LView Class Overview

Compatibility: BeOS Dano, Zeta, PhOS, (no R5 support)
Introduction:

The LView class is derived from BeOS's BView. The purpose of the
class is to provide a drawing surface for LControl-derived classes, and
forwarding system messages, input events, drawing notifications, automatic
lazy-clipping, and much more.

L Views, when implemented, will normally not have any children, instead
the class will normally be used to display content determined by an LControl.
Because [LView is a BView-derived class, it overrides many BView virtual
function calls (hook-functions), meaning that any classes being derived from
LView should ALWAYS issue an inherited::CallBack() for each LView
function overridden that L.View overrides from BView.

Example: (proper header exclusions removed)
// LView derivation example:

/¥ Header ¥/

#include "LView.h"

class myView : public LView
{
public:
myView(BRect);

virtual void AttachedToWindow();

}s
/* end of header */

// Source Code file (myView.cpp)
#include "myView.h"

myView myView(BRect r)
:LView(r, "myVieworSomething")
{ // Constructor
}

void

myView AttachedToWindow()

{

LView::AttachedToWindow();
// Your Code *AFTER*

The easiest way to determine if you need to issue a call-back is to look in the
LView.h header file. Any function you are going to implement that is
contained in LView.h needs the call-back. You should only override functions
that have been declared as virtual.

In almost all cases, you will want to issue the callback before any of your own
code is executed. This will allow the drawing and L.Control control facilities to
be utilized properly.

Function-by-Function:

Consutructor:
LView(BRect frame,
const char® name,
uint32 follow_mask, = B_ FOLLOW_ALL
uint32 flags = B_WILL_DRAW | B_ PULSE_NEEDED,
int32 ramAllocIncrement = 1);

frame - Determines exterior bounds of LView

name - Name for L.View, useful for searching

follow_mask - Automatic-resizing to container (Window or view)

flags - determines events to be passed and actions allowed

ramAllocIncrement - how much room to allocate for LControls each time
the list will grow when needed by this number to allow more room

Destructor:
virtual ~LView(); //frees list, and all members

Hook Functions: (from BView, see BeBook)
virtual void DetachedFromWindow();
virtual void Pulse();
virtual void Draw(BRect);
virtual void MouseMoved(BPoint, uint32, const BMessage™);
virtual void MouseDown(BPoint);
virtual void MouseUp(BPoint);
virtual void KeyDown(const char®, int32);
virtual void ~ KeyUp(const char*, int32);
virtual void MessageReceived(BMessage*);

Locking:

Locking is generally handled 100% without your knowledge or say so. You may
desire to lock this LView on your own if you are trying to add and remove controls
asynchronously.

The locking only stops operations on the LControl members list.
DO NOT LOCK UNLESS YOU HAVE TO, AND DO IT QUICKLY!
LView will "spin" on the lock every 1000ns until it is released!

void Lock();

bool IsLocked();

void Unlock();

void SetFuncLockout(bool = true);

If you pass false to SetFuncLockout, all locking is disabled. There are only a few rare
cases where the highly-granular locking mechanisms might cause issues. Normally the case
will be when and if you decide to control or manipulate L.View's members list directly.

Member Handling Functions:

void ~AddMember(LControl*);

int32 CountMembers();// returns 0 if locked

bool RemoveMember(LControl*);// false if locked
bool RemoveMemberAt(int32);
LControl*MemberAt(int32);

BList* Members(); // returns NULL when locked

