntl.h>
int fcntl(int fd, int op, ...);

struct flock
{
 short l_type;
 short l_whence;
 off_t l_start;
 off_t l_len;
 pid_t l_pid;
};

You set the various locks by specifying the necessary operation to fcntl,
with the third argument being the flock structure outlined above. Within this
structure the l_type member specifies the type of lock:

F_RDLCK! Read (shared) lock

F_WRLCK! Write (exclusive) lock

F_UNLCK! Clear either lock

The range is specified using l_whence, which uses the lseek function
macros. l_start is the offset from l_whence and l_len is the number of bytes in

Page%414%of%467

the range. Specifying a length of 0 (zero) causes the lock to be made across the
entire file. Three fcntl operations control the use of locks: F_GETLK, F_SETLK,
and F_SETLKW.

F_GETLK returns information about any locks on the range specified in
the flock structure. For example, the code below checks the locks on the first
100 bytes of a file:
struct flock filelock;
filelock.l_type=F_RDLCK;
filelock.l_whence=SEEK_SET;
filelock.l_offset=0;
filelock.l_length=100;
status=fcntl(file,F_GETLK,&flock);

If any part of the range specified is already locked, the flock structure
contains the information about the lock set and the range using the l_whence
and l_offset members. The l_pid member specifies the process ID of the
process owning the lock. If the lock can be set, l_type is set to F_UNLCK; the
rest of the structure is not modified in any way.

F_SETLK attempts to set or release the lock using the information in the
flock structure. It returns zero on success, or nonzero on failure with the error
supplied in errno.

F_SETLKW sets the lock specified, as with F_SETLK, but waits until any
existing lock has been removed before continuing.

readv and writev

The use of readv and writev isn’t specified in either the Standard C or POSIX
definitions, and in general you don’t see them used. They are intended to
perform a scatter read and a gather write. A scatter read takes a collection of
memory blocks spread about the memory space and consolidate them into
one block to be written to a file. A gather write is the opposite, taking a single
block and placing it in a number of smaller blocks of memory. readv and
writev aren’t supported by the BeOS, but are a relatively popular set of
functions, particularly in the networking applications. The function
prototypes are as follows:
#include <unistd.h>
#include <sys/types.h>
#include <sys/uio.h>
int readv(int fd, struct iovec *vector, int count);
int writev(int fd, struct iovec *vector, int count);

The sys/uio.h header file contains the specification of the iovec structure:
struct iovec {
 caddr_t iov_base;
 int iov_len;
};

Page%415%of%467

The two functions are quite easy to write yourself, but the extracts
shown below are taken from glibc, the free C library supported by GNU, and
modified to be BeOS compatible:
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/uio.h>
#define min(a, b) ((a) > (b) ? (b) : (a))

int readv(int fd, struct iovec *vector, int count)
{
 char *buffer;
 size_t bytes;
 int bytes_read;
 register size_t i;

 bytes = 0;
 for (i = 0; i < count; ++I)
 bytes += vector[i].iov_len;

 buffer = (char *) alloca(bytes);

 bytes_read = recv(fd, buffer, bytes);
 if (bytes_read <= 0)
 return -1;

 bytes = bytes_read;
 for (i = 0; i < count; ++i)
 {
 size_t copy = min(vector[i].iov_len, bytes);

 (void) memcpy(vector[i].iov_base, buffer, copy);

 buffer += copy;
 bytes -= copy;
 if (bytes == 0)
 break;
 }

 return bytes_read;
}

int writev(int fd, struct iovec *vector, int count);
{
 char *buffer;
 register char *bp;
 size_t bytes, to_copy;
 register size_t i;

 bytes = 0;
 for (i = 0; i < count; ++i)
 bytes += vector[i].iov_len;

 buffer = (char *) alloca(bytes);

 to_copy = bytes;
 bp = buffer;
 for (i = 0; i < count; ++i)
 {
 size_t copy = min(vector[i].iov_len, to_copy);

 (void) memcpy(bp, vector[i].iov_base, copy);

 bp += copy;
 to_copy -= copy;
 if (bytes == 0)

Page%416%of%467

 break;
 }

 return send(fd, buffer, bytes);
}

File Attributes

The Be File System (BeFS) incorporates a new feature not seen in most file
systems, even the more modern ones. This feature is file attributes. These are
additional pieces of information that are stored with a file as part of the file
system, without actually being part of the file itself. These attributes are user
level pieces of information, and are in addition and separate to the standard
pieces of file information such as modification date, and access permissions.

For example, a file containing an email message would consist,
physically, only of the email message text. File attributes would store the
information on the sender, recipient, and subject. Data is stored as a series of
key/data pairs. For example, a mail message could have the following
attributes:
To = “Martin Brown”
From = “Bob Fisher”
Subject = “Foo”

On a simpler level, file attributes could be used to store keywords about
a file or access control lists, a more specific and superior level of file access
control. The information is stored as part of the filesystem and is indexed. The
information can be searched for and accessed without having to access the file
itself, thereby bypassing the need to use file locking when storing and
searching for simple pieces of information.

Each attribute is given a name, a data type and the data itself and is
contained in a directory accessible in a similar way to the dirent directory
structures. The data can be a string of any form, including information. The
functions and definitions are defined in the be/kernel/fs_attr.h header file as
follows:
typedef struct attr_info
{
 uint32 type;
 off_t size;
} attr_info;

ssize_t fs_read_attr(int fd, const char *attribute, uint32 type,
 off_t pos, void *buf, size_t count);
ssize_t fs_write_attr(int fd, const char *attribute, uint32 type,
 off_t pos, const void *buf, size_t count);

int fs_remove_attr(int fd, const char *attr);

DIR *fs_open_attr_dir(const char *path);
DIR *fs_fopen_attr_dir(int fd);
int fs_close_attr_dir(DIR *dirp);
struct dirent *fs_read_attr_dir(DIR *dirp);
void fs_rewind_attr_dir(DIR *dirp);

Page%417%of%467

int fs_stat_attr(int fd, const char *name, struct attr_info *ai);

The fs_read_attr function reads the data from position pos of the
attribute called attribute of the file specified by fd, returning the information
in the variables pointed to by the remainder of the call. The fs_write_attr
function performs the opposite, writing the attribute information into the
attribute specified by attribute. Using the pos argument you can write
information to selected sections of the attribute data. The write operation will
add a new attribute if the name does not already exist, or update an existing
attribute.

The fs_remove_attr command removes the specified attribute from the
file entirely.

The fs_open_attr_dir and fs_fopen_attr_dir open the attributes for the
file specified by path or fd respectively. Subsequent calls to fs_read_attr_dir
return the attribute names in a dirent structure. To rewind to the start of the
directory, use fs_rewind_attr_dir and to close the directory listing use
fs_close_attr_dir.

Finally, the fs_stat_attr function call returns the type and size of a
specified attribute.

Although the attribute system will not be compatible with any other
filesystems, you may need to use the above functions to retain compatibility
between the POSIX and BeOS applications. For example, some compression
programs are using the above interface to allow Be files, including their
attributes, to be stored correctly within a standard compressed file.

File Systems
A number of applications need to know the available space on a particular file
system. For example, Usenet news servers such as inn need to know how
much space is left before accepting new news messages so they don’t cause
the OS to crash because of a lack of space.

There are two basic functions which return information about a specific
file system into a predefined structure: statfs and statvfs. The BeOS does not
support either function at the moment, and extracting information about the
file systems requires that you delve into C++ and the BeOS Storage Kit to gain
information about the mounted volumes.

I won’t go into the details here of how to use the Storage Kit and
interface it to your POSIX-style application. The one thing I will say, however,
is that it does not provide you with the same level of information as either
structure and function combinations available with statfs and statvfs.

Page%418%of%467

select and poll
The select and poll functions allow you to use non-blocking I/O in your
programs. This reduces the waiting time, and enables you to accept input
from devices that may not be constantly supplying information. For example,
you would use select to wait for some information on a serial line.

The current implementation of the BeOS does not support the select
function, except on network sockets, and doesn’t support the poll command
at all. We’ll take a look at the select support in the next chapter.

File handling forms the core of many applications, and it is essential that you
know how to use the functions that are available and fill the gaps left by those
functions which don’t exist.

The BeOS is not completely POSIX-compliant, nor is it very UNIX-
compatible when it comes to file support, and particularly some core
functionality. The select and poll commands especially make it difficult to
port some of the more complex titles.

Page%419%of%467

Chapter 22. - Networking
Networking was once an expensive extension to the operation of computers.
Not only were the cabling difficult to fit and the cards expensive to purchase,
the software available for communicating between machines was unreliable
and difficult to use and didn’t really provide much benefit over the traditional
“sneaker-net” method of carrying disks around the office.

Today the network forms an integral part of the whole computing
experience.

The implementation of network services relies on some very simple
principles and some basic protocols that define how machines communicate.
Depending on how and what you want to communicate, there may be further
layers above these protocols that make the implementation easier. The main
protocol in modern use is the socket, a simple channel which allows two-way
communication between machines, using Standard C functions for
transferring information. Sockets are the basic level of communication on the
Internet.

In this chapter, we will take a look at the BeOS implementation of
sockets and the utility functions used to support them. Sockets are not
specified in the POSIX specifications, the closest standard is the original BSD
implementation.

Sockets
Sockets were first introduced in the Berkeley 4.2 version of UNIX in 1981.
They have since become a major component of the network protocols that
govern the Internet and a large part of the general network communication
methods. They are now supplied as part of all variants of UNIX, and
numerous implementations are available on the PC, the Mac, and other
platforms. They provide a basic level of communication service over a
network, while also being flexible enough to adapt to almost any task.

Sockets can be adapted both for internal communication on the same
machine and for communication across a network to other machines. Sockets
are opened and created in much the same way as UNIX-style file descriptors
—under UNIX you can even use the same functions to read and write to a
socket. Under the BeOS, you use a different set of functions to send and
receive data over a socket. They are not specific to BeOS (they are also defined
under UNIX), but they are specifically for use on sockets. The difference is
that the socket you open is to a remote machine, not to a local file.

Page%420%of%467

A socket is essentially just a logical point of reference for connecting to a
machine. The socket itself is no more than a number, but the information
bound to the socket describes its format and unique address. One of the
features that make sockets so versatile is that multiple sockets (to multiple
machines) can be open at any one time. This is because each socket has its
own unique port number. Therefore a network connection using sockets
needs to be described by the address of the machine you are connecting to
and the port number on that machine. Specific ports are used for specific
protocols; for example, port 25 is used by the Internet SMTP (Simple Mail
Transfer Protocol) for exchanging e-mail between machines.

When a socket is opened it is of one of three types: stream, datagram, or
raw. A stream socket provides a stable bidirectional flow of information. A
stream socket is not reliant on records for transferring information and so data
can be streamed in large chunks over the network to the recipient machine. It
is possible to use a pair of stream sockets to emulate the functionality of pipes
(see Chapter 18).

Datagram sockets are less reliable. They work on the premise of individual
packets of information being exchanged, although the packets received may
be duplicated or in a different order than that in which they were sent.
Although at first glance this seems to provide a less stable communication
medium, it is a useful implementation when you’re working with packet-
switched networks such as Ethernet. This is because the packet structure for
the underlying and application level protocols is very similar.

Raw sockets provide low-level access to the underlying communication
protocols used on the specific network. Although they are not of interest to
the general user, they can sometimes be used to gain access to the more
obscure features of an existing protocol. Raw sockets are not currently
supported under the BeOS networking implementation.

In the following sections we’ll walk through the sequence of events
required to set up sockets by looking at the individual functions that make up
the process. As a rough outline, the basic steps are:

13.1. Create the socket
14.2. Bind to the socket you have just created
15.3. Connect to a remote machine or listen for a connection, using the socket

as the channel through which to connect or listen.
16.4. Read or write the information from or to the socket
17.5. Close the socket

socket and closesocket

Page%421%of%467

As we have already seen, a socket is simply a reference number, in much the
same way that a UNIX file descriptor is just a number. The information
attached to the socket number specifies the address format to use for
interpreting names, the socket type (as outlined above), and the protocol to
use. The socket function returns a valid socket number (descriptor) and the
closesocket function closes the specified descriptor. They are both prototyped
in socket.h as follows:
#include <socket.h>
int socket(int family, int type, int proto);
int closesocket(int fd);

The family argument to socket specifies the address family to use when
interpreting addresses. The standard specification for this is via the macro
AF_INET, which specifies the Internet address type. The type argument
relates to the socket type, as outlined above. You specify the type using the
macros SOCK_STREAM (for stream sockets) and SOCK_DGRAM (for
datagram sockets). Raw sockets are not currently supported by the BeOS.

The last argument, proto, specifies the protocol to use for the socket. You
can use the default protocol, zero, if you don't want to specify a particular
protocol; otherwise, a number of protocol options exist. The BeOS supports
three types: UDP (User Datagram Protocol), TCP (Transmission Control
Protocol), and ICMP (Internet Control Message Protocol).

The UDP protocol (specified by the macro IPPROTO_UDP) is only
applicable to datagram sockets. It helps to support the packet-based
transmission of information over the socket. It uses the same address format
as TCP and is a protocol layer on top of the basic Internet Protocol (IP)
networking layer. Once opened, UDP sockets use the send and recv family of
functions to transfer information.

The TCP protocol (IPPROTO_TCP) is what most people recognize as the
Internet protocol (the Internet is specified as using TCP/IP). Like UDP, TCP
sits on top of the basic IP protocol layer and supports streaming sockets.
Because the TCP-based sockets are streaming, under UNIX we could use the
standard read and write C functions to transfer information over the network.
However, the BeOS defines sockets and file descriptors differently, so you will
need to use the send and recv functions to transfer data. This is similar to
Windows NT.

The ICMP protocol (IPPROTO_ICMP) is an error and control message
protocol used to check the status of a remote machine or the networks used to
reach the remote machine. It is ICMP packets that support the ping
application that reports if a machine is accepting connections or not. ICMP is
also used by tracing programs to discover the route packets take to reach a
particular destination. Like TCP and UDP, ICMP is a protocol placed directly
on top of the IP layer. Because the ICMP protocol is not generally used to send

Page%422%of%467

or receive information, there are no standard functions used with this
protocol.

The returned value from the socket function is a valid file descriptor
(non-negative number), or -1 if an error occurs. The error type is returned in
the external variable errno. For example, to create a valid stream-based socket
we would use the following piece of code:
int fd;
fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);

To close an open socket we can use the close function under UNIX. This
function is not supported under the BeOS, we need to use the socket-specific
closesocket function. The only argument to this function is the open socket.
Because the closesocket function is specific to the BeOS and you should use
the close function to remain compatible with other operating systems. Use the
code similar to the following to use the correct function:
#ifdef BEOS
closesocket(s);
#else
close(s);
#endif

Windows has similar ‘broken’ sockets. You may find in some packages
that the Windows definitions already exist, so finding and using the Windows
workarounds should speed up the porting process.

bind

Creating a socket using the socket function does not open a connection, it
merely reserves a file descriptor for use when the connection is created. The
bind function binds a socket's file descriptor to a particular name. The name
you bind to is the name of the remote machine and is specified in the name
argument, which is a variable-length structure. To compensate for this you
also have to specify the length as the last argument to the function:
#include <socket.h>
int bind(int s, struct sockaddr *name, int namelen);

The function returns -1 on error with the error number specified in errno;
otherwise, the function returns a zero.

When specifying a network address for use with the function you
actually use the sockaddr_in structure to specify the address and port
required. The structure is defined in the socket header file as:
struct sockaddr_in {
 unsigned short sin_family;
 unsigned short sin_port;
 struct in_addr sin_addr;
 char sin_zero[4];
};

Page%423%of%467

The enclosed in_addr structure specifies the Internet address and is defined
as:
struct in_addr {
 unsigned int s_addr;
};

The address should be the Internet address (in dot notation) of the
machine you are connecting to. See “Utility Functions,” later in this chapter,
for details on converting Internet addresses. If you are creating a socket to be
used by a server of some kind, you can specify that the socket should bind to
any valid Internet address by specifying the macro INADDR_ANY.

The sin_port member of the sockaddr_in structure is the port number of
the service you are connecting to. The code below is extracted from a socket-
based server application. It creates a new stream socket called listen_socket
and binds the socket to port 12000 on any address:
struct sockaddr_in sin, conn_addr;
int listen_socket;

if ((listen_socket=socket(AF_INET,SOCK_STREAM, 0)) < 0)
{
 writelog("Unable to get socket");
 exit(1);
}

sin.sin_family=AF_INET;
sin.sin_addr.s_addr=INADDR_ANY;
sin.sin_port=htons(12000);

if (bind(listen_socket, &sin, sizeof(sin)) < 0)
{
 writelog("Unable to bind on socket");
 exit(1);
}

Although the bind function sets up a socket with a specific address and
port, it doesn’t actually open a connection. It is intended for use by servers to
set up the socket file descriptor to accept connections. To open a socket
connection to a remote machine we need to use the connect function.

connect

The connect function connects to the remote machine and opens the socket.
The basic format is identical to that of the bind function:
#include <socket.h>
int connect(int fd, const struct sockaddr *addr, int size);

As in the previous example, the addr structure specifies the remote machine
address and port number. The function returns 0 on success or -1 on failure
with the error recorded in errno.

listen

Page%424%of%467

When setting up the server end of a socket connection you need to configure
the application so that it listens for requests on the specified port. The listen
function sets the socket to be listened to:
#include <socket.h>
int listen(int fd, int backlog);

The fd argument is the file descriptor as returned by socket. The backlog
argument specifies the number of pending connections to queue before
refusing any further client connections. There is currently no limit for the
backlog variable, but there are constraints to consider in setting limits. Too
low, and you may ignore connections that are pending. Setting the value too
high may cause too much server latency when accepting requests. A figure of
8 or 16 is probably the most useful, although you may wish to increase this on
a busy machine to 32 or perhaps even 64.

A value of zero is returned on success, and -1 on failure. Once a
connection request has been received, it must be accepted by the accept
function.

accept

The accept function accepts a connection on the specific socket and file
descriptor.
#include <socket.h>
int accept(int fd, struct sockaddr *addr, int *size);

The fd argument is a socket that has been created by socket and bound
using bind, and is being listened to by listen. The function extracts the first
pending connection on the queue and creates a new file descriptor socket
based on the setup of the fd socket. The function returns the new file
descriptor, or -1 on error.

The new file descriptor that is returned is used to communicate with the
client machine that connected to this socket; the socket is not used to accept
further connections on the original socket port.

As an extension of our previous example, the full code for a server
listening on port 12000 would look something like this:
#include <socket.h>
#include <stdio.h>

int news, on=1;

int main(void)
{
 struct sockaddr_in sin, conn_addr;
 int addrlen;
 int listen_socket;

 if ((listen_socket=socket(AF_INET,SOCK_STREAM, 0)) < 0)
 {
 writelog("Unable to get socket");

Page%425%of%467

 exit(1);
 }

 sin.sin_family=AF_INET;
 sin.sin_addr.s_addr=INADDR_ANY;
 sin.sin_port=htons(12000);

if%(bind(listen_socket,%(struct%sockaddr%*)&sin,%sizeof(sin))%<%0)

 {
 writelog("Unable to bind on socket");
 exit(1);
 }

 if (listen(listen_socket, 5) == -1)
 {
 writelog("Unable to listen on socket");
 exit(1);
 }

 switch(fork())
 {
 case -1: writelog("Unable to fork");
 exit(1);

 case 0: close(stdin);close(stderr);

 for(;;)
 {

 addrlen=sizeof(struct sockaddr_in);

news=accept(listen_socket,(struct%sockaddr%*)&conn_addr,&addrlen);

 if (news == -1) exit (1);
 switch(fork())
 {

 case -1: exit(1);

 case 0: recv_mesg();
 exit(0);

 default: close(news);
 }
 }

 default: exit(0);
 }
}

The code creates the socket, which listens for new connections on port 12000.
When a connection request is received a new process is forked with the
specific purpose of responding to the request of the client. However, before
you use this code, be aware that this doesn’t work under BeOS.

The reason we use the fork function is that the file descriptors are
duplicated, and we can therefore pick up the pending connections on the
listening socket. As we’ve already seen though, the BeOS does not treat a
network socket and a file descriptor in the same way. This means that when
the process forks, the BeOS does not inherit the socket, and is therefore unable
to attach itself to the incoming connection. This makes porting networking
code using sockets very difficult.

Page%426%of%467

Under UNIX, this system also allows us to accept multiple connections
on the specified port without upsetting the core listening process. Most server
applications, such as FTP servers or Web servers, use this method to handle
multiple connections simultaneously. They can also fine-tune the number of
requests they accept by controlling the maximum number of forked processes,
and by controlling the backlog argument to the listen function.

getsockname and getpeername

The getsockname and getpeername functions return information about the
local socket and remote socket, respectively.
#include <socket.h>
int getsockname(int fd, struct sockaddr *addr, int *size);
int getpeername(int fd, struct sockaddr *addr, int *size);

The getsockname function returns the name information for the socket
specified by fd, returning the information in the structure pointed to by addr
with the size returned in the integer pointed to by size. Zero is returned if the
call succeeds, or -1 if it fails.

To find out the name of the machine connected to a specific socket you
use the getpeername function. This returns the name information of the
connected machine in the same structure as getsockname. The same values of
zero for success and -1 for failure apply.

Once the information has been returned in the sockaddr structures you
can use the gethostbyaddr function to obtain the host’s name.

setsockopt

You can manipulate the options on a specific socket using the setsockopt
function. The setsockopt function is defined within the socket.h header file as
follows:
#include <socket.h>
int setsockopt(int sd, int prot, int opt, const void *data,
unsigned datasize);

The getsockopt function, which returns the options for the specified
socket, is not supported by the current version of the BeOS. If a package
expects to find this function, comment out the code and make sure that
during the debugging process you test the effects of removing this section of
code.

The sd argument specifies the socket descriptor to set the options on. The
prot argument specifies the level at which the option should be set. To set the
option at the socket level, specify the macro SOL_SOCKET. To set at a

Page%427%of%467

different level, you need to specify the protocol number. Levels other than
socket level are not currently supported by the BeOS.

The opt argument is used to specify the option you want to set. The
BeOS supports three options, as listed in Table 22.1. Other options not
supported by the BeOS are shown in Table 22.2.

Table 22.1

Valid BeOS Options to getsockopt opt
Option Action
SO_DEBUG Toggle recording of debugging information
SO_REUSEADDR Toggle address reuse
SO_NONBLOCK Toggle non-blocking I/O

Table 22.2

Other Options to getsockopt opt
Option Action
SO_KEEPALIVE Toggle keeping connections alive
SO_DONTROUTE Toggle routing bypass
SO_LINGER Linger on close if data is present
SO_BROADCAST Toggle permission to transmit broadcast messages
SO_OOBINLINE Toggle reception of out-of-band data in band
SO_SNDBUF Set buffer size for output
SO_RCVBUF Set buffer size for input

The last two arguments in Table 22.2 are used to supply additional
information to the option, depending on the option selected. The function
returns zero on success and -1 on failure.

The main use for the setsockopt function is to set non-blocking I/O.
We’ll take a closer look at using sockets and non-blocking I/O later in this
chapter.

send and recv

You can use a number of different functions to send data to and from a socket.
The functions you use depend on the data you are sending and the socket
type you have opened. Under UNIX if the socket is of type SOCK_STREAM,
then you can use the read and write function calls just as you would use them
on standard UNIX file descriptors.

However, under the BeOS the sockets are not created in the same way as
UNIX file descriptors. Instead of read and write we need to use specially
designed functions send and sendto for writing information to the socket, and

Page%428%of%467

recv and recvfrom for reading data from the socket. These functions are
supported by other OS for using sockets, but, because the BeOS does not
support them you may have to change the code to use these functions in place
of the UNIX file descriptor versions. This is troublesome and time consuming,
although once completed the code should still be cross platform compatible. If
a socket is of type SOCK_DGRAM then you can only use the sendto and
recvfrom functions.

All four functions are defined in socket.h as follows:
#include <socket.h>
ssize_t recvfrom(int fd, void *buf, size_t size, int flags,
 struct sockaddr *from, int *fromlen);
ssize_t sendto(int fd, const void *buf, size_t size, int flags,
 const struct sockaddr *to, int tolen);
ssize_t send(int fd, const void *buf, size_t size, int flags);
ssize_t recv(int fd, void *buf, size_t size, int flags);

The send function writes a block of data specified by the argument buf
and of length size to the socket specified by the argument fd. The final
argument is used to specify the options for sending the data. The BeOS only
supports the macro MSG_OOB, which sends out-of-band data on sockets that
support this option (see setsockopt, above). Otherwise the flags argument can
be set to zero.For example, to send a string of information over the socket
rem_socket you would use the following code fragment:
strcpy(buf,”Hellow World”);
send(rem_socket, (void *)buf, sizeof(buf), 0);

The recv function is the equivalent function but reads information from
the specified socket instead of writing it. The information received is stored in
the variable pointed to by the buf argument.

Out-of-Band Data
The stream socket supports the notion of out-of-band data. Out-of-band data is
an independent transmission channel separate from the main transmission
channels used by the sockets for transferring information. The socket
implementation specifies that the out-of-band functions should support the
reliable delivery of at least one out-of-band message at any one time. The
message must contain at least one byte of data.

Usually, out-of-band data is used to control the flow of information
between machines without affecting the flow of information on the main
transmission channel.

The recvfrom and sendto functions are identical to the recv and send
functions but are designed to be used with datagram sockets. The only
difference is that you must also specify the datagram address information in

Page%429%of%467

the sockaddr structure format specified by the from and to arguments. You
also need to specify the size of the structure you are supplying to the function
in the fromlen or tolen arguments, respectively. In all cases, the functions
return the number of bytes read from or written to the socket, or -1 if an error
occurred. The error is returned in the global variable errno.

The recvmsg and sendmsg functions, which are used to transfer fixed-
format messages over a socket, are not currently supported by the BeOS.

Utility Functions
Different functions expect, and return, Internet addresses in different formats.
Most people are familiar with net addresses as a collection of numbers or a
collection of strings, for example, 127.0.0.1 or www.be.com. While we
understand and can interpret these numbers easily, computers are naturally
more specific about the format an address is in.

The number format x.x.x.x is known as the Internet-standard “.“
notation. Each number is represented by a single byte containing a value
between 0 and 255. An Internet address is unique to an individual machine or
network interface inside a machine, and with 256x256x256x256 numbers we
can specify just under 4.3 billion Internet addresses. Because an address is
made up of four individual bytes, it can be represented by a single four-byte
variable. The type used for this is an unsigned long, which as we already
know from Chapter 18 is four bytes long.

The inet_addr function converts a standard “.” notation address into an
unsigned long:
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>
unsigned long inet_addr(char *cp);

If you need to convert an unsigned long back to an Internet address, you can
use the inet_ntoa function. This works in reverse, but the information passed
to the function must be enclosed in an in_addr structure. This is, in fact, just a
structure containing an unsigned long, and on the BeOS it is supplied in the
socket.h header file as follows:
struct in_addr {
 unsigned int s_addr;
};
char *inet_ntoa(struct in_addr in);

Note. Under the BeOS int and long are of identical size.
Some packages, particularly the older ones or those targeted at SunOS

users, define a much more complicated format for the in_addr structure:
struct in_addr {
 union {
 struct { u_char s_b1, s_b2, s_b3, s_b4; } S_un_b;

Page%430%of%467

 struct { u_short s_w1, s_w2; } S_un_w;
 u_long S_addr;
 } S_un;
#define s_addr S_un.S_addr
#define s_host S_un.S_un_b.s_b2
#define s_net S_un.S_un_b.s_b1
#define s_imp S_un.S_un_w.s_w2
#define s_impno S_un.S_un_b.s_b4
#define s_lh S_un.S_un_b.s_b3
};

Most packages should use (and should continue to use) only the s_addr
member of the structure (specified here using a macro).

gethostbyname

The gethostbyname function obtains the Internet address attached to a
specific hostname. The information is returned in a hostent structure:
#include <net/netdb.h>
struct hostent {
 char *h_name;
 char **h_aliases;
 int h_addrtype;
 int h_length;
 char **h_addr_list;
};
struct hostent gethostbyname(char *name);

Queries are sent to the Internet name service. The queries are first
checked against the domain-name service records (using the default domain
name) or against the hosts file if a name server isn’t specified. Under UNIX
this file was /etc/hosts (the BeOS file is located at /boot/beos/etc/hosts and
will be found via a symlink between /etc and /boot/beos/etc). A NULL is
returned if no matching host can be found in any of the databases. The
members of the structure are shown in Table 22.3.

Table 22.3

The Members of the hostent Structure
Member Meaning
h_name The full host name, including domain if applicable
h_aliases A NULL-terminated array of alternative names

for the specified host
h_addrtype The address type, currently AF_INET
h_length The address length, in bytes
h_addr_list A list of valid network addresses for this host

The example source code below takes the first argument to the
application and looks for a matching host. Providing it can find a matching
host, it then returns all the known addresses and names of the host back to the
user.
#include <stdio.h>
#include <stdlib.h>

Page%431%of%467

#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>

int main (int argc, char **argv)
{
 int i;
 struct hostent *mine;

 if ((mine=gethostbyname(argv[1]))!=NULL)
 /* providing we find it... */
 {

 printf("Offical Name: %s\n",mine.h_name); /* Real name */

 for(i=0;mine.h_aliases[i]!='\0';i++) /* Print aliases */
 printf("Known alias: %s\n",mine.h_aliases[i]);

 for(i=0;mine.h_addr_list[i]!='\0';i++) /* Known addresses */
 printf("Known address: %u.%u.%u.%u\n",
 (unsigned char)mine.h_addr_list[i][0],
 (unsigned char)mine.h_addr_list[i][1],
 (unsigned char)mine.h_addr_list[i][2],
 (unsigned char)mine.h_addr_list[i][3]);
 return(0);
 }
 else
 {
 printf("Host not found\n”);
 return(1);
 }

}

gethostbyaddr

The gethostbyaddr function is the opposite of the gethostbyname function; it
looks up an Internet address (for example, 193.122.10.110) and returns the
host name and other information in the hostent structure:
#include <net/netdb.h>
struct hostent gethostbyaddr(char *addr, int len, int type);

The addr must be a pointer to a valid Internet address. In the example
below I used the inet_addr() function to convert the string into a unsigned
long variable type, which is then passed to the gethostbyaddr function as a
character pointer.
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>

int main (int argc, char **argv)
{
 int i;
 struct hostent *mine;
 unsigned long addr;

 addr = inet_addr(argv[1]);

 mine=gethostbyaddr((char *)&addr,sizeof(argv[1]),AF_INET);

Page%432%of%467

 if (mine)
 {
 printf("Offical Name: %s\n",mine.h_name);

 for(i=0;mine.h_aliases[i]!='\0';i++)
 printf("Known alias: %s\n",mine.h_aliases[i]);

 for(i=0;mine.h_addr_list[i]!='\0';i++)
 printf("Known address: %u.%u.%u.%u\n",
 (unsigned char)mine.h_addr_list[i][0],
 (unsigned char)mine.h_addr_list[i][1],
 (unsigned char)mine.h_addr_list[i][2],
 (unsigned char)mine.h_addr_list[i][3]);

 return(0);
 }
 else
 {
 printf(“Host not found\n”);
 return(1);
 }
}

Aside from the use of gethostbyaddr this program is identical to the previous
example and it demonstrates how simple it is to obtain information about
Internet addresses and machines.

getservbyname

The getservbyname function returns information about a specified service. A
service is a port name and number combination as used by sockets. For
example, SMTP, which transfers e-mail between different machines on the
Internet, uses port 25.
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>
struct servent *getservbyname(const char *name, const char *proto);

The name argument specifies the required name, and the proto
argument specifies the protocol. This second argument will be ignored if the
user specifies NULL. Information is returned in a servent structure, which is
defined in netdb.h as
struct servent {
 char *s_name;
 char **s_aliases;
 int s_port;
 char *s_proto;
};

A NULL is returned if the specified service name cannot be found. The
members of the structure are listed in Table 22.4.

Table 22.4

Members of the servent Structure

Member Meaning

Page%433%of%467

s_name The official name of the service (for
example, FTP)

s_aliases A zero-terminated array of alternative names for the service
s_port The port number of the service
s_proto The name of the protocol to use when contacting the service

Like the previous examples, the source code below shows information
about a specified port name:
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>

int main (int argc, char **argv)
{
 int i;
 struct servent mine;

 mine=*getservbyname(argv[1],”tcp”);

 if (mine)
 {
 printf("Offical Name: %s\n",mine.s_name);
 printf("Official Port: %ld\n",mine.s_port);

 for(i=0;mine.s_aliases[i]!='\0';i++)
 printf("Known alias: %s\n",mine.s_aliases[i]);

 return(0);
 }
 else
 {
 printf(“Service not found\n”);
 return(1);
 }

}

Note: The BeOS doesn’t currently support /etc/services
and will only recognize “ftp”, “tcp” and “telnet”, “tcp”.

Using select
By default, all data transfers are blocking. That is, a call to read on a socket
when no data is available or a write to a socket that isn’t ready to accept data
will cause execution of the process to sleep until some data is received.
Blocking I/O is restrictive in situations where you want process execution to
continue whether any data is available or not. You can get around this
problem by using non-blocking I/O.

With non-blocking I/O, the call to the read or write function allows the
remainder of the process to continue executing without waiting for the data
or for the receiving end of the socket to accept the information. However, one
problem with non-blocking I/O is that while execution continues, you don’t

Page%434%of%467

automatically know when the request to read or write has completed. More
significantly, if you are waiting for many requests to complete you may want
to know that one of them has finished, but not necessarily which one.

To get around this problem, a number of different systems exist to notify
you that a request has been completed. The solution under the original BSD
was to use the select function, while under SVR4 the solution was to use the
poll function. The BeOS supports select but not poll. The select function
returns the status information of currently pending requests and can
optionally block execution until a request completes.

The select function and the related structures and datatypes are defined
as follows:
#include <socket.h>
#include <sys/time.h>
#define FDSETSIZE 256
#define NFDBITS 32

typedef struct fd_set {
 unsigned mask[FDSETSIZE / NFDBITS];
} fd_set;

struct timeval {
 long tv_sec;
 long tv_usec;
};

int select(int nbits,
 struct fd_set *rbits,
 struct fd_set *wbits,
 struct fd_set *ebits,
 struct timeval *timeout);

The fd_set structures are used to specify the file descriptors in use. The
variable is a bitset, one bit per possible file descriptor. The size of the overall
bitset is governed by the number of file descriptors you want to use, which is
itself specified by the FDSETSIZE macro. The FDSETSIZE macro is set by
default to 256. The macro is only defined (within socket.h) if you haven’t
already specified a different value. Since the figure of 256 open file descriptors
is not a particularly large number (especially if you are creating some form of
network server), you can specify a different figure before you include the
socket.h header. For example, to set the bitmask to handle 512 file descriptors
you would use this code fragment:
#define FDSETSIZE 512
#include <socket.h>

The rbits, wbits, and ebits arguments are the bitsets of the selected file
descriptors. Since setting up these bitmask variables is complex, a number of
macros are supplied to make the process easier:
#define FD_ZERO(setp) /* clear all bits in setp */
#define FD_SET(fd, setp) /* set bit fd in setp */
#define FD_CLR(fd, setp) /* clear bit fd in setp */
#define FD_ISSET(fd, setp) /* return value of bit fd in setp */

Page%435%of%467

The select function checks the files specified in rbits for read completion,
wbits for write completion, and ebits for exception conditions. You can set
these arguments to NULL if you are not interested in the event. The action of
select is dependent on the setting of the timeout argument:

•If timeout is NULL, select blocks until a completion occurs on one of the files
specified by the bitsets.

•If the value of timeout is zero (both timeout->tv_sec and timeout->tv_usec
are set to zero), then select checks the completion status and returns
immediately.

•Otherwise, if timeout is nonzero, select waits for the specified time until a
completion occurs.

The nbits argument specifies the highest number of file descriptors to
check for completion. Since select checks all file descriptors for their status
before checking them against the bitsets, we can save ourselves a significant
amount of time by telling it the highest possible number to check.

The select function returns -1 on error conditions, placing the actual
error detail in the errno global variable. Otherwise, assuming there are no
errors, select returns the number of ready descriptors.

The usual way of using select is to start a number of I/O transfers and
then wait for something to happen. A good example here is an Internet Web
server, where the server will start and open the necessary sockets waiting for
a request and some incoming data. When some data is received on one of the
sockets, the correct function is called to read the data and act upon it.
Therefore, a typical loop would contain something along the lines of the code
fragment below:
if (select(nofds, &reads, &writes, NULL, NULL) >0)
/* were only interested in reads and writes,
 * and the current status */
{
 int checkfd;
 for (checkfd=3; checkfd<nofds; checkfd++)
/* Check all descriptors after stdin, stdout
 * and stderr */
 {
 if (FD_ISSET(checkfd, reads))
 /* descriptor has read completion */
 process_incoming(checkfd); /* so read the data */
 if (FD_ISSET(checkfd, writes))
 /* descriptor has write completion */
 prepare_outgoing(checkfd); /* so prepare the info */
 }
}

Although at first the operation of select looks complicated, using the function
and implementing the results is relatively easy.

Page%436%of%467

Remote Procedure Calls (RPCs)
When communicating between machines it is sometimes useful to call a
function on a remote machine. Although many systems now do this using
sockets to make a call to a remote machine, the tried and trusted method is to
use remote procedure calls (RPC).

At the time of this writing, the BeOS doesn’t support RPCs. If you plan
on porting a package that uses RPCs you will have to make a choice: Either
reimplement the communication method or port the RPC package. The RPC
system relies on three units: the header files, the libraries (which support the
data conversion functions and communication functions), and the rpcgen
program itself, which converts the RPC specification into the required source
code. Implementations of RPC are available in the Linux, FreeBSD, and
NetBSD packages.

A remote procedure call is just like any other call to a function, except that
the call is made to a function implemented on a remote machine, and the
returned information (if any) is copied back over the network to the machine
which called the function.

From the programmer’s point of view this presents two problems: The
first is data interpretation and the second is implementing a function call that
is network-aware. The first problem, data interpretation, is related to the ways
in which different machines handle different pieces of information. For
example, we already know that some machines store strings with the first
character of the string in the lowest byte (big-endian) while others store
strings with the first character in the highest byte (little-endian). If we didn’t
take account of this, a little-endian machine communicating using RPCs to a
big-endian machine would produce garbage.

In order to get around this, the RPC implementation includes a special
set of functions which convert different datatypes, including strings and C
structures, into a format for transferring over the network. The new data
format is called External Data Representation (XDR) and has to be
implemented differently on each machine. In my example, the data on a little-
endian machine would be converted to XDR and be converted from XDR to
big-endian when it reached the other machine. This conversion is handled
semi-automatically by the build process.

A special program called rpcgen uses a special input file to specify XDR
versions of structures, and also to define the functions that will be used
during the functional implementation. Thus the programmer needs only to
know how to use rpcgen to produce RPC function calls. This solves our
second problem (implementing a function call that is network-aware),
because the function itself can be written as a local function; it is the rpcgen

Page%437%of%467

program which handles the interface between the function that has been
written and the network, producing a networkable version suitable for use as
a remote procedure call.

RPCs are used extensively under UNIX to implement a number of
different network functions. In particular, the monitor functions, such as
rusers (which returns the number of users), rwho (which returns the list of
users), and rstat (which provides status information) all use RPCs as their
transport mechanism.

RPCs provide a simple way of getting specific information from one
machine to another. The ability to call a function on a remote machine allows
you to very easily transfer information between two machines. In particular,
the ability to call a function and have Standard C structure returned allows
very complicated data to be exchanged between machines.

But the remote procedure call does have its limitations. Although it is
quite possible to transfer large quantities of information between computers
using RPCs, they were not really designed for anything more than small
pieces of information. With the advancement of the Internet, technology has
shifted to use the streaming abilities of sockets. Both FTP and HTTP use the
sockets method described above to transfer information. Sockets are easy to
implement and work much better as a mass transfer mechanism than RPC.
However, many software packages still use the RPC system. Many
commercial and public-domain packages use the RPC system for passing
semaphore information to other machines.

Networking has become an important part of modern computing life. The
principles of networking are easy to understand, and with sockets the
implementation is almost as easy as opening and closing file descriptors to
read and write local files.

The difference is how the descriptor is created and how the information
about the descriptor is defined. Beyond this setup, we also need to obtain
information about the host we are talking to, and in all cases we need to
convert the familiar Internet names that we are all used to into the structures
and datatypes required by the networking functions.

Page%438%of%467

Chapter 23 - Summary
As we seen throughout this book porting is complex, but largely procedural
process. Like this book, the process can be conveniently split into three parts:

•Knowledge of the platform you are porting to
•Knowledge of the functions and libraries supported by the target platform

•Knowledge of the tools, techniques and processes used to write application
software
Knowing about the platform you are porting to is critical. You need to

identify the abilities of the platform, what tools are available that could make
your life easier, and the layout of the new operating system for when you
configure the application. On the BeOS, it is largely UNIX, or more correctly
Posix in nature, and that makes porting most application software easier.
Many packages have already been ported to UNIX/Posix platforms and so
the layout is very familiar and many of the tools available will be familiar to
you

The most important things to remember on the BeOS are that the layout,
whilst similar, is very different to most UNIX variants, especially when it
comes to the installation directories. It is also worth taking the time to find the
tools, especially editors, that you are used to using. Although the BeOS comes
with most of the desired tools, some, such as your favorite editor will need to
be sourced from the various archives.

The second part of the porting process is the most complex, and the most
time consuming. The process follows a simple sequence:

Configure the application for the platform

Modify header files and source code

Build the application

You then repeat the three steps above until you have completed the
configuration changes, and in some cases code changes, to build the final
application. Then you test the application, hopefully against a predefined and
supplied set of test values. If anything doesn’t work, you repeat the steps
again until the application does work.

Finally, once you have a working and tested application, you run the
installation program. You may need to make more changes to the installation
process until the application installers and works correctly. The final stage is
probably the easiest, you need to package up the application and provide it
on to other people.

It is possible, with some thought, to relate the process of porting an
application to moving a house. If the application is the contents of the house

Page%439%of%467

and the operating system is the house itself, then moving the contents
involves some simple actions, such as placing your furniture in the rooms,
which is analogous to running a simple configuration script.

There are also some more complicated actions, such as putting your
books and kitchenware into different cupboards, which is analogous to
making changes to the source code or build process for the operating system.
Then there are the additional pieces of work which require attention, like
building new shelves to put your books on. This is similar to writing
completely new sections of missing code and functionality in the operating
system to fit the application.

The BeOS is a well built operating system with many good foundations.
These include the kernel and server structure for the operating system itself,
the graphical user interface, and the Posix compatible libraries with the UNIX
style interface which opens up the operating system to a wide range of
software, from GUI to UNIX tools.

However, like all operating systems it has it’s own tricks and traps, and
despite the plans for compatibility there are still things that likely to cause
problems during the porting process.

The shell is bash, not a standard shell even in the UNIX community,
although bash itself is based on the Korn shell and Bourne shell. At the time
of writing, bash is still missing some features in the BeOS version compared
to most other versions of the shell. This will cause you some problems,
especially during the configuration process, but as I’ve shown in this book
there are ways around most of the problems.

Beyond these difficulties, the next problem you encounter will be the
differences in the supported functions and tools compared to other UNIX
based operating systems. Hopefully, the first and third parts of this book
should help to answer most the queries and questions that come up during
the porting process.

Finally, if you haven’t attempted a port before, the second part of this
book should have showed you the sequences and steps involved in the
process of porting from start to finish.

As I stated at the start of this book, there is no clear cut way to port an
application to a new platform. Nor is it easy for me to give you an idea on
how quick, or slow, the porting process will be. It should be obvious by now
that it could easily take weeks, or even months to complete a port
successfully.

Above all, I hope this book will be helpful in the processes of porting to
the BeOS, and I expect to see profusion of ports suddenly appearing on the
websites!

Page%440%of%467

Page%441%of%467

Appendix A - Resources

Page%442%of%467

Your first point of reference for
information about programming on
the Be, and for sources to start
porting to the new operating
system, is the Internet. It contains
the largest repository of
applications and source code in
general. Furthermore, the Be
community lives exclusively on the
Internet, using combinations of Web
sites, mailing lists, and newsgroups
to swap information and ideas.

All the information about the BeOS and the packages that have already
been ported will also be reported on the Internet, and there are a number of
key sites which retain this information.

In addition to the sources listed here, I have also included a number of
useful utilities and applications that will help you to make the best use of
your BeOS machine either by providing BeOS tools, or by providing
Windows, Mac, or UNIX tools which will plug the missing gaps in BeOS
functionality.

FTP
There are quite literally thousands of FTP sites around the world that store a
range of applications and source code. Usually the best location for getting
the latest piece of source is one of the SunSITE FTP Servers. These are sites
that are supported by Sun with equipment and storage space. They are home
to a variety of mirrored sites and Sun’s own archives. One of the most popular
mirrored sites is the GNU FTP server, which contains all the source for all the
GNU software that is available.

Page%443%of%467

You will also find a range of other software sources in the UNIX
directories on these machines, and they are a good repository of compatibility
and utility software to use with your other machines when developing on the
BeOS.

Below in table A.1 is a full list of the SunSITES around the world, and
also some other, select sites that I use regularly for locating sources.

Table A.1

FTP Sites for C source code
Title Internet Address Location
Digitals Gatekeeper gatekeeper.dec.com Digital Corporate

Research, Digital
Equipment Corporation,
Palo Alto, California, USA

GNU/FSF prep.ai.mit.edu Massachusetts Institute of
Technology, Cambridge,
Masschusetts, USA

SunSITE AskERIC ericir.sunsite.syr.edu Syracuse University,
Syracuse, USA

SunSITE Australia sunsite.anu.edu.au Australian National
University, Canberra,
Australia

SunSITE Austria sunsite.univie.ac.at University of Vienna,
Austria

SunSITE Brazil sunsite.unicamp.br Insitute of Computing,
University of Campinas,
São Paulo, Brazil

SunSITE Canada sunsite.queensu.ca Queen’s University,
Kingston, Ontario, Canada

SunSITE Central
Europe

sunsite.informatik.rwth-
aachen.de

RWTH-AAchen, Germany

SunSITE Chile sunsite.dcc.uchile.cl Universidad de Chile,
Santiago, Chile

SunSITE Colombia sunsite.univalle.edu.co Universidad del Vvalle,
Cali, Colombia

SunSITE Croatia sunsite.hr University of Zagreb,
Croatia

SunSITE Czech
Republic

sunsite.mff.cuni.cz Charles University,
Prague, Czech Republic

SunSITE Denmark sunsite.auc.dk Aalborg University,
Aalborg, Denmark

SunSITE Digital
Library

sunsite.berkeley.edu University of California,
Berkeley, California, USA

Page%444%of%467

SunSITE Egypt sunsite.scu.eun.eg Supreme Council of
Universities, Cairo, Egypt

SunSITE Estonia sunsite.ee Estonian Educational &
Rresearch Network, Tartu,
Estonia

SunSITE France sunsite.cnam.fr Conservatoire National
des Arts-et-Metiers, Paris,
France

SunSITE Greece sunsite.csi.forth.gr ICS FORTH, Iraklion,
Grete, Greece

SunSITE Hong Kong sunsite.ust.hk University of Science and
Tech., Hong Kong

SunSITE Hungary sunsite.math.klte.hu Lajos Kossuth University,
Debrecen, Hungary

SunSITE Indonesia sunsite.ui.ac.id University of Indonesia,
Jakarta, Indonesia

SunSITE Italy sunsite.dsi.unimi.it University of Milan, Milan,
Italy

SunSITE Japan sunsite.sut.ac.jp Science University, Tokyo,
Japan

SunSITE Korea sunsite.snu.ac.kr Seoul National University,
Seoul, Korea

SunSITE Latvia sunsite.lanet.lv University of Latvia, Riga,
Latvia

SunSITE Lithuania sunsite.ktu.lt Kaunas University of
Technology, Kaunus,
Lithuania

SunSITE Malaysia sunsite.upm.edu.my Universiti Putra Malaysia,
Serdang, Selangor,
Malaysia

SunSITE Mexico sunsite.unam.mx Universidad Nacional
Autonoma de Mexico,
Mexico

SunSITE New
Zealand

www.sunsite.net.nz University of Waikato,
Hamilton , New Zealand

SunSITE Nordic sunsite.kth.se Kungliga Tekniska
Høgskolan, Stockholm,
Sweden

SunSITE Northern
Europe

sunsite.doc.ic.ac.uk Imperial College, London,
London, UK

SunSITE Norway sunsite.uio.no University of Oslo,
Norway

Page%445%of%467

SunSITE People’'s
Republic of China

sunsite.net.edu.cn Tsinghua University,
Beijing, China

SunSITE Poland sunsite.icm.edu.pl Warsaw University,
Warsaw, Poland

SunSITE Russia sunsite.cs.msu.su Moscow State University,
Moscow, Russia

SunSITE Russia sunsite.nstu.nsk.su Novosibirsk State
Technical University,
Novosibirsk, Russia

SunSITE Singapore sunsite.nus.sg National University of
Singapore, Singapore

SunSITE Slovakia sunsite.uakom.sk UAKOM, Matej Bel
University, Banska
Bystrica, Slovakia

SunSITE Slovenia sunsite.fri.uni-lj.si Uuniversity of Ljubljana,
Ljubljana, Slovenia

SunSITE South Africa sunsite.wits.ac.za University of the
Witwatersrand,
Johannesburg, South
Africa

SunSITE Spain sunsite.rediris.es Consejo Superior de
Investigaciones Cientificas,
RedIRIS, Madrid, Spain

SunSITE Stockholm sunsite.sipri.se International Peace
Research Institutde,
Stockholm, Stockholm,
Sweden

SunSITE Switzerland sunsite.cnlab-switch.ch cnlab & SWITCH, -
Rapperswil and Zurich,
Switzerland

SunSITE Taiwan sunsite.ccu.edu.tw National Chung Cheng
University, Taiwan

SunSITE Thailand sunsite.au.ac.th Assumption University,
Bangkok, Thailand

SunSITE Uniandes sunsite.uniandes.edu.co Universidad de los Andes,
Bogota, Colombia

SunSITE USA sunsite.unc.edu University of North
Carolina, Chapel Hill,
North Carolina, USA

SunSITE UTK sunsite.utk.edu University of Tennessee,
Knoxville, USA

Walnut Creek CD-
ROM

ftp.cdrom.com Walnut Creek CD-ROM,
Concord, California, USA

Page%446%of%467

Warwick University ftp.warwick.ac.uk Warwick University,
CoventryWarwick, UK

Washington
University Archives

wuarchive.wustl.edu Washington University, St
Louis, Missouri, USA

If you can’t find a specific package, then the best thing is to use one of
the Archie sites (all of the SunSITEs listed above have some form of searching
mechanism). Archie enables you to search for a specific string within a
product across hundreds of different FTP servers. The only danger with
Archie is that you end up with hundreds of results that are actually dead
links, so you may end up still not finding the package you were looking for. If
this happens, try a different Archie server in a different country and search
again; you might come up with a lot of duplicates, but you might also end up
finding what you were looking for.

Web Sites
The main point of reference for all developers of Be software is www.be.com,
Be Inc.’s Web site. There you will find a wealth of information about
developing Be applications using both the BeOS C++ API and the POSIX-style
C interface.

Within the Be Web site is the BeWare page, www.be.com/beware/
index.html. This is a list of all the software written for and/or ported to the
BeOS and is a good place to check up on what packages and products other
people are working on. You can also find links to utilities and tools that you
may find useful when porting.

There are some other Web and FTP sites worth special mention:

Fred Fish and Nine Moons Software (ftp://ftp.ninemoons.com/pub/be)
is well known to the Commodore Amiga community for porting a wide range
of software. He’s repeated the exercise with the BeOS and has ported many of
the GNU tools that Be doesn’t currently include in the standard release. This
includes most recently gcc, the GNU C compiler, and also documentation
tools such as TeX.

Chris Herborth (http://www.qnx.com/~chrish/Be/) maintains what is
probably the most comprehensive list of other Be software developers on the
Internet. He also ported jove (Jonathan’s Own Version of Emacs) and the
official versions of the zip and unzip compression utilities.

Jake Hamby (http://people.delphi.com/jehamby/) ported Ghostscript,
the software PostScript interpreter, to the BeOS before most people had even
blinked. He also maintains a comprehensive list of libraries and tools, and
now works for Be.

Page%447%of%467

The Sun User Group (http://www.sunug.org) has a number of useful
links to sources and applications which you can download directly off the
Internet.

Mailing Lists and Newsgroups
Be hosts three development-related mailing lists; two of them are available to
the public and one is available only to registered Be developers.

The main list that anybody developing applications should be a member
of is BeDevTalk. This is a discussion list where people can read and respond
to the e-mails that come as part of the mailing list. The problem with the list is
that you receive a large number of messages, and not all of them contain
information of use to everybody. The BeDevTalk mailing list is very busy with
about a hundred messages per day.

The BeInfo mailing list is read-only and covers general announcements
and information about Be, including the Be Newsletter.

The BeDevNews mailing list is also read-only, and is only available to
registered Be developers. It relays the Be Newsletter and other confidential
announcements about Be and software development.

The BeCodeTalk discussion list is for BeOS developers who want to talk
specifically about writing code on the BeOS, rather than just about the BeOS
in general which is what BeDevTalk is all about.To join any of these lists, send
an e-mail to listserv@be.com with the following in the subject line of your
message:
subscribe list_name

For example, to subscribe to the BeDevTalk mailing list you would put
the following string in your message subject:
subscribe bedevtalk

With BeDevTalk you also have the facility to receive digests (condensed
collections of messages) instead of each individual message sent to the
mailing list. To receive a digest mailing, you add the word “digest” to your
string:
subscribe bedevtalk digest

In addition to the mailing list, there are five main newsgroups available
that discuss the BeOS directly:

Table A.2

Usenet newsgroups for discussing BeOS programming
Newsgroup Description

Page%448%of%467

comp.sys.be.advocacy For flame wars (heated discussions) about how
much better the BeOS is than UNIX, Windows,
the MacOS, and any other OS you care to
mention.

comp.sys.be.announce Announcements to the BeOS user and
developer community.

comp.sys.be.help For help on using the BeOS and BeOS software.
comp.sys.be.misc Discussions about anything which doesn’t fit

into the other newsgroups.
comp.sys.be.programmer Discussions about developing and how to

develop software for the BeOS.
To read any of these newsgroups you will need to speak to the person or

company that supplies you with an Internet connection; they should be able
to tell you how to receive newsgroups on your machine.

CD-ROMs
Since the explosion of the CD-ROM as a safe medium for delivering software,
a number of companies have sprung up that redistribute software and source
code from the Shareware and PD libraries and Internet sites on CD.

These are an excellent source of code, and the best thing about them is
that no matter how hard you try, you can’t accidentally delete the original!

The best type of CD-ROMs to go for are those targeted specifically at
providing source code, rather than those aimed at specific applications or
application groups. For example, you can get the FreeBSD, NetBSD, and
BSDLite distributions on CD, along with the entire GNU source code,
including glibc.

In the U.S., try using one of the following suppliers:

The Free Software Foundation

675 Massachusetts Avenue

Cambridge, MA 02139

Phone: (617) 876-3296

E-mail: gnu@prep.ai.mit.edu

WWW: www.gnu.ai.mit.edu

The FSFs sell CD-ROMS containing the full GNU source set. This
includes all of the standard GNU utilities such as emacs and perl, and also a
variety of sources and part-finished projects which you may like to work on.

Walnut Creek CD-ROM

Page%449%of%467

4041 Pike Lane, Suite E

Concord, CA 94520

Phone: (510) 674-0783

E-mail: info@cdrom.com

WWW: www.cdrom.com

Walnut Creek distributes the GNU tools, a number of additional UNIX
source code CDs, and most usefully the FreeBSD CD-ROM, which contains
the full source and a working version of the FreeBSD version of UNIX. This is
one the best sources of missing functions and abilities for the BeOS.

Outside of the U.S., try your local software distributor, who may be able
to supply you with the CDs, or try one of the many Sun user groups, which
will be happy to supply the GNU CD-ROM. You can find details of Sun user
groups at www.sunug.org or check Yahoo, www.yahoo.com, which also keeps
a fairly accurate list.

Compatibility and Utility Software
You can make working with the BeOS and another platform a lot easier by
using some simple tools. If your other machine is UNIX, then most of the
tools you need access to are already available. Setting up an FTP server or
using the ftp command to communicate with the BeOS machine should be
relatively painless. If it is a piece of nonstandard software, such as the TeX
application, then you will need to find a source on the Internet or from one of
the CD-ROM companies I’ve already mentioned and build it before you can
make any reasonable use of it.

For the Mac, I suggest you get hold of at least two applications. The first
is a version of telnet; I use NCSA Telnet, a product which was developed by
the National Center for Supercomputing Applications (NCSA). They no
longer support or develop the product, and in fact I’m still using v2.7b2,
originally released in April 1995. I don’t actually use NCSA Telnet for its
remote access capabilities, but it does support a very simple and easy-to-use
FTP server.

The second item is Anarchie, the excellent FTP client from Peter N.
Lewis. Using Anarchie makes life very simple when you transfer files
between the Mac and the BeOS. Probably its best feature is the ability to copy
an entire folder hierarchy from one machine to another. Both tools can be
obtained from your local Info-Mac archive; details of some of these sites are
given below.

Page%450%of%467

If you find you need to work with the TeX documentation supplied with
most tools and packages, you can obtain OzTeX, a freeware application that
processes TeX files so that they can be printed or displayed on screen. The
URL for downloading the OzTeX software can be found below.

For Windows users, try NCSA again for a Telnet application and
WinFTP for FTP transfers. The chances are that if you’re a hardened netizen,
you’ll already have access to your favorite tools anyway.

Table A.3 contains some of the best sites to get these, and other useful
utilities from.

Table A.3

Internet sites for MacOS and Windows utilities
URL Site
ftp://sunsite.anu.edu.au/pub/mac/
info-mac/

Info-Mac Australia

ftp://ftp.agt.net/pub/info-mac/ Info-Mac Canada
ftp://ftp.funet.fi/pub/mac/info-
mac/

Info-Mac Finland

ftp://ftp.calvacom.fr/pub/mac/info-
mac/

Info-Mac France

ftp://ftp.cs.tu-berlin.de/pub/mac/
info-mac/

Info-Mac Germany

ftp://ftp.hk.super.net/pub/mirror/
info-mac/

Info-Mac Hong Kong

ftp://src.doc.ic.ac.uk/packages/info-
mac/

Info-Mac UK

ftp://ftp.amug.org/pub/info-mac/ Info-Mac USA, AMUG
ftp://mirror.apple.com/mirrors/Info-
Mac.Archive/

Info-Mac USA, Apple

ftp://wuarchive.wustl.edu/systems/
mac/info-mac/

Info-Mac USA, WU Archive

http://www.kagi.com/authors/akt/
oztex.html

OzTeX

ftp://ftp.ncsa.uiuc.edu/telnet Telnet (Mac/Windows)
ftp://ftp.stairways.com Anarchie
ftp://ftp.cyberspace.com/pub/ppp/
windows/ftp

WinFTP

Page%451%of%467

Appendix B - Releasing the
Software
We’ve made it!

Once you have finally built the software and got it working, it’s time to
let the rest of the world know about it.Before you start announcing your
software, you need to prepare the package you’re going to supply to people.

Checking the Compilation
There is nothing more frustrating than spending hours downloading a
package, unpacking it, typing make, and finding out it doesn’t work after all
because the developer/porter forgot to supply some vital component.

You need to not only test the software once you’ve compiled it, but also
test the package you are going to supply, from the point of unpacking all the
way up to installation. This is not as easy as it sounds—your machine will
undoubtedly be different from everybody else’s—but you can minimize the
effects of these differences.

First, make a complete copy of the working directory. Try to keep the file
permissions and directory layout. You can use the cp command for this:
$ cp -pr gawk-3.0.2 begawk-3.0.2

but I prefer to use tar, which tends to work better with multiple directories:
$ mkdir begawk-3.0.2
$ cd begawk-3.0.2
$ (cd ../gawk-3.0.2;tar cf -)|tar xvf -

Within the new directory run a make clean, or the equivalent command
to return the distribution to a base level. If you don’t have access to a clean
operation, make sure you remove any temporary editor files, object files, and
applications.

Run make on the package again to ensure that it compiles correctly. If
you come across any problems, you need to return to the earlier chapters of
this book. If everything runs, then you need run make clean again, but this
time you also need to delete any configuration files, settings, or scripts that
would otherwise be used by the recipient during the process of installation.
All of these files will be created as part of the build process, and we need to
esnure that they get made correctly.

Now recreate the configuration files using the scripts, Makefiles, or
whatever configuration tool is in use and build the package again. It
shouldn’t fail, providing there is nothing wrong with the configuration or
build process.

Page%452%of%467

You now need to clean the package directory up again, as last time, in
preparation for packaging the files up for distribution. Removing these extra
files helps keep the size of the package to as small a size as possible, and also
ensures that you dont end up supplying files that you have created that affect
the build process. For example, GNU configuration scripts create a number of
files during the configuration process which are used to set defaults if you run
the configuration script again. You dont want these files supplied to the end
user, they need to tailor make their configuration for their system.

You can usually achieve a clean package directory by specifying
realclean or distclean to make. This should delete everything but the base files
for a package.

Packaging
How you package your ported software depends on the people you are

supplying it to and the contents of the package. At the very least,you should
include the following with your package:

•! All the sources and associated files (Makefiles, scripts), plus any
documentation

•! Details on how to configure, build, and install the software

•! How to get in contact with you, the author of this release, to report bugs,
problems, and hopefully praise

•! A license of some form to protect you, and legalize the release of the
software. See the section below on Licenses.

•! If the license from the original software states that you should include
the entire contents of the package when you redistribute it (the GNU
license specifies this), make sure you have all the files. Use the
MANIFEST document, which lists the contents, to double-check.

There are also some things you shouldn’t include in the package:

•! Any work files you created during the build process that aren’t required

•! Any temporary editor files
•! Executables, libraries, or object files, which take up unnecessary space in

the archive;

Again, it is advisable to use a test directory to remove the sample files before
packaging up the directory.

Once you are sure the package is complete, that it compiles correctly, and
that it contains everything you need, you need to create a suitable archive for
distribution.

Page%453%of%467

In most cases, the most suitable file for a POSIX based application is a
gzipped tar file; this is supported as standard on the BeOS and so makes an
ideal format for exchanging packages. Use the examples in Chapter 6 to help
you create the file. A simple example would be:
$ tar cf - ./gawk-3.0.2 |gzip -9 >gawk-3.02.tar.gz

Most BeOS software however should be supplied to BeWare, the Be
software repository, as a ZIP archive.

You may decide to use an installation tool which uncompresses and
extracts the files/directories automatically into their correct locations. This is
more complicated and not really designed for supplying source-file-based
packages. Generally a package installer should only be used for ready-to-run
installations of the software. If you are targeting users, though, rather than
programmers and network administrators, this might be the easier-to-use and
tidier solution.

Once you’ve created the package, make a backup of the file you supply
to the outside world, along with backups of your working versions. This
helps to recreate the package when it comes to generating diff files for
patching to later versions, and is also useful for reference purposes if someone
reports a bug in a specific version.

Adding a License
Most packages come with some form of license having to do with the use of
the package. This license is used to make the copying and distribution of a
package legal, while simultaneously removing any responsibility from you
regarding the suitability of the package for its task and any damages that
might be incurred by the use of the software you supply.

In general, there are three basic levels of software supply, although over
the years these have been subdivided and expanded on to suit the latest style.
The three types are:

•! Commercial. The software must be paid for in full; the license provides
the user with the “right to use” for the compiled software, but not
ownership of the software. It is unusual to find the source of a
commercial piece included in the package.

•! Shareware. Shareware packages are supplied by various means for free,
but the user is expected to pay for the software after an initial
“investigation” period. This is largely unenforceable without crippling
the software in some way with anything from removed facilities to
limited-time use.

•! Freeware. The software is supplied completely free, with or without the
source code. You can charge for the distribution of the software, but not

Page%454%of%467

for the software itself. This is how most UNIX packages (such as those
from the Free Software Foundation) are supplied.

Extensions to these basic types include Postcard-ware (you send a postcard to
the author), E-mail-ware (you send an e-mail to author), and Donation-ware
(you are asked to make a donation to charity).

If you are porting a package, chances are it already has some sort of
distribution license. You should accept the terms of this license when you start
to port the software, and, because you are redistributing someone else’s code,
you should also include and honor the license when you supply your version
to other people. Most people use the GNU General Public License; this is a
standard document outlining the legal aspects of software supply.

Check the package you have ported—the General Public License is
probably in the file called COPYING, LICENCE, or LICENSE. You should also
check for files with these names in other combinations of upper– and
lowercase I have included it here in its entirety for reference purposes. This is
only a sample, and you should make sure that you use the license supplied in
the original package.
 GNU GENERAL PUBLIC LICENSE
 Version 2, June 1991

 Copyright (C) 1989, 1991 Free Software Foundation, Inc.
 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

 Preamble

 The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to
your programs, too.

 When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

 To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if
you
distribute copies of the software, or if you modify it.

 For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

Page%455%of%467

 We protect your rights with two steps: (1) copyright the software,
and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

 Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on,
we
want its recipients to know that what they have is not the original,
so
that any problems introduced by others will not reflect on the
original
authors' reputations.

 Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at
all.

 The precise terms and conditions for copying, distribution and
modification follow.

Page%456%of%467

 GNU GENERAL PUBLIC LICENSE
 TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

 0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

 1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a
fee.

 2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

 a) You must cause the modified files to carry prominent notices
 stating that you changed the files and the date of any change.

 b) You must cause any work that you distribute or publish, that in
 whole or in part contains or is derived from the Program or any
 part thereof, to be licensed as a whole at no charge to all third
 parties under the terms of this License.

 c) If the modified program normally reads commands interactively
 when run, you must cause it, when started running for such
 interactive use in the most ordinary way, to print or display an
 announcement including an appropriate copyright notice and a
 notice that there is no warranty (or else, saying that you provide
 a warranty) and that users may redistribute the program under
 these conditions, and telling the user how to view a copy of this
 License. (Exception: if the Program itself is interactive but
 does not normally print such an announcement, your work based on
 the Program is not required to print an announcement.)

Page%457%of%467

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote
it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

 3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

 a) Accompany it with the complete corresponding machine-readable
 source code, which must be distributed under the terms of Sections
 1 and 2 above on a medium customarily used for software
 interchange; or,

 b) Accompany it with a written offer, valid for at least three
 years, to give any third party, for a charge no more than your
 cost of physically performing source distribution, a complete
 machine-readable copy of the corresponding source code, to be
 distributed under the terms of Sections 1 and 2 above on a medium
 customarily used for software interchange; or,

 c) Accompany it with the information you received as to the offer
 to distribute corresponding source code. (This alternative is
 allowed only for noncommercial distribution and only if you
 received the program in object code or executable form with such
 an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

Page%458%of%467

 4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

 5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

 6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

 7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

Page%459%of%467

 8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

 9. The Free Software Foundation may publish revised and/or new
versions
of the General Public License from time to time. Such new versions
will
be similar in spirit to the present version, but may differ in detail
to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and
"any
later version", you have the option of following the terms and
conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number
of
this License, you may choose any version ever published by the Free
Software
Foundation.

 10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the
author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we
sometimes
make exceptions for this. Our decision will be guided by the two
goals
of preserving the free status of all derivatives of our free software
and
of promoting the sharing and reuse of software generally.

 NO WARRANTY

 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT
WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK
AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY
SERVICING,
REPAIR OR CORRECTION.

 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR
DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED
BY

Page%460%of%467

YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY
OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

 END OF TERMS AND CONDITIONS

Page%461%of%467

 Appendix: How to Apply These Terms to Your New Programs

 If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these
terms.

 To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

 <one line to give the program's name and a brief idea of what it
does.>
 Copyright (C) 19yy <name of author>

 This program is free software; you can redistribute it and/or
modify
 it under the terms of the GNU General Public License as published
by
 the Free Software Foundation; either version 2 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program; if not, write to the Free Software
 Foundation, Inc., 59 Temple Place - Suite 330, Boston,
 MA 02111-1307, USA

Also add information on how to contact you by electronic and paper
mail.

If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:

 Gnomovision version 69, Copyright (C) 19yy name of author
 Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
 type `show w'.
 This is free software, and you are welcome to redistribute it
 under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the
appropriate
parts of the General Public License. Of course, the commands you use
may
be called something other than `show w' and `show c'; they could even
be
mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or
your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. Here is a sample; alter the names:

 Yoyodyne, Inc., hereby disclaims all copyright interest in the
program
 `Gnomovision' (which makes passes at compilers) written by James
Hacker.

 <signature of Ty Coon>, 1 April 1989
 Ty Coon, President of Vice

This General Public License does not permit incorporating your program
into

Page%462%of%467

proprietary programs. If your program is a subroutine library, you
may
consider it more useful to permit linking proprietary applications
with the
library. If this is what you want to do, use the GNU Library General
Public License instead of this License.

An alternative to the GNU public licence is the BSD licence. This is
simpler and far less restrictive on the use or re-use of the code. The Apache
web server is a good example of a package which makes use of this licence,
and I’ve included it below for reference purposes.
/*
==
 * Copyright (c) 1995-1997 The Apache Group. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above
copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the
 * distribution.
 *
 * 3. All advertising materials mentioning features or use of this
 * software must display the following acknowledgment:
 * "This product includes software developed by the Apache Group
 * for use in the Apache HTTP server project (http://
www.apache.org/)."
 *
 * 4. The names "Apache Server" and "Apache Group" must not be used to
 * endorse or promote products derived from this software without
 * prior written permission.
 *
 * 5. Redistributions of any form whatsoever must retain the following
 * acknowledgment:
 * "This product includes software developed by the Apache Group
 * for use in the Apache HTTP server project (http://
www.apache.org/)."
 *
 * THIS SOFTWARE IS PROVIDED BY THE APACHE GROUP ``AS IS'' AND ANY
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE GROUP OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 *
==
 *
 * This software consists of voluntary contributions made by many
 * individuals on behalf of the Apache Group and was originally based
 * on public domain software written at the National Center for
 * Supercomputing Applications, University of Illinois, Urbana-
Champaign.
 * For more information on the Apache Group and the Apache HTTP server
 * project, please see <http://www.apache.org/>.
 *

Page%463%of%467

 */

Distribution !
The best form of publicity is word of mouth. In the world of computers, word
of mouth means making your package known to as many people as possible.
The more people who know the package exists, the more people who will
want to download it, and therefore the more people you can distribute the
package to.

Luckily, with Be, this is very easy. The company has been built on e-mail,
mailing lists, and Web sites, so there are numerous avenues available for you
to peddle your wares.

To succeed, you need to give your package as much publicity as possible
and make sure it’s easily available. For example, announcing the latest port of
a piece of software, but not actually providing the software on a Web site or
FTP server, will only cause people to ignore the announcement.

As with the package itself, you need to ensure that your information is
correct, and that the user has access to all the details he or she needs. Ideally,
you should include:

•! The package name

•! A short description

•! The reason for the port

•! The version number of the package

•! The version number of the OS under which it runs

•! Your e-mail address

•! Details of where to download the package from
•! The package’s formats (gzipped tar, self-installer, and so on)

Be have guidelines and information for supplying them
with copies of your package. Go to http://www.be.com/
developers/ftp/uploading.html. Refer to Appendix Afor
more information on the Be website.
Once you have your message prepared, you need to advertise and

supply the package. The best places to advertise are Web sites and mailing
lists, and the best form of distribution is an FTP server. If you are a registered
Be developer, you might also want to use BeWare, Be’s software distribution
Web site.

Web Sites

Page%464%of%467

A Web site has the advantage that the information is up and available for as
long as the page and the Web site are. There are a number of well-recognized
Web sites on which you can advertise, including:

•! http://www.be.com (Be’s own Web site)
•! http://www.qnx.com/~chrish (Chris Herborth, a Be evangelist)

•! http:// www.ai-lab.fh-furtwangen.de/~DeBUG (The German Be User
Group website)

•! http://www.bemall.com (BeMall, a repository for BeOS software)

There are further sites you might like to try listed in the Appendix A.
Remember, if you can, to include a link to the FTP server that stores your files.

FTP Servers

At the time of writing, there is not a great number of FTP sites devoted to Be
software. However, any site that allows you to upload files can be used to
store a Be package.

Be provides an FTP site (ftp.be.com) which is linked to their BeWare
page and should be the first place you upload your file. Guidelines on using
the Be FTP server can be found at http://www.be.com/developers/ftp/
uploading.html.

Mailing Lists

Be hosts a number of mailing lists which can be used to announce the
availability of software.

The main list that anybody developing applications should be a member
of is BeDevTalk. This is the best list to post details about your latest release as
it reaches the bulk of the programming, rather than the user community.

The BeInfo mailing list is read only and covers general announcements
and information about Be, including the Be Newsletter.

The BeDevNews mailing list is also read only, and is only available to
registered Be Developers. It relays the Be Newsletter and other confidential
announcements about Be and software development.Details on these and
other lists can be found in the appendix.

BeWare

Page%465%of%467

BeWare is Be’s very own online software store. It was designed to provide Be
developers with a single channel for releasing software to the public. As such,
it probably explains the lack of Web and FTP sites devoted to the task.

You can find to the BeWare page at http://www.be.com/beware.

Contacting the Author
The purpose of porting software is to make it available on a new platform.
This is almost certainly something that the author would like to know about.
In informing the author, you can supply the changes you had to make to the
package to make it work on the BeOS. He/she can then include the changes
into the next release of the package, making your and everybody else’s lives
considerably easier next time around.

You should take care when contacting authors, though; the aim is to help
them to incorporate the changes, and note any bugs to them. Don’t alienate
them, and certainly don’t make them feel insubstantial in the process; after all,
they provided you with the package to port, not the other way around.
Porting is not a competitive sport, and pointing out someone else’s apparent
inadequacies will only make matters worse.

You need to supply the following details to the author:

•! The problems you encountered during the build. These should include
everything from problems in the configuration and Makefile to
difficulties during the compilation itself.

•! The solutions to the problems. In particular, any BeOS-specific changes
you needed to make should be detailed. Don’t underplay or
underestimate any changes, be as specific and verbose as possible.

•! Any bugs you found not related to the porting process, for example a
typo or a mismatch in the name of a definition.

Here is a copy of the message I sent to Arnold Robbins, writer of gawk,
after I had ported the GNU awk package to the BeOS:
Subject: Gawk port to BeOS
Sent: 16/2/97 1:36 pm
To: Arnold Robbins, arnold@gnu.ai.mit.edu

Hi,

I've just completed a port of Gawk to BeOS (DR8.2), and I have a few
comments regarding the code.

1) The biggest problem with the port is that compilation of awktab.c
failed because of a bad union/structure for 'token'.

It turns out that this is because of the dfa code, where a 'token'
union is created which is in direct conflict with the 'token' defined
in the bison output for awktab.c file.

Page%466%of%467

I've replaced the 'token' reference in dfa.[ch] to be dfatoken
instead. Is there any reason why this hasn't come to light before?

2) Running make test only reports a few errors. At the moment for
example BeOS doesn't support /dev/stdout. Also the 'manyfiles' script
fails, dropping you into the debugger on an fdopen call. This is a
BeOS bug I'm trying to trace/fix.

3) An assumption is made that 'strncasecmp' has no prototype, I've
changed this so that a define will skirt round this.

4) The makefile goes on to to automatically make the library
utilities, I've disabled this because nearly all of them fail on BeOS.

I'll mail you the patches I've made for BeOS. Do you support MIME
attachments?

Remember that the purpose of contacting authors is to let them know of
the changes. Porting is a cooperative process; you only need to check the
documentation supplied with most packages to see examples of the number
of people who can be involved in the process.

Once you have been in contact with authors, they will almost certainly
ask for the changes in the form of a patch file. Make sure they can accept the
format and mail encoding you are going to use before sending it to them,
particularly if it’s large. For details on how to make patch files, refer to
Chapter 7.

Page%467%of%467

