
Peachpit Press

S C O T H A C K E R
W I T H H E N RY B O R T M A N A N D C H R I S H E R B O R T H

The

BeOS

00 BeOS (i-xxviii) 4/28/99 9:39 AM Page i

The BeOS Bible
by Scot Hacker
with Henry Bortman and Chris Herborth

Peachpit Press
1249 Eighth Street
Berkeley, CA 94710
(800) 283-9444
(510) 524-2178
(510) 524-2221 (fax)

Find us on the World Wide Web at: www.peachpit.com

Peachpit Press is a division of Addison Wesley Longman

Copyright © 1999 by Scot Hacker

Notice of rights
All rights reserved. No part of this chapter may be reproduced or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without
prior written permission of the publisher. For more information on getting permission
for reprints and excerpts, contact Gary-Paul Prince at Peachpit Press.

Notice of liability
The information in this chapter is distributed on an “As is” basis, without warranty. While
every precaution has been taken in the preparation of this chapter, neither the author nor
Peachpit Press shall have any liability to any person or entity with respect to any loss or
damage caused or alleged to be caused directly or indirectly by the instructions contained
in this chapter or by the computer software and hardware products described herein.

Trademarks
Be, BeOS, and the Be and BeOS logos are registered trademarks of Be Incorporated in
the United States of America and other countries. All other products and company names
mentioned in this book may be trademarks of their respective owners.

ISBN: 0-201-35377-6

00 BeOS (i-xxviii) 4/28/99 9:39 AM Page ii

Scripting
by Chris Herborth

1

What Is Scripting? • 2
Shell Scripts, Application Scripts,

What’s the Diff? • 3
Shell Scripts • 4
BeOS Application Scripting • 4

Application Scripting

Languages for BeOS • 6
Perl • 7
Python • 7
Tcl • 8

Setting Up a Script • 8
The Magic Cookie • 9
The x Bit • 10
Other Ways of Using Scripts • 11

Shell Scripting 101 • 12
Looping • 12
Substitutions • 15
Command Substitution • 18
Doing Tests • 19
Testing the Opposite • 26
Something Useful • 27

Really Advanced Shell Use • 32
Script Arguments • 32
More Looping • 39
Case Study • 43
Listening to the User • 50
Using Functions • 54
Debugging Your Scripts • 58

BeOS Application Scripting • 59
How It Works • 59
Application Scripting Tools • 64
Working with hey • 64
Some Examples • 79
Where Now? • 89

Making Your Scripts

Run from the Tracker • 89
Installing xicon • 90
Using xicon • 92
Enhancing xicon Scripts • 92

Learning More • 95

 BeOS Scripting chapter 5/24/99 4:00 PM Page 1

In Chapter 6 we introduced you to the GNU bash shell that you’ll find in

BeOS’s Terminal window. With any luck, you’ve been spending a few minutes

here and there playing with the shell, experimenting and getting an idea of the

things you can do from a command line, (or maybe you were already familiar

with using a shell).

If you were frightened by Chapter 6, you might want to postpone reading this

chapter until you’ve gotten familiar with the shell and are ready to make it even

more useful.

What Is Scripting?
Good question! These days, there’s a fine line (or no line) between “scripting”

and “programming.”

Wait, don’t run away! Yes, I just said the “p” word, but don’t let that scare you.

You don’t need a degree in computer science to write useful scripts—in fact, if

you’ve used one of the many huge, bloated software packages available for

other platforms, you’ve probably already done some “programming” in the

form of macros. Feel free to give yourself a pat on the back if you’ve just

learned that you’re a programmer.

People spend hours of otherwise useful time arguing about the definition of

“scripting” versus “programming” languages. By the end of the argument, the

combatants are down to discussing details that nobody cares about, and they

still don’t have a good definition; it usually has more to do with what you’re

using the language for at the time. However, many people say, and we’re going

to assume in this chapter, that a scripting language is about controlling other

applications, not programming a new application. (Unless that new applica-

tion is for controlling other applications…you should be starting to see how

annoying this discussion gets.)

When we talk about “scripting” in BeOS, we’re usually talking about two dif-

ferent (but sometimes related) things: shell scripts and BeOS application

scripting.

Building Blocks Even though scripting doesn’t require programming skills,

learning to write scripts can be a great way to get a handle on basic concepts

that you can use later on if you do decide to learn to program!

2 Scripting

 BeOS Scripting chapter 5/24/99 4:01 PM Page 2

Shell Scripts, Application Scripts,
What’s the Diff?

If you’re new to the whole concept of scripting, it may be a little tough at first

to sort out the difference between shell scripting and application scripting, and

to understand why we’ve organized this chapter the way we have. These two

concepts are both completely separate and tightly linked. As you learned in

Chapter 6, The Terminal, there are hundreds of commands available to the bash
shell. As you’ll learn in this chapter, you can string these commands together

and save them in text files to automate anything you do from the shell. That’s

shell scripting—automating your operating system with command-line tools.

“Application scripting” refers to controlling your BeOS applications, both

third-party applications and those that came with your system. The BeOS

architecture makes this powerful functionality available for you with any

application in your system—you don’t have to rely on vendor-specific macro

languages. All you need to script BeOS applications is the ability to send those

applications system messages, called BMessages, and the ability to find out

which messages a given application will respond to.

As you’ll learn in this chapter, the ability to send system messages will eventu-

ally be built into most of the major scripting languages available for BeOS,

which will let you use any language to create application scripts for BeOS.

Until that time, though, we need to use a mini-language specifically designed

to send BeOS system messages, and control that language from within scripts.

That package is a command-line utility called hey.

In this chapter, we’re going to take a brief look at the principles behind both

types of scripting, and then dig more deeply into each one. We’ll use the shell

and simple shell scripts to demonstrate the use of hey and give you a taste of

the power of BeOS application scripting. Shell scripting is a mighty powerful

tool in its own right, and combined or extended with BeOS-specific scripting

opportunities, is a veritable Swiss Army knife capable of making your com-

puter do what it’s supposed to do: make your life easier and take care of the

grunt work on your behalf.

When it comes to controlling a GUI application from the shell with hey, the

shell is just another programming language. hey gives the shell the ability to

send messages to GUI applications, and that’s the only requirement to make

any programming or scripting language into a BeOS application scripting

dynamo.

Let me say that again so you don’t miss it: There’s nothing special about the

shell and hey. Any programming language that can send messages will be able

to remotely control GUI applications, and thus will be a candidate for BeOS

application scripting.

3What Is Scripting?

 BeOS Scripting chapter 5/24/99 4:01 PM Page 3

Shell Scripts

A “shell script” is just a text file (usually with a filetype of text/plain or

text/x-script.sh) that’s been marked as an executable with the chmod com-

mand. (Don’t worry, we’ll show you how to do this just a little later.) Inside

this text file will be one or more shell commands—normal commands that

you could just type into the Terminal at the command line. For example, a

really simple (and somewhat pointless) shell script to print “hello world”

could look like this:

#! /bin/sh
#
Print a friendly message:
echo hello world

Wait a minute, what’s that crap at the beginning? Well, it’s magic, and we’ll

talk about it in detail in the Magic Cookies section.

Most shell scripts are a lot more complicated than that; if they were that sim-

ple, you’d just type the commands into the shell. Shell scripts are a way of

sticking a sequence of commands together in a convenient package; this lets

you reuse long sequences of commands, to do almost anything.

BeOS Application Scripting

So, if a shell script is just a bunch of shell commands, what’s BeOS applica-

tion scripting? It’s certainly got a more impressive name. To explain it in more

detail, I’ve got to wax poetic and discuss how some other operating systems

work, how applications communicate in BeOS, and some other details.

Messages As mentioned earlier in this chapter and elsewhere in this book,

BeOS does much of its work by sending small, well-defined messages

(BMessages) between the various running applications and system servers.

This helps distribute the workload, makes the system stable (by keeping the

all-important servers separate from the user’s applications), and generally

makes life better for everyone running BeOS.

For example, the messages sent between each application and the system’s

Application Server cause the app_server to put windows on your screen,

redraw parts of your windows (also known as “views”), and do various other

useful things. In return, the app_server sends messages to the application

every time the user presses a key, clicks the mouse, opens a menu, or closes

a window.

Wouldn’t it be useful if you could send commands to your applications just

like the app_server does? In other words, imagine that you could send mes-

sages to an application telling it to close a window, open a file, make a menu

4 Scripting

 BeOS Scripting chapter 5/24/99 4:01 PM Page 4

selection, or do anything you would normally do if you were using the appli-

cation directly —you’d be able to automate your applications and make them

do repetitive, boring tasks without having to sit there and do them yourself.

That’s exactly what application scripting is! Every single application running

on BeOS can accept and respond to “suites” of scripting commands, whether

or not the programmer added special code to handle this. It’s all automatic.

In BeOS, application scripting is done by sending messages to running appli-

cations. If necessary, they can send back information in a reply message.

5What Is Scripting?

Scripting Wars

Every now and then, a seemingly innocent question pops up on the various BeOS email lists:

“Why doesn’t BeOS come with a native scripting language of its own?”

Usually this is accompanied by some pining for the poster’s favorite operating system, usually

OS/2 or the Amiga, both of which happen to have the REXX scripting language built in. Many

applications for both OSs could be scripted using REXX, and developers could distribute REXX

programs with their applications as examples of their scripting support, similar to the way

MacOS applications can be controlled with AppleScript, the way Windows applications can be

controlled with VisualBASIC, and the way some UNIX applications can be controlled with Tcl.

This discussion almost instantly degenerates into an argument about the merits of various

scripting languages and operating systems, and is immediately banned from the mailing list

because it has nothing to do with the list’s usual subject (such as using BeOS or developing

BeOS applications).

Everyone is tired of these Scripting Wars; all of the list old-timers have either given up trying to

convert everyone else to The One True Scripting Language, or they’ve come around to believing

that BeOS is doing the Right Thing.

Which, of course, it is. By using the standard message-passing objects and functions already

present in BeOS, you can use any scripting or programming language to control any BeOS appli-

cation. The language and the application don’t have to be specially designed to talk to each

other, and the user can use whatever language they feel comfortable with, as long as it can send

messages.

It’s hard to argue against this sort of flexibility, though some people try. Usually they complain

about not having a standard scripting language, which means that they have to write their sam-

ple scripts in all languages or they can’t distribute any sample scripts at all because they have no

way of knowing what scripting language the user is going to have installed.

But what these detractors fail to understand is that BeOS does come with a standard scripting

language: the bash shell!

This doesn’t mean that bash is the only scripting language that you can use with BeOS; again,

you can use any language that lets you send messages to running applications.

 BeOS Scripting chapter 5/24/99 4:01 PM Page 5

Application Scripting
Languages for BeOS

At the time of this writing, there were quite a few languages available on

BeWare, and there will probably be a lot more available when you read this.

Although not all of these languages will be able to send scripting messages to

BeOS applications, popular ones like Python and Perl should be able to soon

(possibly by the time you read this).

Luckily, BeOS’s strong POSIX support means that it’s usually fairly easy to port

any of the existing scripting languages that are out there on the Net to BeOS.

Here’s a quick (and hopefully unbiased!) overview of some of the languages

available on BeWare:

• Guile

• Hope

• HU-Prolog

• Oberon-2

• Perl

• Python

• Ruby

• SmallEiffel

• Tcl

Most of these are pretty rare; the Big Three of scripting are Perl, Python, and

Tcl. (Guile will probably become more popular as more GNU applications

support it.) Each of the Big Three seems to have more regular users than all

of the others put together, if you believe the polls you find now and then on

the Web.

GNU (short for GNU’s Not UNIX) is a set of UNIX-compatible software

developed by the Free Software Foundation (FSF). Anyone can download,

modify, and redistribute GNU software, but they can’t limit further distribu-

tion. Richard Stallman started the GNU project in 1983 at MIT.

6 Scripting

Rare Languages

Guile, Hope, HU-Prolog, Oberon-2, Ruby, and SmallEiffel seem to be fairly rare and used only for

special purposes or by enthusiasts. You probably won’t need to know much about them; if

you’ve got a special use for one of these languages, then hopefully you’ll already know what

you’re doing.

 BeOS Scripting chapter 5/24/99 4:01 PM Page 6

Perl
http://www.perl.org/

Larry Wall’s Perl is a very popular (and some people say challenging) language

used by many systems administrators and Webmasters to ease their day-to-day

work and manage Web sites. Known chiefly for its powerful text-manipulation

capabilities, it excels at performing tricky search-and-replace operations over

lots of text files (which probably explains why it’s so popular with Webmasters

wrangling with huge mountains of HTML). The CGI (Common Gateway

Interface) scripts that work behind the scenes of most Web-based forms, such

as search engines and questionnaires, are often written in Perl.

Genetically speaking, Perl is a hybrid of the Bourne shell and the awk language

(both discussed in Chapter 6), with some C thrown in for good measure. Due

to its heavy use of regular expressions and its tendency to give the program-

mer several ways to do the same thing, Perl code can be difficult to read (my

favorite description is that it looks like someone sat on your keyboard). On

the other hand, this complexity can make for some very powerful and very

short programs.

Perl can’t send BeOS messages yet, but it’s only a matter of time before this

popular language becomes capable of controlling GUI applications. Be sure to

check Perl’s entry on BeWare to see if a new version’s been released!

Python
http://www.python.org/

Named after the British comedy troupe and not the snake of the same name,

Python is an easy-to-use, object-oriented language that is well suited to appli-

cation scripting, even on systems that don’t support a rich messaging model

like BeOS does.

Python programs look a little like pseudo-code (I can hear the computer sci-

ence students groaning in the back) that actually runs. Like BeOS, Python

supports most of the current industry buzzwords for programming languages

(modules, classes, exceptions, very high-level dynamic data types, and

dynamic typing, not to mention being interpreted and interactive). If these

terms mean nothing to you, don’t sweat it. Just as you don’t have to know

how your engine works in order to drive your car, you can create working

scripts in Python (or any of these languages) without first understanding their

every nuance.

Python is the first language to support BeOS application scripting. For the

Fall ’98 BeOS Masters Awards, I developed heymodule, a Python add-on that

lets you write hey-style programs within the confines of the Python inter-

preter. For more information about heymodule (it’s got good documentation

7Application Scripting Languages for BeOS

 BeOS Scripting chapter 5/24/99 4:01 PM Page 7

and several examples, including a Python version of the big email checking

script that you’ll find at the end of this chapter), look in BeWare’s Languages

section (http://www.be.com/beware/Languages.html). Python installation

is covered in Chapter 15, Other Goodies.

Tcl
http://www.tclconsortium.org/

Tcl (pronounced “tickle” by some Unix weenies) stands for “tool control lan-

guage,” as Tcl was originally designed to be embedded inside applications on

Unix and used as a scripting language for those applications.

Tcl’s distinguishing characteristic is that it treats everything as a string of text.

This slows down some things (don’t try doing lots of math, for example) but

also makes it easy to embed Tcl commands inside a Tcl program, a file, or an

application.

To quote from the Tcl FAQ’s answer to “What is Tcl?,” “Tcl was designed with

the philosophy that one should actually use two or more languages when

designing large software systems. One for manipulating complex internal data

structures, or where performance is key, and another, such as Tcl, for writing

smallish scripts that tie together the other pieces, providing hooks for the user

to extend.” This is exactly the sort of thing we’re trying to accomplish with

BeOS’s application scripting, although in a language-neutral way.

It might be a while before the BeOS version of Tcl can do GUI scripting; I’m

not sure if anyone is working on extending it to work with messages.

Setting Up a Script
No matter what kind of scripting you are going to do, shell or application,

you have to set up your scripts in a certain way for the system to be able to

find them, execute them, and run them as scripts. In this section we’ll show

you how to change plain text files into executable scripts, no matter what lan-

guage you’re using.

As we said above, you can use any language to write scripts in BeOS. For

most of the examples in this chapter, however, we’ll be using the bash shell

and the command-line tool hey to work with application scripting. The

biggest advantage to using bash for your scripts is that you can easily share

them with any other BeOS user—bash comes built into every copy of BeOS.

8 Scripting

 BeOS Scripting chapter 5/24/99 4:01 PM Page 8

What makes a normal text file full of commands a shell script? Well, there are

two parts: the magic cookie and the x bit.

The Magic Cookie

The “magic cookie” in a shell script isn’t the same kind of cookie used

on the Internet; it’s just an easily recognizable sequence that the system

uses to indicate an executable script. It won’t follow your every move, store

your credit card information, or fill your disk with mysterious files from

who-knows-where.

Remember our previous simple shell script example:

#! /bin/sh
#
Print a friendly message:

echo hello world

That first line is the magic cookie. Normally, when the shell sees a “#” char-

acter, it ignores the rest of the line; this lets you put explanatory notes—or

“comments”— in your shell scripts. If the second character of a comment in

the first line of a shell script is “!”, it isn’t a normal comment anymore—it

tells the shell that this is a script of some sort.

The rest of the magic cookie line tells the script where to find the program

that will interpret the commands in the script. The sample script is a shell

script, and will be run by the shell, which lives at /bin/sh.

You also need a magic cookie line for any other scripts that need a scripting

interpreter. You would set these in the same way, substituting the appropriate

script interpreter for /bin/sh.

For example, this sample script needs to run in the Python interpreter:

#! /boot/home/config/bin/python
#
Print a friendly message:

print "hello world"

Comments that start with #! anywhere in the file other than on the first line

are just normal comments. Magic cookies can only appear on the first line of

a shell script.

9Setting Up a Script

 BeOS Scripting chapter 5/24/99 4:01 PM Page 9

The x Bit

The x bit has nothing to do with Mulder and Scully. As you’ll recall from

Chapter 6, The Terminal, every file has some Unix-style permission bits associ-

ated with it, indicating who can read the file, write to it, and so on. One of

these bits is the x bit, which indicates if file can be executed.

To set the x bit on your shell script, use the chmod command:

$ chmod +x script_name

Why not try it now? Open up StyledEdit and create a file named

hello_script; type our sample shell script and save it:

#! /bin/sh
#
Print a friendly message:

echo hello world

Now open a Terminal, find hello_script, and check its permissions:

$ ls -l hello_script

10 Scripting

What If Someone Installed Python Somewhere Else?

The default location for Python is /boot/home/config/bin, but some people like to rearrange

things the way they want them. If Python isn’t at the default location, your script will need to find

it. You can use a command named env (which stands for “environment”) to will search for some-

thing for you:

#! /bin/env python
#
Print a friendly message:

print “hello world”

Now env will search for Python and tell it to run this script. This script will run on any system that

has Python installed, as long as it’s installed in one of the system’s executable search paths (see

Chapter 6 for more information about the PATH environment variable, which controls your

search path).

Keeping hard-coded paths out of your scripts is a very good idea, especially if you intend to dis-

tribute your scripts. Nobody will ever have a system set up exactly like yours. The usual way to

let a user customize a script is to read your paths from command-line arguments, environment

variables, or a config file. Some of the books mentioned in Chapter 6’s Learning More section will

tell you all you need to know about doing this sort of thing.

 BeOS Scripting chapter 5/24/99 4:01 PM Page 10

You should see something like this:

-rw-r--r-- 1 chrish techies 28 Aug 10 16:58 hello_script

Now set its x bit:

$ chmod +x hello_script

If you check the file’s permissions again, you should see that the x bit is

now set:

$ ls -l hello_script
-rwxr-xr-x 1 chrish techies 28 Aug 10 16:58 hello_script

You can now run it just by typing its name:

$ hello_script

If nothing happens or you get an error message, either permissions haven’t

been set correctly, or the script is not in one of the directories in your PATH.

If the shell prints:

hello world

then congratulations—you’ve just written a program for BeOS!

Other Ways of Using Scripts

Say you’ve written a really great shell script that does something useful (we’ll

start working on that soon!), and you’d like to keep it around and use it

whenever you need it. Do you always have to work in the directory where the

script is located?

Nope! As we’ve seen, the system treats shell scripts as normal executable pro-

grams (assuming they’ve got the right magic cookie and x bit). The PATH envi-

ronment variable (see Chapter 6, The Terminal) helps the shell find programs,

and there’s a standard directory for your own custom programs:

/boot/home/config/bin.. This directory is always in the PATH, so if you want to

reuse your super wonder script, copy or move it there:

$ cp super_wonder_script ~/config/bin

Remember, in the shell you can use ~ as a shortcut for your home directory,

which is set to /boot/home. Putting your scripts in /boot/home/config/bin lets

you use them no matter where you are in the Terminal.

Once your scripts are in this folder, which is in the system PATH, you can use

them from any other location in your filesystem.

There’s a handy program on BeWare called xicon that helps you run scripts

from the Tracker; we’ll talk about it in Making Your Scripts Run from the Tracker,

later in this chapter.

11Setting Up a Script

 BeOS Scripting chapter 5/24/99 4:01 PM Page 11

Shell Scripting 101
Now that we’ve spent some time going on about the difference between shell

and application scripting, why we’ll use bash with hey for application scripting,

and how to set up a script, isn’t it about time we started looking at something

more useful? Well, your wish is my command.

In Chapter 6, The Terminal, you learned how to copy, move, and rename files

using the cp and mv commands. You probably thought, “Great, I can use this

for lots of things!” and merrily started rearranging your filesystem.

Soon, though, you’ll run into a problem: These commands only work on one

file or directory at a time (for renaming) or one destination at a time (for

copying and moving). What if you’ve got a big directory full of files that you

want to rename? What if some silly program (or user!) has set a whole bunch

of files in a bunch of directories to the wrong filetype, and you want to fix

them now instead of waiting around for the Registrar to do it?

To do these sorts of tricky things, you’re going to have to learn a little shell

programming. Don’t worry, though—it’s easy!

Looping

Say you’ve got a directory full of files you’ve downloaded from the Web;

they’re all text files, but none of them have file extensions. Since you like to

share your files with other operating systems (possibly even on the same com-

puter), you want to give them all a .txt extension so operating systems with-

out a studly MIME typing scheme will have a clue what to do with the file.

Setting Up a Loop You could rename each file from the Tracker, or from a

Terminal using mv, but that’d take ages if there are lots of files. If you’d like to

save some time (and your brain), you could rename all the files in one fell

swoop using a for loop in the Terminal:

$ for i in * ; do mv "$i" "$i.txt" ; done

or, if you’re writing it as a shell script, you could add some extra white space

to make it more readable:

#! /bin/sh
for i in * ; do

mv "$i" "$i.txt"
done

12 Scripting

 BeOS Scripting chapter 5/24/99 4:01 PM Page 12

If you do this in the shell, it’ll look something like this (it won’t let you add

tabs to make it more readable):

$ for i in * ; do
> mv "$i" "$i.txt"
> done

Note the “secondary” prompt that you’ll get when you continue a command

over several lines; that’s the > in the example.

Just as the PS1 environment variable controls the default prompt (which

starts life as $), the PS2 environment variable controls the secondary prompt

(which starts life as >) that you get when you continue a command across

lines.

For example, if you do this:

export PS1="Keeps going: "
export PS2="... and going: "

and type that for loop again, you’ll see something like this:

Keeps going: for i in * ; do
... and going: mv "$i" "$i.txt"
... and going: done

Don’t panic—I’m about to explain every detail of the syntax used in this con-

struct. This for loop takes every file in the current directory (represented by

the * wildcard) and runs through the commands between do and done; every

pass through the commands assigns one of the filenames to the variable

named i (variables are explained in Chapter 6, The Terminal). For example, if

you’ve got files named chris, henry, scot, and simon in a directory, the script

will treat each of those files in turn. On the first trip though, the mv command

will assign chris to the variable i, then rename $i to $i.txt. In other words,
chris gets renamed to chris.txt. The second pass through will rename henry
to henry.txt, and so on.

I’ve put quotes around the variable ("$i" instead of just $i) in case there are

any files with spaces in their names. If you don’t, the shell will think that

there’s one argument per part of the filename(a file named “this is a test”

would be seen as four arguments, for example). This isn’t too important in an

echo command, but will cause the command to fail (or do something unex-

pected!) with cp or mv.

13Shell Scripting 101

 BeOS Scripting chapter 5/24/99 4:01 PM Page 13

The for Loop Defined The general form of the for loop (you can type

help for in the shell if you need a reminder) is

for NAME in WORDS ; do
COMMANDS

done

NAME is the name of the variable (it can be any combination of letters, num-

bers, and the underscore character; I usually use i because I’m too lazy to

think up a better name or type all of index), which will be assigned one of the

WORDS on each pass through the set of COMMANDS. COMMANDS can be several shell

commands. For example, if you’re paranoid (like I am), or just like to get

some feedback so you know your script is doing what you intend, you can

expand the renaming loop to look like this:

for i in * ; do
echo Renaming "$i"...
mv "$i" "$i.txt"

done

When running this script from our example directory, the Terminal would

report the following:

Renaming chris...
Renaming henry...
Renaming scot...
Renaming simon...

A Better Version of a for Loop If you find you’re doing this sort of thing

a lot, you could create a slightly better version of this script. A full shell script

version of this set of commands might look like this:

#! /bin/sh
#
Rename all the dropped files to have .txt extensions,
then give them the text/plain filetype.

Loop through all of the command-line arguments, which we
collect using the special variable $@, described below.
for i in "$@" ; do

Rename the file:
echo Renaming "$i"...
mv "$i" "$i.txt"

Make sure it's got the right filetype:
settype -t text/plain "$i.txt"

done

14 Scripting

 BeOS Scripting chapter 5/24/99 4:01 PM Page 14

At the start, we’ve got the magic cookie for a shell script, plus a couple lines of

comments to remind us what this script does. After that, there’s one new

thing in this shell script: The $@ in the for loop is a variable that holds all of

the arguments that we specified when we called the script (arguments are cov-

ered in Chapter 6, The Terminal, in the Basic Shell Syntax section). Going

through the for loop, the commands will be executed for every argument,

which is exactly what we want. Inside the loop, each argument is renamed to

end in .txt, and is then given a filetype of text/plain.

Save this file as txt_renamer, use chmod +x txt_renamer to make it executable,

and store it in ~/config/bin; now you can use it to rename text files (and give

them the right filetype) any time you want by invoking it and passing it file-

names like this:

$ txt_renamer chris henry scot simon

Substitutions

Imagine that that after we’ve renamed our directory full of files and set the

type to plain text, we discover that they’re all really HTML documents and

that their new names and types are going to confuse everyone.

The best thing to do would be to rename these files to have normal .html
extensions and set the filetype to text/html. But watch out— the first thing

that comes to mind is

#! /bin/sh
for i in *.txt ; do

mv "$i" "$i.html"
done

But if we go this route we’ll end up with a bunch of files named

whatever.txt.html Not quite what we wanted. Wouldn’t it be nice if we could

strip off the .txt extension before we added .html? If you remember reading

about sed in Chapter 6, you might think we could use it somehow; a com-

mand like sed -e s/.txt/.html/ will replace .txt with .html for us. This

starts to get tricky, though, and all we wanted to do was something simple.

If you’re coming to bash from the DOS world, you may be surprised that

such a simple thing as renaming a batch of files should be so involved. After

all, DOS lets you type ren *.txt *.html and be done with it (and no, simply

typing mv *.txt *.html into the shell does not work; this will attempt to move

all the .txt files and all of the .html files into the last .html file!). As you’ve no

doubt realized by now, bash lets you do things that DOS could never even

15Shell Scripting 101

 BeOS Scripting chapter 5/24/99 4:01 PM Page 15

dream about. Unfortunately, there are side effects to the shell’s flexibility and

power, and this little file renaming quirk is one of them. Rest assured, though,

that examples like this—where bash actually makes things harder than they are

in DOS—are few and far between, and that the almost unlimited power you

get in return is well worth any extra effort. Plus, we’re going to learn a lot

about the shell’s possibilities by working on this renamer.

Simple Substitution Luckily, bash gives us a simple way of doing what we

want:

#! /bin/sh
for i in *.txt ; do

mv "$i" "${i%.txt}.html"
done

The tricky bit of this script is in the mv command; we’ve stuck in curly brack-

ets with some extra stuff.

These curly brackets turn into a substitution; which the shell will use to trans-

form text according to your commands. In this case, the % command is used

to strip some text from the end of the i variable’s contents. It’s called a “sub-

stitution” because the transformed text is substituted for the original text.

The substitution looks like this:

${i%.txt}

and if the contents of the i variable match .txt, you’ll get the contents of i
without .txt on the end. Let’s play with this in the shell a bit to see what I

mean:

$ TEXT="hello there"

$ echo ${TEXT%what}
hello there

$ echo ${TEXT%there}
hello

$ echo ${TEXT%the}
hello there

You’ll get back a “hello there” the first time because “what” doesn’t match

anything at the end of $TEXT. The second time, you’ll get “hello” (actually

“hello ” with a space after it) because “there” does match the end of the text.

The third time, you might expect to get “hello re”, but you don’t…“the”

doesn’t match the end of the text, so nothing happens.

16 Scripting

 BeOS Scripting chapter 5/24/99 4:01 PM Page 16

The general form of the % text-stripper is:

${variable%text}

and it removes the given text from the end of variable’s contents.

Combining Substitutions with a for Loop This construct is handy

because it lets us strip off unwanted bits at the end of things, such as the

incorrect .txt extension in our example. If we try this out with our example

directory of files:

$ ls

chris.txt henry.txt scot.txt simon.txt

$ for i in *.txt ; do
> mv -v "$i" "${i%.txt}.html"
> done

The shell will return this:

chris.txt -> chris.html
henry.txt -> henry.html
scot.txt -> scot.html
simon.txt -> simon.html

$ ls

chris.html henry.html scot.html simon.html

Of course, we haven’t set the filetype properly, but we can do that pretty easily

now:

settype -t text/html *.html

Type settype -h in a Terminal window for details on using the settype com-

mand.

The shell supports a bunch of different replacement and substitution com-

mands, and they’re all just as “easy” to remember as the % substitution (see

Table 1). Some of them are pretty esoteric, and you won’t end up using them

very often, if ever. Still, it’s handy to know they exist when you need

to manipulate command-line arguments or other strings in your shell scripts.

It’s always faster to use the shell’s built-in substitutions than to use another

command like sed.

17Shell Scripting 101

 BeOS Scripting chapter 5/24/99 4:01 PM Page 17

Command Substitution

You’ve already learned how to make the output of one command function as

the input of another (in the Redirection section of Chapter 6, The Terminal), but

what if you want to use the output of one command as an argument to another

command? That’s a subtle distinction, but consider this: What if you’ve got a

file that lists all the files you want to run through in a for loop? You could

look in the list of files and type everything out on the command line, but

that’s too much work.

18 Scripting

Table 1 Shell Replacement and Substitution Commands
Command Description

${parameter:-word} If parameter isn’t set, or is empty, return word; otherwise return
parameter. This can be handy if you want to check an environ-
ment variable and provide a sensible default if it hasn’t been set.

${parameter:offset} Return a substring of parameter starting at offset. For example,
if TEXT is set to “hello world", echo ${TEXT:5} will print
“world”; the first six characters (because you start at 5 and the
first character is offset 0) are skipped. If offset is negative, it’s
used as an offset from the end of parameter; echo ${TEXT:-3}
should print “rld” because we’re getting three characters from
the end of $TEXT.

${parameter:offset:length} Return a substring of parameter starting at offset and going
for length characters. echo ${TEXT:5:3} will print “wor”, which is
three characters starting at offset 5.

${#parameter} Return the number of characters in parameter.

${parameter#word} If word matches the beginning of parameter, return parameter
with word deleted from the beginning. For example, echo
${TEXT#hello} will return “world”. This is the opposite of the %
substitution that we used earlier.

${parameter%word} If word matches the end of parameter, return parameter with
word deleted from the end. We’ve already used this one.

${parameter/pattern/string} If pattern matches part of parameter, return parameter with
pattern replaced by string. For example, if FOO is set to “eeeeek”,
echo ${FOO/e/E} will return “Eeeeek”. The pattern can include
shell wildcards (see Chapter 6, The Terminal).

${parameter//pattern/string} If pattern matches part of parameter, return parameter with all
instances of pattern replaced by string. Using FOO again, echo
${FOO//e/E} will return “EEEEEk”.

 BeOS Scripting chapter 5/24/99 4:01 PM Page 18

Why not just embed the command you’d use to display the list? You can actu-

ally embed one command inside another one:

#! /bin/sh
for file in $(cat list) ; do

something
done

The command between $(and) is run, and its output is used as an argument,

or even as a command with arguments of its own. In this case, cat will print

out the list of files, and the for loop will run through them. But you could

also have a command stashed in a file somewhere and run it with:

$(cat /tmp/some_file)

If /tmp/some_file had ls /boot in it, you’d see a listing of the files and direc-

tories in /boot.

Using Backticks Sometimes you might see `command` instead of

$(command); these are equivalent, but the first form, which uses backticks (`),

is “deprecated.” That’s a geek way of saying, “Don’t use this.” Using the

$(command) form will also save you from Quoting Hell, and it’s much easier to

tell there’s a subcommand in there.

Doing Tests

Sometimes you’d like to execute part of a script depending on something else,

such as whether a file exists or whether an environment variable is set. This is

done by using an if statement to test whether the relevant condition is true.

The general form for a simple if statement is

if TESTS ; then
COMMANDS

fi

If the TESTS turn out to be true, the COMMANDS between the then and fi are

executed. In this sort of construct “true” is defined as a number that isn’t 0,

a string that isn’t empty, or a zero return value (a.k.a. an “exit status”) from a

program or script.

0 the number and 0 returned by a program are different; the 0 number can be

typed right into your script, but exit status values are a little different; the sys-

tem keeps track of these. When a program sends back an exit status of zero, it

means that everything worked.

19Shell Scripting 101

 BeOS Scripting chapter 5/24/99 4:01 PM Page 19

The most common command to use as one of the TESTS is, oddly enough,

test, which returns an exit status of true if its test succeeds, or false if it

doesn’t. For example, the test command to check to see if a string isn’t empty

is test -n; you can use this to see if an environment variable is set or not:

$! /bin/sh
if test -n "$FOLDER_PATH" ; then

echo "FOLDER_PATH is set"
fi

If FOLDER_PATH is set to something, you’ll see “FOLDER_PATH is set” in your

Terminal.

You can also form the test command using square brackets. This lets you

write the test for FOLDER_PATH like this:

$! /bin/sh
if [-n "$FOLDER_PATH"]; then

echo "FOLDER_PATH is set"
fi

Most people think it’s much easier to read the version with square brackets, so

I’ll be using them throughout the rest of this chapter.

20 Scripting

A Bit about the Exit Status

Every command that you run in the Terminal sends back an “exit status” when it finishes to let

the shell know whether it succeeded or not; this number is kept hidden by the shell (you won’t

see it printed in the Terminal). This idea of an exit status is a little strange at first, but you can test

it yourself. Every BeOS system comes with a couple of commands named true and false; these

commands don’t do anything but return an exit status. The true command’s exit status is 0, and

false’s is something else. It doesn’t actually matter what else, as long as it’s not 0.

You can try these out in an if statement:

$ if true ; then
> echo we got true
> fi
we got true

$ if false; then
> echo we got false
> fi

$

You can use the true and false commands anywhere you’d normally use a test.

 BeOS Scripting chapter 5/24/99 4:01 PM Page 20

Other Commands for Tests Any command can be used as a test in the if
statement. Properly written command-line tools will have an exit status of

true if they succeed and false if there’s an error.

Remember, these exit status values are kept hidden by the system; you won’t

actually see the words “true” and “false” appearing in your Terminal after run-

ning a command.

For example, this command:

#! /bin/sh
if chmod +w filename ; then

echo "Made filename writeable."
else

echo "Had an error."
fi

will print “Made filename writeable.” if the chmod command succeeds, or

“Had an error.” if it fails (which will happen if filename doesn’t exist). This

can be handy if you want to do something special when a command fails or

display a custom error message.

An if statement can be more complex, too:

if TESTS_1; then
COMMANDS_1

elif TESTS_2 ; then
COMMANDS_2

...
else

COMMANDS_N
fi

Each additional set of tests and commands is attached with an elif (short

for “else if ”) statement. If none of the tests succeeds, the commands in the

else statement will be executed. The else statement is optional.

Testing with One Argument Using the test command, or its more

readable cousin [...], you can test quite a few things, such as whether

a file exists, what type of file it is, and whether a string is empty or not

(see Table 2).

To test one argument, like whether a file exists, you’d use

test op argument

or

[op argument]

21Shell Scripting 101

 BeOS Scripting chapter 5/24/99 4:01 PM Page 21

where op is the kind of test. For example, test -e is used to see if a file exists,

so you can check to see if there’s a file named bozo in /boot with

test -e /boot/bozo

or

[-e /boot/bozo]

Just running the test command like this isn’t very useful, so you’d stick it

inside an if statement:

#! /bin/sh
if test -e /boot/bozo ; then

echo "/boot has a bozo"
else

echo "no bozo"
fi

22 Scripting

Table 2 Tests for One Argument
Test True If Comments

-d FILE FILE exists and is a directory.

-e FILE FILE exists. This will succeed whether FILE is a normal file,
a directory, or a symbolic link.

-f FILE FILE exists and is a normal file (i.e.,
not a directory or symbolic link).

-L FILE FILE exists and is a symbolic link. See Chapter 5, Files and the Tracker, for infor-
mation about symbolic links.

-n STRING STRING isn’t empty (that is, has at A string can be any chunk of text, such as the
least one character inside, even if contents of an environment variable or some-
that character is a space or a tab). thing you type between quotes. This can be

handy for checking whether an environment
variable is set or not.

-r FILE FILE exists and is readable by you.

-s FILE FILE exists and is not empty (that is,
has more than 0 bytes of data inside;
file attributes don’t count).

-w FILE FILE exists and you can write to it.

-x FILE FILE exists and you can execute it.

-z STRING STRING is empty (that is, has no
characters inside).

 BeOS Scripting chapter 5/24/99 4:01 PM Page 22

Of course, being so smart and friendly, you’d want this to be more readable,

so you’d use this version instead:

#! /bin/sh
if [-e /boot/bozo] ; then

echo "/boot has a bozo"
else

echo "no bozo"
fi

Are those spaces before and after the brackets really necessary? Could you

write the test like this instead?

if [-e /boot/bozo]; then

If you try this, you’ll get back an error message like “[-e, command not

found.” The spaces aren’t just there to make the script more readable, they’re

actually necessary—the shell can’t understand the test without them. The

shell can be very picky about syntax sometimes.

Test Quick Reference If you need a quick reminder to help you find the

test you’re looking for, try typing help test | less in a Terminal window.

It’s a good idea to pipe it into less because the help message for test is

really long!

Using File Tests Let’s try out a few of the tests from Table 2 in the

Terminal to see how they really work. Open up a Terminal and cd to /boot.

Now type this:

$ if [-e beos] ; then
> echo beos exists here
> fi

When you hit Enter after typing fi you should see “beos exists here,” which

is obviously true if your system managed to boot. In this example the -e flag

inside of the square brackets performs an existence test on its argument “beos”

and tells us that, indeed, there is a directory here named /boot/beos. Let’s see

what else we can learn about it:

$ if [-f beos] ; then
> echo beos is a normal file
> elif [-d beos] ; then
> echo beos is a directory
> else
> echo beos is an unknown kind of file
> fi

You’ll see that “beos is a directory” (well duh, we already knew that).

23Shell Scripting 101

 BeOS Scripting chapter 5/24/99 4:01 PM Page 23

Testing with Two Arguments There are also some tests that work in pairs

and take two arguments. These are used for comparing two files, two text

strings, or two numbers (see Table 3).

To compare the dates of two files, for example, you’d use:

test argument1 op argument2

or the ever-popular:

[argument1 op argument2]

where op is the kind of test. For example, -nt is used to see if the first argu-

ment is newer than the second. To see if /boot/beos is newer than /boot/home
(this would tell you if the system has been updated since being installed),

you’d do this:

#! /bin/sh
if [/boot/beos -nt /boot/home] ; then

echo "This system was probably updated."
fi

24 Scripting

Table 3 Tests for Two Arguments
Test True If Comments

NUMBER1 -eq NUMBER2 NUMBER1 equals NUMBER2. You can use this to check for
specific exit status values; you’ll see
how in Checking the Exit Status, below.

NUMBER1 -ge NUMBER2 NUMBER1 is greater than or equal
to NUMBER2.

NUMBER1 -gt ARG2 NUMBER1 is greater than NUMBER2.

NUMBER1 -le ARG2 NUMBER1 is less than or equal
to NUMBER2.

NUMBER1 -lt ARG2 NUMBER1 is less than NUMBER2.

NUMBER1 -ne NUMBER2 NUMBER1 isn’t equal to NUMBER2.

FILE1 -nt FILE2 FILE1 is newer than FILE2
according to the modification
date and time.

FILE1 -ot FILE2 FILE1 is older than FILE2
according to the modification
date and time.

STRING1 = STRING2 The strings are the same. This is handy if you want to check
command-line arguments in a shell
script or see if an environment vari-
able is set to a specific string.

 BeOS Scripting chapter 5/24/99 4:01 PM Page 24

Say you’re writing a script and you want its error messages to behave differ-

ently depending on the SCRIPT_ERRORS environment variable. In the documen-

tation, you let the user know that they can set this to “polite” or “stressed”

depending whether they want to see calm or overwrought error messages.

In your script, you’d handle this by doing something like this:

#! /bin/sh
if ["$SCRIPT_ERRORS" = "polite"] ; then

echo "Your files have been deleted. Sorry."
elif ["$SCRIPT_ERRORS" = "stressed"] ; then

echo "ARGH! My life is over, I killed your files..."
else

echo "Hey, SCRIPT_ERRORS is wrong; please set it to:"
echo "polite or stressed."

fi

Checking the Exit Status The arithmetic tests (-eq, -ge, -gt, -le, -lt,

and -ne) are handy for checking the exit status of another command in a

script. You’ll remember from A Bit about the Exit Status that every command

sends an exit status back to the shell when it finishes to tell the shell whether

it succeeded or not.

The exit status of the last command can be found in the magic environment

variable $?, which always contains the exit status of the last command exe-

cuted by the shell. By convention, an exit status of 0 means that all is well,

and anything else is an error:

#! /bin/sh
if [$? -ne 0] ; then

echo "oh no, an error"
else

echo "everything is good"
fi

In this example we’re testing the value of one argument, whatever is currently

in the $? variable, against the value of 0 by using the -ne test. -ne asks if

they’re not equal, so if the current value of $? is not 0 then the script prints

“oh no, an error.” This if statement lets scripts respond to errors.

Protecting the $? Variable Because the value of the $? variable can

change as the script runs, the best way to preserve a particular exit status is

to store it in another variable. This is important because even minor steps

occurring later in the same script will overwrite the value of $? with a new

exit status. Even adding an elif clause to the if statement will overwrite the

value of $? with the exit status of the test at the start of the if!. In this next

25Shell Scripting 101

 BeOS Scripting chapter 5/24/99 4:01 PM Page 25

example we store the value of $? in another variable (called return_value), so

it doesn’t get changed while our script is running.

#!/bin/sh
Save the exit status of the last command in return_value.
return_value=$?

Now we can check for specific values in the return_value;
This assumes that the last command returns an exit status
of 1 when it can't find a file, and anything else is a
general error
if [$return_value -eq 0] ; then

echo "everything is good"
elif [$return_value -eq 1] ; then

echo "file not found"
else

echo "some other error"
fi

Testing the Opposite

If you need to test the opposite of something, you can use ! to negate a test.

Maybe you’d like to know if a file isn’t a directory, but don’t care if it’s a nor-

mal file or a symbolic link:

#! /bin/sh
if [! -d /boot/beos] ; then

echo "/boot/beos isn't a directory"
else

echo "/boot/beos is a directory"
fi

Here we use the -d test to see if the argument in the test is a directory but add

the ! symbol, which makes the test return true if the opposite of -d is found.

These kinds of negative tests are most often used with file test operators; The

string and arithmetic tests already exist in negative versions. There’s no reason

for you to type

if [! ARG1 -eq ARG2] ;

when you could use

if [ARG1 -ne ARG2] ;

The second version is easier to read and easier to type.

26 Scripting

 BeOS Scripting chapter 5/24/99 4:01 PM Page 26

Something Useful

So far, we’ve gone over the for loop, how to do substitutions, how to do tests,

and the if statement. We really ought to be able to make something useful

now, right?

A couple of our earlier examples involved taking a bunch of “unknown” files

we got off the Web and giving them an extension so that other, less fortunate

operating systems might be able to guess what to do with them. The examples

also pointed out a problem: We could screw this up pretty easily if we blindly

assumed all the files were the same kind.

Wouldn’t it be better if we could add a file extension based on the actual

MIME type of the file? If we’re downloading piles of stuff from the Internet

with a browser like NetPositive, all the files will have correct MIME types.

Since these files are usually coming from a system that doesn’t have MIME

types for files, they’ll probably have file extensions already, so we won’t have

to worry about them.

Unless the files we’re interested in are part of NetPositive’s cache.

Say you’ve been surfing the Net for a while, and /boot/home/config/set-
tings/NetPositive/NetCache is full of files with not-very-helpful names like

981234...1, 981234...2, etc. Right now, mine’s got a little over 1400 files in it,

going up past 981234...2000. Yikes! What if I wanted to keep all the HTML

documents in there and give them a .html extension so I could take them over

to another system? It’s going to be a real pain to go through 1400 files in a

Tracker window, selecting only the ones that have an HTML document icon.

(Astute readers will note that I could probably use a command-line query to

find all the HTML documents in the NetCache directory, but that’s not the

point of this example, and I’d still have to rename them all by hand.)

Before I do anything, I’ll copy all of the files out of the NetCache directory and

into another one; if I wanted to clean out the cache at the same time, I’d just

move them. Then I’ll go about designing a shell script that will take the fol-

lowing steps for every file, saving me a ton of work:

1. If the file doesn’t exist, or it’s not a normal file, skip it.

2. Get its filetype.

3. If it doesn’t have a filetype, use mimeset to try to give it one.

4. If the filetype is text/plain, give the file a .txt extension.

5. If the filetype is text/html, give the file a .html extension.

6. If it’s still unclear what the file is, delete it.

27Shell Scripting 101

 BeOS Scripting chapter 5/24/99 4:01 PM Page 27

This would all be annoying if we were just typing commands into the shell,

but it’s not too bad in a shell script. In fact we can do all of this using the

techniques we learned in the sections above. Here’s the complete listing:

#! /bin/sh
#
Give file extensions to files we care about, and delete files we
don't, based on their MIME filetype.
#
First we create a loop that goes though each of the arguments we
supplied to the script. In this example, we'll be passing in the
files from the NetPositive cache, but you could run this with any
files you wanted.
#
Remember, $@ is a special variable that has all of the command-line
arguments inside.

for i in "$@" ; do

Check to see if the file exists; since we're working on
command-line arguments, the user could've typed in some files
that don't exist.
#
The -f test checks to see if a file exists; ! -f checks to
see if a file doesn't exit.
if [! -f "$i"] ; then

echo "$i is not a file, skipping"

The continue statement continues our for loop with the
next argument; we want to go on with the next file
instead of going on down into the rest of the script.
continue

fi
This next complicated line uses the catattr command to get
the file's type. catattr prints out too much information,
so we pipe its output through awk to strip off everything
we don't care about.
#
The "2> /dev/null" redirects any errors to /dev/null; if
the file has no MIME type, catattr will print an error, but
we don't want to see it.
#
Another thing to note is the \ at the end of the line;
this tells the shell that we're not done with our command
yet. Both of these lines get combined by the \ to do what
we want.

28 Scripting

 BeOS Scripting chapter 5/24/99 4:01 PM Page 28

file_type=$(catattr BEOS:TYPE "$i" 2> /dev/null | \

awk '{ print $5; }')

If there's no filetype, try to assign one. You'll
remember that -z checks to see if a string is empty, so
if the variable file_type is still empty, the file has
no type.

if [-z "$file_type"] ; then

The mimeset command asks the BeOS Registrar to assign
a MIME type to the specified file.

mimeset -f -all "$i"
Now the file will have a type, so we'll do what we
did before to read the filetype.

file_type=$(catattr BEOS:TYPE "$i" 2> /dev/null | \
awk '{ print $5; }')

fi

Now we check to see if the filetype is one we like:
By adding more elif... statements, you can extend this to
handle other kinds of files.

if ["$file_type" = "text/html"] ; then
Rename our HTML documents.
mv $i $i.html

elif ["$file_type" = "text/plain"] ; then
Rename our text files.
mv $i $i.txt

elif ["$file_type" = "application/zip"] ; then
Rename our zip files.
mv $i $i.zip

else
Delete anything we didn't care about.
rm $i

fi
done

Save this script as renamer and make it executable with chmod. Now you can

type

$ renamer 981234*

to automatically go through the NetCache files giving them reasonable file

extensions based on their types. Unfortunately, this doesn’t change the fact

that the filenames are totally incomprehensible to anyone who isn’t

NetPositive. You win some, and you lose some….

29Shell Scripting 101

 BeOS Scripting chapter 5/24/99 4:01 PM Page 29

After using the find/xargs trick on my directory of over 1400 NetCache files,

I’m left with “only” a couple hundred HTML and plain text files. There sure

are a lot of graphics on Web pages these days, and they’ve all just been deleted!

“Hey, not so fast!” you scream, “There’s something in that script I don’t

understand!”

I knew I wouldn’t be able to sneak it past you. I’ve introduced one new thing

in this script: the continue statement. continue lets you skip over the rest of

the loop and continue with the next run through. We do this right away if the

file isn’t a regular file, since we don’t want to mess with any directories that

we may encounter. If the file is something other than a regular file, the

renamer script will print a warning message, then hit the continue statement

and go on with the next file.

Getting the MIME Type The only other tricky thing in the script is getting

the file’s MIME type:

file_type=$(catattr BEOS:TYPE "$i" 2> /dev/null | awk '{ print $5; }')

30 Scripting

Horrible Truths about Unix

One of the evil things about Unix shells is that the buffer (or memory area) used to pick up com-

mand arguments is a fixed size; if you try to feed too many arguments to a command, it’ll either

ignore the ones at the end or behave strangely. If you’re trying to run hundreds of files through

the renamer script discussed here, they’re going to overflow this command buffer and only a few

files will actually get fed through the script.

There’s a way around this, but you’ll have to run the renamer script from the shell; there isn’t a

way to do it from the Tracker. Put renamer into /boot/home/config/bin where your shell can find

it, cd into the directory full of files (or, if you’ve got TermHire installed, select the directory win-

dow and hit Alt+Windows+T or Option+Command+T).

Now you’ll use the find and xargs commands:

find . -print | xargs renamer

This doesn’t seem to do anything with files—how could it work? Well,“find . -print” will find

every file, directory, and symbolic link in the current directory (thanks to the . directory argu-

ment that we’re giving to find) and print them out (the -print option), producing a big list of

everything in the filesystem from here down.

We pipe this list into xargs, which takes the input and parcels it up into chunks of commands

small enough to fit into the command buffer. It passes each chunk to the specified command,

which is our renamer script.

xargs’s sole purpose in life is to help you work around the Unix command buffer’s inability

to grow.

 BeOS Scripting chapter 5/24/99 4:01 PM Page 30

This just looks tricky; if we split it up a little it’ll make more sense. The

file_type variable is going to be set to whatever is returned by the embedded

commands between $(and). There are two commands inside connected

with a pipe:

catattr BEOS:TYPE "$i" 2> /dev/null
awk '{ print $5; }'

The catattr command will print the current file’s MIME type, which is

stored in a file attribute named BEOS:TYPE. We’ve redirected the standard error

stream (which I’ll describe in a minute) to /dev/null, the universal bit-bucket,

because we don’t want to see the error message if the file has no MIME type.

The pipe sends the filetype into awk, which prints the fifth item.

If you run catattr BEOS:TYPE on a file in a Terminal window, you’ll see that it

prints a line like this one:

filename : string : text/plain

Counting over, we can see that the fifthth item is the filetype we wanted.

So the file_type variable will be set to the file’s MIME type if it has one,

or nothing if it doesn’t. Everything else in the script should be pretty easy to

figure out if you’ve gotten this far.

31Shell Scripting 101

A Word about Streams

Every command-line tools works with three streams: standard input, standard output, and stan-

dard error. Traditionally, input from the user comes in through standard input, output goes to

standard output, and errors are printed to standard error. Hmm, this almost makes sense….

These streams are numbered from 0 to 2:

If you redirect stderr to a file, stdout is still going to send the program’s output to your

Terminal.This ability to redirect stdout and stderr to different files is often used by program-

mers building an application with the make utility. Sending stdout and stderr to different files

makes it easier to keep track of (and fix!) the application’s bugs.

Name Geek Name Redirecting Piping

0 Standard input stdin < file command |

1 Standard output stdout > file | command

2 Standard error stderr 2> file 2| command

 BeOS Scripting chapter 5/24/99 4:01 PM Page 31

Really Advanced Shell Use
Now that we’ve seen everything we’ve talked about (for loops, if statements,

and substitutions) in use, we should look at a few shell script techniques that

can make your life easier.

Script Arguments

As you’ve seen, shell scripts can have command-line arguments just like nor-

mal programs: options to control the behavior of the script, the names of files

and directories to operate on, or both.

You’ve also seen that you can access these arguments from a special variable—

$@—and loop through them using a for loop. There’s a lot more you can do

with a script’s command-line arguments, though!

Positional Parameters A script can access the first ten arguments (starting

with the script’s name and ending with the ninth argument) using $0, $1,…$9.

These are called “positional parameters” by shell freaks because they’re

referred to by their position in the command line. You can test this by creating

a simple script like this:

#! /bin/sh
echo 0 is: $0
echo 1 is: $1
echo 2 is: $2

and running it with various fictional parameters. For example, if you named

this script EchoTest, you could type

$ EchoTest hello zoomer

and the shell would spit back:

0 is: EchoTest
1 is: hello
2 is: zoomer

Try it a few times with different numbers of parameters. If there are fewer

than three arguments, you won’t get an error—you’ll just get a line like

“2 is:” with nothing else there.

32 Scripting

 BeOS Scripting chapter 5/24/99 4:01 PM Page 32

The $0, $1,…$9 variables are created for you by the shell, just like the

$@ variable. Why are we limited to ten of these? It’s another artifact of the

way the ancient shell handles commands, and it was probably designed

this way because there are only ten digits on an English keyboard.

If you miss the ren command from DOS (used to rename files), you could

write yourself a simple shell script to mimic it:

#! /bin/sh
#
Act like the DOS "ren" command.

If the first argument or the second argument isn't there,
print an error message and exit.
if ["$1" = ""] || ["$2" = ""]; then

echo "usage: ren original new"
exit

fi

Now rename the first argument to the second argument.
mv $1 $2

As you can see, I keep sneaking in new bits. There are two tests in that if
statement, and the || between them means OR. The “usage” message will be

displayed if the first argument is blank or if the second argument is blank.

33Really Advanced Shell Use

Combining Tests

Just as you can use || to combine two or more tests in an OR sequence (the entire statement will

be true if any of the tests are true), you can use && for an AND sequence.

The AND sequence will only be true if all of the tests are true. For example, we can combine the -e
test (does a file exist?) with the -r test (can I read this file?) to see if a particular file exists AND we

can read it:

#! /bin/sh
if [-e /path/to/the/file] && [-r /path/to/the/file] ; then

echo "The file exists and we can read it."
else

echo "You're out of luck."
fi

To keep track of OR and AND, just say them:“If the file exists AND we can read it….”

 BeOS Scripting chapter 5/24/99 4:01 PM Page 33

Remember how programs have an exit status to indicate success or failure?

You can use the exit statement to get out of a running shell script and return

an exit status.

exit by itself will send back an exit status of 0, meaning everything was fine.

Want to let the world know you had problems? Send back something else:

exit 1

It’s a good idea to return a different exit status for every different kind of

problem your script could have. Then when you document these different

exit status values, other people can incorporate your script into their shell

scripts!

“shift”Work What if you’ve got more than nine parameters, though? Using

$10 won’t get you the next one (the shell will use the contents of the first

argument in the $1 variable with a “0” appended to the end), but there is a

way around this. The shift command will shift all the arguments in $2 …$9
down by one “slot,” and assign the next argument to $9. Try adding this to the

end of the simple script we just created to play with arguments:

shift
echo 0 is: $0
echo 1 is: $1
echo 2 is: $2

Try running it again with different numbers of arguments. I’ve named mine

foo and called it with:

$ foo a b c

and the shell prints:

0 is: ./foo
1 is: a
2 is: b
0 is: ./foo
1 is: b
2 is: c

The first parameter (“a”) has fallen off the front of the list of arguments and

the other two parameters have moved down, which lets us see the last argu-

ment.

This may seem pretty pointless and complex, but it’s actually useful. Imagine

that you’ve got a shell script that takes a few options to control its behavior,

and that it also takes a bunch of filenames as arguments:

$ myscript -v -stress ugly.txt nicer.html *.jpg

34 Scripting

 BeOS Scripting chapter 5/24/99 4:01 PM Page 34

For this example, we’ll assume that if you use -v it must come first, then

-stress, then the arguments. If you run through all of the arguments with

a for loop, you’ll have to check every argument inside the loop to handle the

-v and -stress options:

!# /bin/sh

Before we start the loop, we should set up some defaults.
We'll use an empty variable to mean "this is off"; if the user
turns them on, we'll set them to "yes".
verbose=
stressed=

Run through the arguments...
for arg in "$@" ; do

Check for the -v option.
if ["$arg" = "-v"] ; then

verbose="yes"

Now we've handled this, let's go on to the next.
continue

fi

Check for the -stress option.
if ["$arg" = "-stress"] ; then

stressed="yes"

Now we've handled this, let's go on to the next.
continue

fi

Do your work on anything that isn't an option.
...

done

This makes the loop through the arguments more complex, and you’re testing

for the -v and -stress options every time, whether you’ve seen them already

or not.

By using the shift statement, we can do this outside the for loop, and still

run through the arguments using the $@ variable:

#! /bin/sh

Before we start the loop, check for the -v and -stress options.

If the first argument is -v, we'll set the verbose variable to yes.
Then the shift statement will kick -v out of the list of arguments,
and move the rest of them down one "slot".

35Really Advanced Shell Use

 BeOS Scripting chapter 5/24/99 4:01 PM Page 35

if ["$1" = "-v"] ; then
verbose="yes"
shift

fi

Do the same for "-stress". If -v was the first argument before,
-stress will be the first after the shift statement.
if ["$1" = "-stress"] ; then

stress="yes"
shift

fi

Now we can loop through the rest of the arguments; the -v and -stress
options will have been removed from the list of arguments by the
shift statements.
for arg in "$@" ; do

Do your work on anything that isn't an option.
...

done

In a “real” shell script with complex arguments like this, you’d have two

loops. The first one would deal with all of the options and use shift to

remove them from the list of arguments. The second loop would then run

through the remaining arguments to do the work.

The Whole Shebang We’ve already used $@ to go through a script’s argu-

ments, but you can also access a script’s arguments with $*. When $@ and $*
appear by themselves, they behave the same, but if you put them in quotes

("$@" and "$*"), you get different results.

When the shell sees "$@" it runs through the parameters as if each one were a

separate item; with "$*" it treats all of the parameters as one line separated by

spaces. To test this, put the following in a script and try it out:

#! /bin/sh
echo "First with @..."
for i in "$@" ; do

echo $i
done

echo "Now with *..."

for i in "$*" ; do
echo $i

done

The first loop will print the arguments one at a time on separate lines. The

second version will print all of the arguments together on one line. This could

36 Scripting

 BeOS Scripting chapter 5/24/99 4:01 PM Page 36

be useful if you wanted to pass the arguments on to another script or pro-

gram, but it could also cause problems if you were working with files and

directories that had spaces in their names. Mixing the shell with files that have

spaces in their names is tricky and best avoided if possible.

There is a safe, reliable way of dealing with files and directories that have

spaces in their names, but to show it to you I’ve got to use two things you

haven’t seen before. Don’t worry, we’ll talk about them soon; I wanted to let

you know about this since I brought up filenames with spaces.

Find a directory that has some filenames with spaces in them and type this

into the Terminal:

$ ls -1 | while read arg ; do
> echo "The file is named: $arg"
> done

You’ll get back a list of the files:

The file is named: a long filename with spaces in it
The file is named: another crazy filename

The while loop runs as long as something is “true”; in this case, as long as the

read statement can read a line of text and assign it to the variable named arg.

What text? Well, the list of files that the ls -1 command is printing (that argu-

ment is a 1); the -1 option says “give me the list of files, one per line.” Of

course, you could get a list from a file, or the find command, or another

script, etc.

The while loop is covered below in the More Looping section, and we’ll talk

about read in Listening to the User.

Counting Parameters Sometimes it’s handy to know how many argu-

ments you’ve got, and you can find out using $#. This would let us simplify

our DOS-like ren command:

#! /bin/sh

Make sure we've got at least two arguments; if the number of
arguments is less than two, print the error message and exit.
if [$# -lt 2]; then

echo "usage: ren original new"
exit

fi

mv $1 $2

If you’re going to test $#, place it before the shift command in your scripts!

Arguments dropped with the shift command are gone for good, and $# will

go down by one (be “decremented” in geekspeak) every time you use shift.

37Really Advanced Shell Use

 BeOS Scripting chapter 5/24/99 4:01 PM Page 37

A Bit of ‘Rithmetic Doing math from the shell can be hard (you’re better

off using expr, which was discussed in Chapter 6), but sometimes it can be

handy. For “real” math, embedding a call to expr using $(expr) will be much

easier, but if you’re doing something very simple like adding or subtracting,

the let command is going to be faster because it’s built right into the shell.

Let’s say you want to look through your command-line arguments and count

them. Try putting this in a script and running it with different arguments:

#! /bin/sh
count=1

for i in "$@" ; do
echo argument $count = $i
let count=count+1

done

You’ll get a nice numbered list of the arguments. For example, say you named

this script testing and ran it with three arguments. You’d see this:

$ testing one two three
argument 1 = one
argument 2 = two
argument 3 = three

Now change the let line to:

count=$(expr $count + 1)

and run it again. Notice how much slower it is? Despite the speed difference,

you should use whichever method you find easier. Speed isn’t usually a big

deal when you’re writing a script. Yyou want it to do something for you, and

as long as it gets done, who cares if it takes a few seconds…if you wanted

speed, you’d learn to program in C or C++!.

The let statement is pretty picky about its syntax; note the total lack of white

space. Also note that you don’t need a $ to use let on the value of the count
variable. Being consistent might be another good reason to use $(expr …)
instead of let, although let is pretty safe if you don’t try anything too tricky

and stick to the usual math operators of +, -, *, and /.

Note that the let statement only works on integers; if you try to make it work

with floating-point numbers, it’ll round things off:

$ x=1.1
$ echo $x
1.1
$ let x=x+1
$ echo $x
2

38 Scripting

 BeOS Scripting chapter 5/24/99 4:01 PM Page 38

More Looping

If you’ve ever taken a computer science class, you’ll know that sometimes for
loops aren’t your best bet. For instance, what if you want to do something

until a certain condition is true, without looping through a list of arguments?

The while Loop Using the while loop, you can do just that. For example, if

I wanted to wait around for a certain file to appear in /tmp (because some

other application was running and would eventually create this file that I need

for something else), I could use while like this:

#! /bin/sh
Loop until /tmp/important_document exists.
while [! -e /tmp/important_document] ; then

Do nothing for 60 seconds.
sleep 60

done

This will go through the loop as long as the test is true; in this case, until a file

named /tmp/important_document exists. Each pass through the loop, it sleeps

for 60 seconds, giving other processes time to run. Then it goes back, checks

for the file again, and so on. Programmers look down thier noses at this and

call it “busy waiting” or “polling”; it’s the equivalent of someone coming into

your office every 60 seconds and saying, “Have you got that important docu-

ment done yet?” Because we’re sleeping inside the loop, however, this isn’t as

annoying for BeOS as it would be for you.

The form of a while loop is

while TESTS ; do
COMMANDS

done

The COMMANDS will be run over and over until the TESTS are no longer “true”

(in the same sense as the if statement we talked about earlier). The TESTS can

be anything you’d use with an if statement, such as a command or one of the

file, string, or arithmetic tests we talked about earlier.

We could use this and the string substitution from the Substitutions section to

take a word and print its letters one to a line. For example, for the input

“hello”, we’d write:

h
e
l
l
o

39Really Advanced Shell Use

 BeOS Scripting chapter 5/24/99 4:01 PM Page 39

This might seem like a weird thing to put in a script, but you never know

when you’ll find yourself in a weird situation. Something like this should do

the trick:

#! /bin/sh

Go through all of the arguments...

for word in "$@" ; do

The x variable will be our offset into the word; we set it
to 0 because that's how programmers spell "first" and we
want to start with the first letter of the word.

x=0

Do this loop while x is less than the number of
characters in this word; remember, the # substitution
returns the number of characters in the given variable.

while [$x -lt ${#word}] ; do
Now we use this substitution to print 1 character
from the current word, at the current offset.
#
As we learned in the Substitution section,
${variable:offset:length} will give you "length"
characters from the contents of "variable", starting
at "offset".

echo ${word:$x:1}

Increase the offset by one to move on to the
next character.

let x=x+1
done

done

For every word in the arguments, this script will set x to 0, then enter the

while loop (because 0 will be less than the length of the current word, which

we get with the ${#word} substitution). Each letter is printed by extracting one

character from the word using x as an offset in the echo command. We

increase the value of x by one and head back around for another pass until

we’ve printed all the characters.

Run the script with a few words together as arguments, then change the

$@ to $* and try the script again with the same words. Notice the difference?

You won’t see anything if you’re only using one word, but with more than

one argument you’ll now see a blank line between the words. That’s because

$* treats the entire command line as one unit, and $@ treats it as separate

words. You’ll get a blank line for every space on the command line.

40 Scripting

 BeOS Scripting chapter 5/24/99 4:01 PM Page 40

The until Loop The until loop looks almost the same as a while loop:

until TESTS ; do
COMMANDS

done

In fact, while and until are exact opposites of each other. With while you’re

testing something that starts out true and becomes false later, but with until
you’re testing something that starts out false and becomes true later. You’ll

stay in the loop executing the COMMANDS until the TESTS are true. Again, as with

if and while, the TESTS can be any command or the file, string, and arithmetic

tests from the Doing Tests section.

Mnemonic Device If you have trouble remembering which loop is which,

just say the commands in plain English:“while this is true, do something” or

“until this is true, do something.”

We could rewrite our letter printer using until like this:

#! /bin/sh

Go through all of the arguments...
for word in "$*" ; do

The x variable will be our offset into the word; we set it
to 0 because that's how programmers spell "first" and we
want to start with the first letter of the word.

x=0

Do this loop until x is greater than or equal to the
number of characters in this word; remember, the
substitution returns the number of characters in the
given variable.

until [$x -ge ${#word}] ; do

Now we use this substitution to print 1 character
from the current word, at the current offset.
#
As we learned in the Substitution section,
${variable:offset:length} will give you "length"
characters from the contents of "variable", starting
at "offset".

echo ${word:$x:1}

Increase the offset by one to move on to the
next character.

let x=x+1
done

done

41Really Advanced Shell Use

 BeOS Scripting chapter 5/24/99 4:01 PM Page 41

Instead of printing letters while x is less than the length of the word, we’re

going to print letters until x is greater than or equal to the length of the word.

(Greater than or equal to is the opposite of less than.)

If you’re wondering why you have to use a strange constructs like -ge for

greater than or equal to rather than the usual >= you learned in high school

math, remember that the symbols > and = have special meanings to the shell.

These constructs actually make things easier, since you don’t have to worry

about “escaping” them.

Skipping Out and Breaking Things Sometimes when you’re looping

through something, you’d like to skip a trip through the loop, or stop looping

altogether. For example, what if we didn’t like the letter “e” for some reason,

and we wanted our letter printer to skip over any “e” that it found? From the

section on tests, we know how to find the “e”, but how do we skip it?

We do it by using the continue statement, which we’ve already used in a

couple of examples. When the shell’s in a for, while, or until loop and sees

continue, it skips back to the start of the loop and carries on with the next

trip through.

We can change the letter printer as follows:

#! /bin/sh

Go through all of the arguments...
for word in "$*" ; do

The x variable will be our offset into the word; we set it
to 0 because that's how programmers spell "first" and we
want to start with the first letter of the word.

x=0

Do this loop until x is greater than or equal to the
number of characters in this word; remember, the
substitution returns the number of characters in the
given variable.

until [$x -ge ${#word}] ; do
Save the current letter in a handy varible.
letter=${word:$x:1}

Check to see if it's the evil "e".
if ["$letter" = "e"] ; then

We've found the offending letter; we
increase x to go on to the next letter,
then continue with the next trip through
the "until" loop.

42 Scripting

 BeOS Scripting chapter 5/24/99 4:01 PM Page 42

let x=x+1
continue

fi

If we made it past the if statement, we still like
this letter. Print the letter, then increase x
to go on with the next letter.

echo $letter
let x=x+1

done
done

Now whenever the current letter is an “e” the shell heads back to the until
loop to get the next letter and carry on. We had to repeat the let statement;

otherwise we’d be stuck in what programmers call an “infinite loop.” If x
stayed the same, the current letter would still be an “e” (the same one!) the

next time through the loop, so we’d head back to the start, but the current

letter would still be an “e” so we’d head back to the start, and so on….

Go ahead and try this script with something like “hello there”. You’ll see this:

h
l
l
o
t
h
r

The break Statement Imagine that you hated “e” so much that you didn’t

even want to see the rest of any word that dared include this horrible letter.

You’d rather have the until loop stop completely then go back for another

word.

This is where the break statement comes in; it kicks you right out of the cur-

rent loop. If we change continue in the letter printer script to break, we can

remove the extra let statement. We won’t need it anymore because we’ll be

jumping right out of the until loop and continuing with the next word.

Case Study

There’s a tricky but very useful statement called case that lets you selectively

execute some commands based on a word matching a specified pattern. It’s

easier to show you a case statement at work than to try to explain it cold, so

here’s an example.

43Really Advanced Shell Use

 BeOS Scripting chapter 5/24/99 4:01 PM Page 43

Byron is writing a shell script that’s going to have some options and take a

bunch of files as arguments. Byron’s one of my cats, so the command syntax

used for running his script might end up looking something like this:

apply [-attitude | -catnip | -catnap | -disdain] objects

The apply script will apply attitude, some catnip, a cat nap, or some disdain to

the objects specified on the command line. If none of these options is speci-

fied, the objects are completely ignored and nothing happens; he uses this

mode a lot. This setting is used for things like store-bought toys, humans who

want to play with the cat, etc. You’ll find a few unfamiliar constructs in this

script—I’ll explain those at the end.

#! /bin/sh
#
Apply some cat-like behavior to the specified objects.

First we'll check $# (the number of arguments).
if [$# -eq 0] ; then

This script is pretty useless with no arguments, so if $#
is 0, we want to print the usage message and exit.
echo "usage: apply [action] objects"
echo "The optional action can be one of:"
echo " attitude"
echo " catnip"
echo " catnap"
echo " disdain"
exit

fi

The default action is ignoring.
action="ignoring"

The next line specifies the object's variable without giving
it a value. We don't have a value for it yet, so we're just
"initializing" it here. We do this so we can tell if the user
remembered to include some objects to work on; if not, we
could remind them.
objects=

To dig through the options, we're going to loop while $1 (the current
first option) is set to something; remember, the -n test checks to
see if a string (in this case, the contents of $1) has one or more
characters inside.
#
We use shift to strip off arguments we've already dealt with, so

44 Scripting

 BeOS Scripting chapter 5/24/99 4:01 PM Page 44

$1 could be nothing if we run out of arguments.
#
Down inside the loop we'll use the break statement when we think
we've handled all of the options.
while [-n "$1"] ; do

Use case to match the current argument with one of the valid
options.

The case statement works like an if statement with a bunch
of elif clauses; in this case, we check the current argument
(in $1) against the valid options.
case "$1" in

-attitude)
Matched the "-attitude" option, so we set the
action to "attitude" and then dispose of this
argument with shift. Now $1 will be whatever
came next on the command line.
action=attitude
shift

Every pattern in a case statement ends with
";;".
;;

-catnip)
Matched "-catnip".
action=catnip
shift
;;

-catnap | -nap)
Matched "-catnap" OR "-nap". Why does the
case statement use | for OR, instead of the ||
that we saw earlier for combining tests in an
if statement? Mostly because case is not the
if statement, and everything has a different
syntax under Unix.
action=catnap
shift
;;

-disdain)
action=disdain
shift
;;

45Really Advanced Shell Use

 BeOS Scripting chapter 5/24/99 4:01 PM Page 45

-*)
Anything else that starts with - is invalid:
echo "$1 is not a valid option. "
echo "You owe me a cat treat."

Getting an invalid option is an error, so we
return an exit status of 1. Any exit status
that isn't 0 means "Houston, we had a problem."
exit 1
;;

*)
If we got this far, we're done traveling
through the options. We'll take all of the
remaining arguments and store them in the
objects variable, since these are the objects
we want to work on.
objects="$*"

We've handled all of the command-line arguments
now, so we use break to kick us out of the
while loop.
break
;;

esac
done

Let the world know what's happening.
echo Byron will now apply some $action to:
echo $objects

This is a little longer than the rest of the scripts we’ve seen, but it really saves

Byron a lot of time! Now with one command, he can play with things, ignore

them, or spread disdain throughout our apartment, leaving much more time

for important things like sleeping and eating.

With the exception of the case statement, this is a pretty simple script. What

did you expect from a cat? On each trip through the while loop, we examine

the current argument (in $1) to see if it’s one of the valid options. If it’s not a

valid option, the script displays an error message and exits. If the argument

isn’t an option (for this, if it doesn’t start with a - it’s not an option) we

assume that the rest of the arguments are the objects we want to work on.

46 Scripting

 BeOS Scripting chapter 5/24/99 4:01 PM Page 46

The form of the case statement is:

case WORD in
PATTERN1)

COMMANDS1
;;

PATTERN2)
COMMANDS2
;;

...
esac

Just as the if statement ends with fi, the case statement ends with esac, even

though it looks like a typo.

You may find the similarities and differences between for loops and case
statements a bit confusing at first. In for loops, we use a construct like:

for i in *

where * represents all the files in the current directory. But in case statements,

we use constructs like:

case argument in
pattern)

where pattern represents a string we want to match. Don’t confuse pattern
with a range of files, even though they can both have wildcards! We’re doing

something very different here. The case statement is like an

if...elif...else...fi statement.

This is a little more complex than the if statement or the loops we’ve looked

at. The WORD is compared against each of the PATTERNs in the order in which

they appear. If WORD matches a PATTERN, the COMMANDS inside that pattern are

executed. The patterns have a “)” character at the end, and the list of COMMANDS
ends with two “;” characters.

The patterns in a case statement use the same matching rules as shell wild-

cards (see Chapter 6, The Terminal). A pattern of “*)” will match anything, and

is usually the last pattern specified, so that it can handle unexpected values or

defaults. Remember, all patterns end with “)”.

In the case of Byron’s apply script, there are are specific patterns to match

all of the valid arguments (such as -attitude or -disdain). Looking at the

-catnap handler, you’ll see that you can include two or more patterns

by separating them with a “|” symbol; this means OR to programmers.

47Really Advanced Shell Use

 BeOS Scripting chapter 5/24/99 4:01 PM Page 47

This lets you use -catnap or -nap if it’s an emergency and you want to type

fewer characters.

Why does case use | to create an OR sequence instead of the || we learned

about earlier? The | in a pattern just means “this is a list of patterns; you can

match any of them.” If case used the || syntax, you might think you could

also use && (for AND) in a pattern, which isn’t possible.

The pattern after the -disdain handler will match anything that starts with a

“-” character. If we’ve gotten this far through the patterns without matching,

and something starts with a “-” character, it’s an invalid option. The very last

pattern will match anything; if we’ve gotten down here, this isn’t an argu-

ment, so we must be looking at the first object we want to work on.

The case statement is very popular in GNU configure scripts. These

extremely complex scripts are used to automatically query a system to help

configure software before it gets compiled into an executable. Part of

configure will attempt to guess the type of system you’re using and turn it

into a string that reflects the operating system, the OS version, and the kind

of hardware, such as beos-R4-powerpc or beos-R4-x86. The script then uses

case to do some platform-specific configuration:

case SYSTEM in
Other systems
...

beos-*-powerpc)
do some BeOS on PowerPC-specific stuff
;;

beos-*-x86)
do some BeOS on x86-specific stuff
;;

beos-*-*)
echo "Unknown architecture for BeOS"
echo "Very cool, but you might have problems..."
;;

...
esac

Remember the file renaming script we wrote earlier, using the file’s type to

give it a standard file extension? We can simplify it using the case statement.

The original script uses an if...elif...else sequence to assign the extension

(assuming the current file’s name is in the file variable):

48 Scripting

 BeOS Scripting chapter 5/24/99 4:01 PM Page 48

#! /bin/sh
...
if ["$file_type" = "text/plain"] ; then

echo "$file is plain text"
mv "$file" "$file.txt"

elif ["$file_type" = "text/html"] ; then
echo "$file is HTML"
mv "$file" "$file.html"

else
echo "$file is an unknown file"
rm "$file"

fi

Using case, this becomes a little easier to read (and to extend with new types!):

#! /bin/sh
...
case $file_type in

text/plain)
echo "$file is plain text"
mv "$file" "$file.txt"
;;

text/html)
echo "$file is HTML"
mv "$file" "$file.html"
;;

text/*)
echo "$file is an unknown text file"
rm "$file"
;;

image/*)
echo "$file is an unknown image file"
rm "$file"
;;

*)
echo "$file is an unknown file"
rm "$file"
;;

esac

I’ve already extended this with two handlers that match any kind of text file

(the text/* pattern) and any kind of image file (image/*); this will make the

49Really Advanced Shell Use

 BeOS Scripting chapter 5/24/99 4:01 PM Page 49

error messages a little more informative. You could extend it to keep all of the

JPEG images by adding something like this before the image/* handler:

image/jpeg)
echo "$i" is a JPEG image
mv "$i" "$i.jpg"
;;

It’s got to go before the image/* handler, or the image/* handler will match

image/jpeg and delete the file for you.

A good rule of thumb is to always put more specific patterns (like text/html
or image/jpeg in this example) before more general patterns (like image/* or

the match-anything * pattern).

Listening to the User

Complex shell scripts might need some sort of input from the user.

Sometimes it’s easier just to ask the user a question than to support a million

command-line arguments.

The read command reads a line from the standard input stream (which is

usually the keyboard, unless you’re using a pipe or redirecting from a file; see

Chapter 6, The Terminal, for more about pipes and redirection) and assigns it

to the REPLY variable. As usual a line is defined as whatever you type until you

hit the Enter key.

The read Command You can use the read command’s -p option to display

a prompt. For example, try typing this into a Terminal window:

$ read -p "Do you like fish? "

After you’ve entered your answer, which is automatically assigned to the REPLY
variable by the shell, type this to see whether you like fish:

echo $REPLY

If you want to assign the input to another variable, include its name as an

argument to read:

$ read var_name

You can also combine this with a prompt. The following read command:

$ read -p "Do you like fish? " fishy

will prompt you with “Do you like fish?” and assign your answer to the vari-

able named fishy instead of the REPLY variable.

50 Scripting

 BeOS Scripting chapter 5/24/99 4:01 PM Page 50

When more than one variable name is included in a read command, the first

word of the input is assigned to the first variable, the second word to the sec-

ond variable, etc. If there’s more input than variables, everything else will be

assigned to the last variable. For example, if we type “hello there world” into

$ read greeting rest

$greeting will be given “hello” and “there world” will be assigned to $rest.

If there are more variables than words in the input, the extra variables will be

empty. Typing only “hi” into the read command above will set $greeting to

“hi” and $rest to nothing.

You could use this to extend the file renaming script to ask the user for the

type of an unrecognized file. Right now, the script arbitrarily assigns the

generic type application/octet-stream:

#! /bin/sh
...
If there's still no type, give it a generic one:
if [-z "$file_type"] ; then

settype -t application/octet-stream "$file"
file_type="application/octet-stream"

fi

Let’s change it to use read and ask the user what to do. Replace that if state-

ment with this one:

#! /bin/sh
...
if [-z "$file_type"] ; then

echo "$file is an unknown kind of file."
echo "What type of file is it?"
echo "(Just hit return if you don't know.)"
read -p "The filetype is: " file_type

If they just hit return without entering a type,
the file_type variable will be empty. The -z test
is true if a string has no characters.
if [-z "$file_type"] ; then

file_type="application/octet-stream"
fi

settype -t $file_type "$file"
fi

51Really Advanced Shell Use

 BeOS Scripting chapter 5/24/99 4:01 PM Page 51

Now when an unknown kind of file is encountered, the user will be given

some information and prompted for a type:

$ renamer filename
filename is an unknown kind of file.
What type of file is it?
(Just hit return if you don't know.)
The filetype is:

After the read, we check to see if they entered something. If they didn’t,

we assign the generic filetype. If the user entered a type, we assign that type to

the file.

Making Alerts As you saw in Chapter 6, The Terminal, BeOS comes with

a command called alert. You can use alert to pop up a dialog box for the

user to click on. alert’s arguments are

alert [type] text [button1] [button2] [button3]

But what we didn’t show you in Chapter 6 is that you can change the type

of alert icon displayed in the dialog box. The various types of alerts and their

corresponding icons are shown in Table 4.

52 Scripting

Table 4 Alert types
Alert Type Description Icon

--empty No alert. None.

--info An informative alert. A blue, 3D “i.”This is the default icon.

--idea An idea. A light-bulb.

--warning Something you want to warn the user about. A bright yellow exclamation point.

--stop Something that’s very important…the A red exclamation point.
user should stop what they’re doing and
look at this.

Figure 1

All of the different
alert icons being
used to write a
famous program,
“hello world.”

 BeOS Scripting chapter 5/24/99 4:01 PM Page 52

The text is the message you want to appear in the dialog box. You can also

specify up to three buttons; if you don’t specify any buttons, the alert will

have one button labeled OK in it.

If the alert command has any buttons, the command’s exit status will be the

button number (starting with 0), and the title of the button will be printed on

the standard output channel.

Here’s an example script demonstrating how to use the alert command’s exit

status:

#! /bin/sh

Show the alert, asking the user what they'd prefer
to drink.
#
We direct alert's output into the bit-bucket because
we don't want to see it; for this example, we're using
alert's exit status.

alert "What would you like?" Coffee Tea Milk > /dev/null

Store alert's exit status in the button variable;
the exit status of the last command (which was "alert")
is stored in the $? variable.

button=$?

The first button was "Coffee"; if $button equals 0, they
chose that button.

if [$button -eq 0] ; then
echo "You like coffee."

elif [$button -eq 1] ; then
echo "You like tea."

elif [$button -eq 2] ; then
echo "You like milk."

else
echo "You don't like anything."

fi

Here’s the same example script, but using the alert command’s output

instead of its exit status:

#! /bin/sh

Show the alert, asking the user what they'd prefer
to drink.
#
We direct alert's output into the read statement to store

53Really Advanced Shell Use

 BeOS Scripting chapter 5/24/99 4:01 PM Page 53

the selected button's name in the "button" variable.
#
You could also do this:
#
button=$(alert "What would you like?" Coffee Tea Milk)
#
These techniques both give you exactly the same results...use
whichever one you prefer.

alert "What would you like?" Coffee Tea Milk | read button

Now we compare the selected button to see what the user
picked. Note how we're using strings now; alert prints the text
of the selected button, and we've used read to store that text
in the "button" variable.

if ["$button" = "Coffee"] ; then
echo "You like coffee."

elif ["$button" = "Tea"] ; then
echo "You like tea."

elif ["$button" = "Milk"] ; then
echo "You like milk."

else
echo "You don't like anything."

fi

Using the button string is easier than dealing with the exit status, though

it can be easy to miss the read command that’s saving the button text into a

variable for us.

Using Functions

As your scripts become more complex, you’ll find yourself looking for ways

to keep things clear and organized, and to treat sections of your scripts like

“objects” that can be invoked from other sections. That’s what functions are

all about.

Functions in Scripts Take a look at the lowly echo command:

echo 'Hello World'

If you place this line in your script, “Hello World” is printed to the screen

when that line is encountered. But what if your script needs to do this dozens

of times, from different places? And what if instead of just a one-line echo
command, you wanted to invoke a whole series of commands? You could turn

that block of commands into a “function,” like this:

54 Scripting

 BeOS Scripting chapter 5/24/99 4:01 PM Page 54

#! /bin/sh

hello() {
echo "Hello World"
ls -l > /boot/home/dirlist.txt
cat /boot/home/dirlist.txt

}

Save the block above to a script and run it—and nothing will happen.

Functions don’t run themselves! In this case, you have only declared, but not

yet invoked the function called hello. In order to make a declared function

run, just enter its name on a blank line below the function. If you put hello
on a line below the function above, then run the script again, your echo com-

mand and the other commands will be processed. This will become a very

important concept as you start to build complex scripts, since it lets you

define scripts within scripts, surround them in the function construct, and

then invoke them from elsewhere in your scripts. In essence, it gives your

scripts a small degree of “object-oriented” behavior.

You must always declare your functions before invoking them. Try to do it the

other way around, and your script will fail with error messages.

For example, you might want to structure a complex script like this:

#! /bin/sh
PartOne() {

BLOCK OF COMMANDS
}

PartTwo() {
MORE COMMANDS

PartThree
A FEW MORE COMMANDS

}

PartThree() {
YET MORE COMMANDS

}

Now that our functions have all been declared, we can invoke them

PartOne
PartTwo

Note that we didn’t invoke PartThree from the bottom of the script, but from

within PartTwo. When the script runs, it will run PartOne, then the beginning

of PartTwo, then PartThree as a “subroutine” of PartTwo, then finish up the

55Really Advanced Shell Use

 BeOS Scripting chapter 5/24/99 4:01 PM Page 55

rest of the commands in PartTwo. This structure lets you branch off from one

point in your script to another, and then return to where you left off to do

some more work.

Functions in the Shell In addition to using functions inside your scripts,

you can also store them in memory and invoke them directly from the com-

mand line. For example, if you’ve got a set of commands that you use all the

time, and want to be able to use them as quickly as possible without having to

load another file from the disk, you can store functions in your

/boot/home/.profile. This way they’ll be loaded into memory whenever you

launch a Terminal session, and can be run at any time, either directly from the

command line or by invoking them from other scripts.

Shell functions can process command-line arguments just like a shell script:

#! /bin/sh
showargs() {

echo "There are $# arguments:"

for arg in "$@" ; do
echo "$arg"

done
}

This new showargs command isn’t really that useful, but it’s easy to use the

command-line arguments in a function for something useful. They’ll be

needed any time you move a script that uses command-line arguments into a

shell function.

Shell functions are specific to one script, and they won’t leak out into your

shell sessions; as soon as the shell exits, they’re gone. The functions you

define in your .profile are always available in a Terminal because the shell

that loaded .profile doesn’t exit until you close that Terminal window.

For example, the renamer script uses the same slightly nasty-looking command

several times to get the MIME type for a file:

#! /bin/sh
...

file_type=$(catattr BEOS:TYPE "$file" 2> /dev/null | \
awk '{ print $5; }')

...

Instead of typing this in several times, we could turn it into a shell function

by putting this into the script before the for loop starts running through the

arguments:

56 Scripting

 BeOS Scripting chapter 5/24/99 4:01 PM Page 56

#! /bin/sh
...
get_type() {

Note how we use $1 to get the first argument in our
function; the $file variable we used above only makes
sense to commands in the for loop. The function stands
alone by itself, so it has to work with its arguments
instead.
catattr BEOS:TYPE "$1" 2> /dev/null | \

awk '{ print $5; }'
}
...

Now we can change the line used to get the filetype to:

#! /bin/sh
...

file_type=$(get_type "$file")
...

This makes things a lot easier to read!

Shell functions exit by running though the last command in the function or

any time they hit a return statement:

#! /bin/sh

do_something() {
if something_bad ; then

Return NOW with an exit status of 1 (i.e., an error).
return 1

More commands in the function...

At the end of the function we return with the exit status
of whatever the last command in the function was.

}
...

The return statement exits the shell function and sends its argument back to

the shell as an exit status. If you use return without an argument, it sends the

return value of the last command as the exit status.

The return statement for functions is just like the exit statement for shell

scripts; the difference is that return just ends the function, and exit ends the

entire script.

57Really Advanced Shell Use

 BeOS Scripting chapter 5/24/99 4:01 PM Page 57

Exit Status Remember, an exit status of 0 means success or true, and an

exit status of anything else means failure or false. The exit status of the last

command is available in the special variable $? and you should save this

in another variable if you need to do complex tests on it. To save the value

of one variable into another, use something like:

#! /bin/sh
...
ReturnHolder=$?
...

$ReturnHolder will then contain the value of whatever $? was, freeing up $?
to take another value later on. Use return to send back an exit status from a

shell function or exit to send back an exit status from a shell script.

Debugging Your Scripts

If you’ve got a bug or a typo in one of your shell scripts, it can be pretty hard

to figure out what’s going on. Even if you do get a readable error message, it

might be telling you that the error is at a perfectly valid line in the script.

You can see each line of a shell script as it’s executed by adding set -x at the

top of a shell script. For example, say you’ve got our original test script with

set -x at the top:

#! /bin/sh
set -x
echo hello world

When you run this, you’ll see

+ echo hello world
hello world

Each line of the script (after the set -x) gets printed prefixed by + and a space.

You can also add -x to the /bin/sh magic cookie at the start of the script; this

is exactly the same as using the set -x command:

#! /bin/sh -x
echo hello world

58 Scripting

 BeOS Scripting chapter 5/24/99 4:01 PM Page 58

BeOS Application Scripting
You’ve probably been wondering when I was going to finally get around to

the exciting BeOS-specific application scripting stuff. Well, I wanted to make

sure you had a good foundation in “normal” shell scripts before we went off

into BeOS application scripting, because you’ll need everything you’ve just

learned to make the most of it!

Don’t let that scare you, though. You won’t need to do any shell programming

to do application scripting, but knowing some shell will let you do much

more complex things.

With BeOS application scripting, you can do all sorts of things: open and

close images to make your own slideshow, perform a series of complex trans-

formations on a sample in an audio editing program, make two programs

interact with each other, or convert the first letter of every paragraph in a doc-

ument into a fancy drop-capital using a random font. You’re limited only by

your own creativity (oh, and your documentation!).

When doing application scripting, it’s important to understand the distinction

between objects and instances. An object is a kind of thing; these are the nouns

we’ll be scripting, like “windows” or “applications.” An instance is a particular

object; if “window” is an object, the StyledEdit window would be an instance

of a “window.” This will come up often, particularly if you’re talking to pro-

grammers or tech support people about something (especially in an operating

system that uses lots of object-oriented programming, like BeOS).

How It Works

As we discussed at the start of this chapter, BeOS application scripting works

by sending and receiving normal system messages. Every BeOS application

works with application scripting because BeOS itself handles the generic

scripting messages.

The application scripting instructions and examples in this chapter are fairly

generic, but some specific applications support more advanced options. Check

your favorite application’s documentation to see if it supports more complex

application-specific scripting commands.

Application scripting works with commands, properties, and specifiers. Commands

are the actions you want to perform (like getting something, setting some-

thing, or opening a document). Properties are the things the commands act on

(like window titles or documents). Specifiers are used to find the specific

property to work with. If you’re familiar with AppleScript (or English), you

might think of these as verbs, nouns, and adjectives.

59BeOS Application Scripting

 BeOS Scripting chapter 5/24/99 4:01 PM Page 59

We’ll look at specific scripting commands shortly, when we talk about the hey
command-line utility (see Application Scripting Tools, this chapter).

Commands There are only six standard BeOS application scripting com-

mands; the names given here are the “official” names for these commands,

and not something you’d actually send to a running application:

• count properties: Counts the number of instances of a property. For
example, if NetPositive had several windows open, you could ask it to
count them. In this case, the “property” would be “window.”

• create property: Creates a new instance of a property. This is the com-
mand that would open a new document.

• delete property: Deletes an instance of a property. Use this to close doc-
uments or windows.

• execute property: Executes an instance of a property. If an application
let you create a macro, this would let you run the macro.

• get property: Gets the value of an instance of a property. You can “get”
the title of a window, for example.

• set property: Sets the value of an instance of a property. You can also
“set” the title of a window.

All application scripts will be built using these six commands, although some

specific applications may add custom commands to better support whatever it

is that the app does.

60 Scripting

Figure 2

In the scripting command get title of window 0 of StyledEdit,
the command is get, the property is title, and the specifier is window
0 of StyledEdit. Similarly,delete window 0 of StyledEdit would
close StyledEdit’s first window.

 BeOS Scripting chapter 5/24/99 4:01 PM Page 60

Remember, these are the “official” names for these commands; scripting utili-

ties like hey and scripting support in programming languages like Python will

call them by different names. For example, the following table showshow the

official names correspond to hey’s commands, and what programmers see

when writing C++ code:

Yes, hey doesn’t support the execute property command. That’s not a prob-

lem, though—you can do a lot of useful things without it!

Properties A property is a scriptable feature of an object. Properties are

given unique names within that object. For example, a window has properties

named Frame (a rectangle representing the size and position of the window),

Title (the text in the window’s title tab), and one or more View properties

(the contents of the window).

Some properties are other objects; for example a window’s View is actually a

view object, which has its own set of properties.

61BeOS Application Scripting

Official Command hey’s Command C++ Command

create property create B_CREATE_PROPERTY

delete property delete B_DELETE_PROPERTY

execute property B_EXECUTE_PROPERTY

get property get B_GET_PROPERTY

set property set B_SET_PROPERTY

Figure 3

The NetPositive
window has several
properties: the
Frame, a Title,
and a bunch of
View properties.

 BeOS Scripting chapter 5/24/99 4:01 PM Page 61

An object can have more than one instance of a property. If an application has

several windows open, it will have more than one Window property, one for

each window. Asking for the window in an application could be ambiguous,

but asking for the first window, or a window named Funky would work. It’s

not always enough to identify something with just a property; sometimes you

need a specifier to help narrow it down.

Specifiers Specifiers let you target a specific instance of a property and

come in two parts:

• The name of the property, such as Window

• Something to identify a specific instance of a property, like its name

If you were writing a BeOS program in C++ to do your scripting, you’d

have a wide range of possible identifiers, but when you’re doing scripting

from the shell using a command-line scripting tool like hey, you’re limited to

things like names or numbers. We’ll talk more about this a little later.

You can “stack” several specifiers together to help locate a specific object; for

example, if you want to get the frame of the second view in a NetPositive

window named “Welcome to Be, Inc.” you’d type a hey command like this:

hey NetPositive get Frame of View 2 of Window "Welcome to Be, Inc."

And you would see a result like the one shown in Figure 4.

The specifiers go from the object you’re after up through all of the objects

that contain it. In this case, the frame is part of the view, which is part of the

window. This is pretty natural for English speakers because it’s almost exactly

how we would say it if we were describing it to someone else!

62 Scripting

Figure 4

The results of asking
hey for the
Frame of View 2
of Window "Welcome
to Be, Inc."

 BeOS Scripting chapter 5/24/99 4:01 PM Page 62

Scripting Suites Being able to find the scripting abilities supported by an

object lets you work with almost any kind of object, even if you’re never

heard of it before. Every object’s scripting abilities are organized into one or

more scripting “suites.” A suite is defined as a standard set of supported speci-

fiers and their properties.

For example, every button in an application is the same kind of thing (a but-

ton with some text in it) and they all behave the same way, causing something

to happen when you click on them. The arrows in a scrollbar don’t look like

buttons, but they act like them by scrolling your document when clicked. If

buttons and scrollbar arrows could handle the same kinds of scripting com-

mands (which they can), this common set of commands would be the “but-

ton” suite (buttons are actually part of a larger “control” suite—a set of

common scripting commands that work with every GUI control in all BeOS

applications).

You can find the suites (and the specific properties) supported by BeOS

objects (like windows and buttons) by looking in the BeBook, the program-

ming documentation for BeOS that gets installed automatically on every sys-

tem. At the end of every object’s description is a section on scripting support,

listing the supported suites. Take a look at the BWindow description in the

Interface Kit, for example. Unfortunately, these documents are intended for

programmers, not users trying to do some scripting, so you’ll have to experi-

ment.

Objects can support more than one suite of commands; a given object will

respond properly when you send it any command from any of those suites.

For example, menus support the “menu” suite and the “view” suite. This lets

them work with any command from both the “menu” and “view” suites.

Suites have MIME-style names like suite/vnd.Be-control (for user-interface

controls like buttons and checkboxes) and at the time of this writing the only

suites available were those defined by Be. In the future, there will be suites of

scripting commands defined by third parties (and by Be) for graphics applica-

tions, for example, which will allow all graphics applications to work with

similar scripting commands.

Scripting suite names look like MIME filetypes (like “suite/vnd.Be-control”),

but they aren’t. Suite names are completely internal to BeOS, and the fact that

they look like MIME types is just a geeky detail.

Don’t be fooled!

Another way of finding an object’s supported suites is to use hey’s getsuites
command:

$ hey NetPositive getsuites

You’ll learn more about hey and getsuites later in this chapter.

63BeOS Application Scripting

 BeOS Scripting chapter 5/24/99 4:01 PM Page 63

Application Scripting Tools

This is all pretty abstract, and we can’t start looking at real examples until

we’ve discussed the tools that let you take advantage of BeOS’s application

scripting from the shell. We’re going to do our scripting from the shell using

the hey command-line utility because it lets us take advantage of everything

we learned earlier in this chapter, and because most of the other scripting lan-

guages (such as Perl) can’t currently take part in BeOS message passing.

Unfortunately, there aren’t very many tools available yet. Application scripting

is pretty new on BeOS, and a lot of developers are still trying to figure things

out. Luckily, BeOS Masters Award winner Attila Mezei has given us an excel-

lent scripting tool in the form of hey, which is available on his Web pages

(http://w3.datanet.hu/~amezei/).

Remember, even though we’re talking about the shell and hey here, BeOS

applications can be remote-controlled by any programming laugage, utility, or

application that can send messages. By the time you read this, that will include

Python and may include Perl—if so, you won’t need hey, but the principles

we talk about here will still apply.

Installing hey After you’ve downloaded hey (make sure you get the latest

version—this section assumes you’re using hey version 1.1.1 or later), and

unpacked the archive, you’ll be confronted with a problem. There isn’t an

executable in the archive!

hey is distributed as source code, with documentation and two project files

(one each for PowerPC and x86 systems). This is good for developers, who

love to have the code for everything, but not so good for users who just

want to get something done. It’s not very hard to build your very own copy

of hey, though.

1. Double-click on the appropriate project file in the hey folder—
hey.PPC.proj if you’re using a PowerPC-based system
or hey.Intel.proj- if you’re using an x86-based system.

2. The BeIDE will pop up on your screen after a few seconds and open the
project.

3. Select Make from the Project menu or hit Alt+M (or Command+M
if you’re on a Mac keyboard). The IDE will build a fresh new hey
executable for you.

4. Close the BeIDE window and move your new hey executable (with its
pile of blocks icon) into home/config/bin on your boot disk. You’re done!

Working with hey

Just as writing a useful shell script involves stringing together a bunch of

smaller shell commands, writing a script to control a GUI application involves

stringing together a bunch of scripting commands.

64 Scripting

 BeOS Scripting chapter 5/24/99 4:01 PM Page 64

In both cases, the individual commands only move you a little closer to your

goal. It’s when you stick them together that they get you were you want to go.

You can duplicate all of the examples in this section using a hey-like set of

commands in Python courtesy of an add-on called heymodule. Be sure to

check the Languages section of BeWare for Python add-ons that support

application scripting!

Using hey hey supports the standard BeOS scripting commands shown in

the Commands section above, plus a couple of other useful verbs that are listed

just below.

The syntax of a hey command is:

hey application verb [specifier [of specifier ...]] [to value]

The syntax shorthand I use above is the standard way of showing a com-

mand’s options; it describes how to use a command. Arguments in square

brackets are optional, so one or more specifiers are allowed, and so is the

“to” clause at the end. You’ll need that “to” clause when you want to set
a property.

The application can be specified as an application’s name (what you see in the

Deskbar, like “Tracker” or “ShowImage”) or as an application signature like

application/x-vnd.Be-TRAK or application/x-vnd.Be-ShowImage. (Most appli-

cation signatures are in the form application/x-vnd.company.programname; if

they’re not, the developer receives a visit from the MIME Police!). Details on

application signatures (or “app_sigs”) can be found in Chapter 5, Files and the

Tracker.

You can find the signature of an application by dropping it onto the File

Types preference window. You can read all about the File Types application

in Chapter 9, Preferences and Customization.

The hey Verbs The verb can be any one of those shown in Table 5.

The last three (quit, save, and load) aren’t standard scripting commands,

but they are standard messages that all applications know how to handle.

Although they’re not, strictly speaking, part of application scripting, they’re

definitely useful.

Applications can respond to a huge number of different messages, including

the standard scripting messages that we’re talking about here. Some of these

messages tell the app to do useful things, like quit (because the user told it to

or because the system is being shut down) or save the current document.

These “other” messages are usually only available to programmers working in

C++, but hey makes them available to you from the shell.

Sending Any Message The verb in your hey statement can also be any

four characters enclosed in single quotes, such as '_ABR'. This lets you send

65BeOS Application Scripting

 BeOS Scripting chapter 5/24/99 4:01 PM Page 65

any message, which can be handy if an application supports a useful but non-

standard command. BeOS messages have a four-character ID so applications

can figure out what kind of messages they are; '_ABR' is the ID for “show me

the About box,” and every GUI application knows how to respond to this

message. If you want to send a specific message like this, you must include the

single quotes, or hey might thing it’s one of the verbs it knows about.

BeOS flings around a lot of messages totally unrelated to scripting, like the

“show me the About box” message. You can find out about these by looking

in the BeBook and the Application Kit’s AppDefs.h header (located in

/boot/develop/headers/be/app). Most of these messages require extra infor-

mation to do anything useful, which means they might cause problems if you

send them using hey. An application expecting to find the right kind of data

in the message could become confused and crash. So be careful!

Hey Property Specifiers The property specifiers are a little more com-

plex. Property specifiers let you talk to and send messages to a specific object.

They give you a way to let hey know what you’re talking to. Specifiers come

in several flavors:

name
name [index]
name [-reverse_index]
name "instance name"

66 Scripting

Table 5 The verbs hey uses to control applications
hey Verb What It Does Comments

get Gets an instance of a property. The same as the get property command
we talked about earlier.

set Sets an instance of a property. Same as set property.

count Counts the instances of a property. Same as count property.

create Creates a new instance of a property. Same as create property.

delete Deletes an existing instance of a property. Same as delete property.

getsuites Gets the supported suites for a property. This isn’t a standard scripting command
by itself, but shorthand for several count
and get commands to get a list of sup-
ported suites

quit Quits the application. Not a standard scripting command, but
useful.

save Saves a document. Another shorthand command built with
standard scripting commands.

load Loads a document. More shorthand (like using create).

 BeOS Scripting chapter 5/24/99 4:01 PM Page 66

(In these cases, the square brackets and quotation marks are required—they’re

not part of the shell command description.)

Just specifying a property name is the easiest; for example:

$ hey application/x-vnd.Be-TRAK get Name

will return “Tracker” on my system.

The next specifier (name [index]) lets you specify an integer to find a specific

instance. Open a couple of Tracker windows and try a few indexed commands

like this:

$ hey Tracker get Title of Window [0]
$ hey Tracker get Title of Window [1]

You’ll get a reply something like this:

BMessage(B_REPLY):
"result" (B_STRING_TYPE) : "Tracker Status"

for the windows that are open. You’ll notice that there are two hidden Tracker

windows around all the time, Tracker Status and Desktop. These are used by

the Tracker to display the “Copying files” status window and the Desktop

background; don’t mess with them unless you don’t mind crashing. Windows

are given an index based on the order in which they’re opened, and the

indexes only count windows that are currently open. If you specify an index

that isn’t valid, you’ll get an “index out of range” error message.

For example, say you’ve got a few Tracker windows open, and you’ve just seen

that the last window is named “beos” (because it’s open on the /boot/beos
directory). You could confirm this by typing:

$ hey Tracker get Title of Window [3]

Using a negative number will count from the last item instead of the first.

You could get the title of the last window using:

$ hey Tracker get Title of Window [-1]

Instance Names Another easy specifier uses the instance name (name
“instance name”). This lets you refer to instances of objects by name, which

is great if you already know the name. A silly example using this technique

is to open StyledEdit and type this:

$ hey StyledEdit get Title of Window "Untitled 1"

You’ll see that the window named “Untitled 1” has a title of…well, I’m sure

you can guess. You can use this if, for example, you’ve used a script to open

a document (StyledEdit’s window title will be the filename), and you want

to do something with that document. By referring to the window by name,

you can be sure you’re working with the document you just opened.

67BeOS Application Scripting

 BeOS Scripting chapter 5/24/99 4:01 PM Page 67

Values Values are the things you’ll be using in a set command, and they can

usually be specified as strings (put them in quotes) and numbers. Sometimes

you need to specify Boolean values (“true” or “false”), specific kinds of num-

bers, points, rectangles, colors, or files.

You’ll have to consult the documentation for the application you’re trying to

script to see if its set property commands require a specific kind of value or if

you can just use a plain old string or number.

To use a specific kind of value, or one of the special values (such as a color),

you use this syntax:

kind(value)

Values in all applications can be defined or organized by type. Table 6 lists the

various types of values a given application may support. The documentation

for the application you’re scripting will tell you if you need a specific kind of

value for a particular object and what values are allowed.

68 Scripting

Table 6 Types of Values
Type of Value Description

bool A Boolean value can be either true or false. For example, to set something to true,
you’d use a value of bool(true).

BPoint The x and y coordinates of a point on the screen, in a window, etc.BPoints take two
values: BPoint(x,y), where x and y are numbers.

BRect A rectangle specified as the coordinates of the top-left corner and the bottom-
right corner. Four numbers are needed here BRect(left,top,right,bottom).

double A double-precision floating-point number; double-precision floats let programs do
more precise calculations, though they take up more memory.

file The path to a file, directory, or symbolic link. For example, to set something to
/boot/some/file, you’d use file(/boot/some/file).

float A floating-point number, such as 1.5.

int8 An 8-bit number; the documentation that came with your application will let you
know if it needs a specific kind of number (like int8, int16, or int32). Most of the
time, you can just use the number you want.

int16 A 16-bit number. A 16-bit number can be twice as large as an 8-bit number.

int32 A 32-bit number. A 32-bit number can be twice as large as a 16-bit number.

rgb_color A color specified as red, green, blue, and alpha values from 0 to 255:
rgb_color(red,green,blue,alpha).

 BeOS Scripting chapter 5/24/99 4:01 PM Page 68

Let’s try some examples of finding and using values in simple hey statements.

For instance, when you start StyledEdit by double-clicking on its icon in the

apps folder, it puts a blank window in the top-left corner of your screen. Let’s

find out what the Frame rectangle of that window is:

$ hey StyledEdit get Frame of Window [0]

You should get back something like this:

BMessage(B_REPLY):
"result" (B_RECT_TYPE) : BRect(7.0, 26.0, 507.0, 426.0)

which gives you the value of the position of that window—its size and shape,

as you can see in Figure 5.

We can use scripting and hey’s set verb to change the value and move the

window down and to the right:

$ hey StyledEdit set Frame of Window [0] to "BRect(107,76,607,476)"

69BeOS Application Scripting

Figure 5

The BRect of an
empty StyledEdit
window

 BeOS Scripting chapter 5/24/99 4:01 PM Page 69

This example returns a message that looks like something might’ve gone wrong:

BMessage(B_REPLY):
"error" (B_INT32_TYPE) : 0 (0x00000000)

The hey command always prints out the reply message it gets after sending

your message. This reply always has one extra bit of information tagging

along, the “error” value. In this case, the “error” is set to the value 0 (which

we get to see as a normal number and as a hexadecimal number). As you’ll

remember from our earlier discussion about the exit status, 0 means “no

problem!,” so all is well.

If you get an “error” other than 0, and hey doesn’t translate it into English

for you, take a look in the Support Kit’s Errors.h header (found in

/boot/develop/headers/be/support), which might help. Every standard error

is defined there, and the comments help explain what they mean.

You’ll note that I added 100 to the top and bottom values, and 50 to the left

and right values; this is to keep the StyledEdit window the same size and

shape as it was originally. By changing just one of these values (or both in

another proportion), you can stretch or shrink the window.

You can also change the entire size and shape of a window by altering its Frame
in a script. This command:

$ hey StyledEdit set Frame of Window [0] to "BRect(307,76,607,476)"

70 Scripting

Figure 6

Changing the
StyledEdit window’s
Frame

 BeOS Scripting chapter 5/24/99 4:01 PM Page 70

lets you specify each side of the Frame rectangle of a window.

These scripting commands will work with any BeOS application that shows

up in the Deskbar. Experiment for yourself to verify this!

Property Names Property names in the BeBook,. but unfortunately, they

can be hard to find (they’re hidden in with all of the programming documenta-

tion, in the scripting support section of most objects), and not everyone can sur-

vive wading through a long description of some code they’re never going to use.

Different kinds of objects support different sets of properties (and you already

know these sets are called suites). You can get a list of these properties, and

some information about their contents, using hey’s getsuites option:

hey NetPositive getsuites of View [0] of Window [0]

Something horrible like this will appear in your Terminal:

property commands types specifiers
--

Menu PCRT 6 2 3
(extra_data: 0x1)
(CSTR,data), (LONG,what)

Menu PDEL 6 2 3
(extra_data: 0x1)

71BeOS Application Scripting

Figure 7

Changing the
StyledEdit window’s
Frame again; this
time we change its
shape, too.

 BeOS Scripting chapter 5/24/99 4:01 PM Page 71

Menu 6 2 3
MenuItem PEXE PDEL 6 2 3

(extra_data: 0x3)
MenuItem PCRT 6 2 3

(extra_data: 0x3)
(CSTR,data), (LONG,what)

MenuItem 6 2 3
(extra_data: 0x2)

MenuItem PCNT LONG 1
(extra_data: 0x4)

Enabled PGET PSET BOOL 1
(extra_data: 0x5)

Label PGET PSET CSTR 1
(extra_data: 0x6)

Mark PGET PSET BOOL 1
(extra_data: 0x7)

property commands types specifiers
--

Frame PGET PSET RECT 1
Hidden PGET PSET BOOL 1
View PCNT LONG 1
View 2 3 6

property commands types specifiers
--

Suites PGET 1
(CSTR,suites)
(SCTD,messages)

Messenger PGET MSNG 1
InternalName PGET CSTR 1

BMessage(B_REPLY):
"suites" (B_STRING_TYPE) : "suite/vnd.Be-menu"
"suites" (B_STRING_TYPE) : "suite/vnd.Be-view"
"suites" (B_STRING_TYPE) : "suite/vnd.Be-handler"
"messages" (B_PROPERTY_INFO_TYPE) : see the printout above
"messages" (B_PROPERTY_INFO_TYPE) : see the printout above
"messages" (B_PROPERTY_INFO_TYPE) : see the printout above
"error" (B_INT32_TYPE) : 0 (0x00000000)

This output is in two parts: the table at the top, and the BMessage chunk at

the bottom. Within the table, the property column lists the names of the

properties in View [0] of Window [0] (like Menu and Frame). The com-

mands column shows a short version of the scripting commands that each

property can understand:

72 Scripting

 BeOS Scripting chapter 5/24/99 4:01 PM Page 72

Lastly, the specifiers column tells you how you can use that property. The

important specifiers are these three:

The rest of the output is the reply message that hey always prints when it’s

done. In this case, there’s a lot more there than just the error value (remem-

ber, 0 means “everything is OK”). The various “suites” entries are what we’re

interested in; they indicate what scripting suites this object understands. In

this case, the View knows about the suite/vnd.Be-menu, suite/vnd.Be-view,

and suite/vnd.Be-handler suites of scripting messages. If you guessed that the

BeBook’s documentation about BHandler (in the Application Kit) and

BMenu and BView (both in the Interface Kit) would have information about

these suites, you’d be right. Each of these has a scripting support section, giv-

ing the names of the properties and the message you use to access those prop-

erties. The message is always one of the standard C++ scripting commands

(shown earlier in the Commands section), such as B_GET_PROPERTY.

73BeOS Application Scripting

Short Fform heyCommand

PCNT count

PCRT create

PDEL delete

PEXE None (This is the execute property command that hey doesn’t
support.)

PGET get

PSET set

Specifier Description

1 A “direct” specifier; you can use this directly in the hey commands.
For example, hey NetPositive get Label of View [0]
of Window [0] will return that window’s View’s label.

2 An “index” specifier; you can use a number to choose a specific
instance of this property. For example, you could get Menu [0] in
this view.

6 A “name” specifier; you can choose a specific instance of this
property by using its name. We’ve already seen this when we sent
commands to a specific StyledEdit window with hey StyledEdit
get Frame of Window "Unknown 1".

 BeOS Scripting chapter 5/24/99 4:01 PM Page 73

Looking back at the getsuites output for NetPositive, we see that there’s a

Label property in the first view of the first window. Just to refresh your mem-

ory a little:

$ hey NetPositive getsuites of View [0] of Window [0]

property commands types specifiers
--
...

Label PGET PSET CSTR 1
(extra_data: 0x6)

...

Let’s find out what that label says:

$ hey NetPositive get Label of View [0] of Window [0]
BMessage(B_REPLY):

"message" (B_STRING_TYPE) : "this menu doesn't have a label"
"error" (B_INT32_TYPE) : -2147475448 (0x80002008)

Ah-ha! View [0] must be a menu (since it’s telling us “this menu doesn’t have

a label”). We might think that we could get the menu name because the Menu
property in the getsuites listing has a 2 in the specifiers column, so it under-

stands indexes, making us conclude that Menu [0] will be the first, and proba-

bly only, menu inside View[0]. Lets try it:

$ hey NetPositive get Menu [0] of View [0] of Window [0]
Didn't understand the specifier(s) (error 0x80002008)

That didn’t work; hey didn’t know what to do. Let’s see what the menu

knows about. Looking in the BeBook’s Interface Kit section under BMenu’s

“Scripting Support” heading, we see that menus know about several proper-

ties, as shown in Table 7.

74 Scripting

Table 7 Properties in the suite/vnd.Be-menu suite
Property Description

Enabled Specifies if the menu or menu item is enabled or disabled.

Label The text label in the menu or menu item.

Mark Specifies if the menu or menu item has a checkmark next to it.

Menu If the menu has another menu inside of it (hierarchical menus, for example), it will also
have a Menu property. You’d refer to this submenu with something like Menu [0] of
Menu [0] of View [0] of Window [0]. Look carefully if you think this is what we just
tried; there’s an extra Menu [0] of... in there, which means we’re looking at the
menu inside the menu. Yes, that’s confusing; BeOS menu bars are menus, and the
things that pop down when you click on them are also menus.

MenuItem The items inside the menu.

 BeOS Scripting chapter 5/24/99 4:01 PM Page 74

So, we should be able to get the label for the menu:

$ hey NetPositive get Label of Menu [0] of View [0] of Window [0]
BMessage(B_REPLY):

"result" (B_STRING_TYPE) : "File"

Looking in the NetPositive window, we can see that we’ve found the File

menu. This isn’t too useful, right? I mean, we can see the File menu just by

looking at the window!

But menus have an Enabled property, right? What if we set that to false?

$ hey NetPositive set Enabled of Menu [0] of View [0] of Window [0] \
to "bool(false)"
BMessage(B_REPLY):

If you type this all on one line, you can leave off the “\” character. That’s here

in this example to let the shell know that I haven’t finished typing this long

command yet, and that it shouldn’t try to run the command when I press the

Return key.

We’ve just disabled NetPositive’s File menu! Don’t worry, you can turn it back

on by setting the Enabled property to true. hey’s return message seems to be

totally empty; in this case, no news is good news, and setting a menu’s

Enabled property doesn’t send us back a reply message.

Menus also have a MenuItem property; we can use this to get the items inside a

menu. MenuItems have text labels, so let’s assume they have a Label property

just like Menu does:

$ hey NetPositive get Label of MenuItem [0] of Menu [0] of View [0] \
of Window [0]
BMessage(B_REPLY):

"result" (B_STRING_TYPE) : "New"

A quick poke into the File menu will tell you that New really is the first item.

Success!

These specifiers are getting pretty huge, though; let’s try moving them into a

shell script where we can work in the comfort of our favorite text editor.

#! /bin/sh
#
List the contents of NetPositive's File menu using application
scripting.

We'll stick part of this huge specifier into the target_menu variable
to save typing.
#
This will also make it easier to aim our script at another window;

75BeOS Application Scripting

 BeOS Scripting chapter 5/24/99 4:01 PM Page 75

just change the index right here.
target_menu="Menu [0] of View [0] of Window [0]"

Similarly, we'll store the application name in the app variable,
to make it easier to aim this script at another application.
app="NetPositive"

Start at the first item, which is numbered 0.
index=0

Do this loop as long as the hey command's exit status indicates
that all is well. When we get past the last MenuItem, hey will
return an exit status that means "an error occurred", and then
we'll stop looping.
while hey $app get Label of MenuItem [$index] of $target_menu ; do

Go on to the next MenuItem.
let index=index+1

done

When you run this script a whole bunch of reply messages will be printed in

your Terminal:

BMessage(B_REPLY):
"result" (B_STRING_TYPE) : "New"

BMessage(B_REPLY):
"result" (B_STRING_TYPE) : "Open Location..."

BMessage(B_REPLY):
"result" (B_STRING_TYPE) : "Open File..."

BMessage(B_REPLY):
"result" (B_STRING_TYPE) : ""

BMessage(B_REPLY):
"result" (B_STRING_TYPE) : "Save As..."

BMessage(B_REPLY):
"result" (B_STRING_TYPE) : "Close"

BMessage(B_REPLY):
"result" (B_STRING_TYPE) : ""

BMessage(B_REPLY):
"result" (B_STRING_TYPE) : "Page Setup..."

BMessage(B_REPLY):
"result" (B_STRING_TYPE) : "Print..."

BMessage(B_REPLY):
"result" (B_STRING_TYPE) : ""

76 Scripting

 BeOS Scripting chapter 5/24/99 4:01 PM Page 76

BMessage(B_REPLY):
"result" (B_STRING_TYPE) : "About NetPositive"

BMessage(B_REPLY):
"result" (B_STRING_TYPE) : ""

BMessage(B_REPLY):
"result" (B_STRING_TYPE) : "Quit"

menu item index out of range (error 0x80000003)

Compare this to the contents of the File menu; we’ve got all of the menu

items (with blank ones for the separators), but what’s that error message at the

end? After we’ve gotten to the end of the menu, we go through the while loop

again, and this time, hey fails and kicks us out of the loop because we’ve asked

NetPositive to tell us about a menu item that doesn’t exist.

This is a little ugly, though, because there’s way too much information com-

ing out of the hey command.Let’s move the hey command out into a shell

function and use the sed command to get just the result.

This is one of the reasons why a “real” programming language with scripting

support is high on everyone’s Christmas list. Using hey from the shell to do

non-trivial things can be quite a challenge; doing this from a programming

language would give you back the string you asked for, without all of this

extra stuff.

For example, using the Python heymodule, instead of having to deal with this

reply message, you’d just get back the label of the menu item as a string, ready

to use for your own evil purposes.

#! /bin/sh
This script will give us a nice, clean list of
NetPositive's scriptable menu items.

Create a new function for this script, to collect the menu item's
name and display it in a nicer fashion than hey's output.
show_result() {

Make sure the function has the right number of arguments.
$# returns the number of arguments, and we want to
have two of them; otherwise you're not calling this
function properly.
if [$# -ne 2] ; then

Sending back anything other than 0 means we
had a problem. In this case, not enough
arguments to do anything useful.
return 1

fi

77BeOS Application Scripting

 BeOS Scripting chapter 5/24/99 4:01 PM Page 77

Store hey's output in the "info" variable.
#
Note that NetPositive is hard-coded in here; we could
replace it with a variable to make this easier to change.
info=$(hey NetPositive get Label of MenuItem [$1] of $2)

If hey's exit status (in the $? variable) isn't 0, then
something bad happened.
if [$? -ne 0] ; then

Print an error message, then return with an
exit status of 0.
echo "Error getting label: $info"
return 2

fi

Now use sed to strip off everything between the start of the
line and the :, which happens to be the last thing before the
data we really want.
#
Note that sed is using a regular expression to strip off
everything before the : character (".*" matches everything)
by replacing it with nothing.
info=$(echo $info | sed -e "s/.* : //")

$1 below is a positional parameter -- it refers to
the position of the original argument to the function.
#
This prints something like: menu File: "New"
echo menu $1: $info

Return 0 as our exit status, meaning "all is well".
return 0

}

The next line creates a variable to be used as "shorthand" later.
target_menu="Menu [0] of View [0] of Window [0]"

Initialize the index variable at zero. Later, we'll increment it
by 1 for every pass through the loop, so we can get data on each of
the menu items sequentially.
index=0

Now call the show_result function as long as its exit status
indicates that all is well.
while show_result $index "$target_menu" ; do

Move on to the next item.
let index=index+1

done

78 Scripting

 BeOS Scripting chapter 5/24/99 4:01 PM Page 78

When you run this script, you’ll see something like this:

menu 0: "New"
menu 1: "Open Location..."
menu 2: "Open File..."
menu 3: ""
menu 4: "Save As..."
menu 5: "Close"
menu 6: ""
menu 7: "Page Setup..."
menu 8: "Print..."
menu 9: ""
menu 10: "About NetPositive"
menu 11: ""
menu 12: "Quit"
Error getting label: menu item index out of range (error 0x80000003)

This is much nicer output. Changing this to use a function makes the script a

little more complex, but we want to make sure we’ve got the right number of

arguments at the start of the show_result function, and then we need to check

hey’s exit status to make sure it worked. Putting all of those commands inside

the function actually makes life easier for us. After show_result calls hey to

collect its output, we have to send its output through sed to strip off every-

thing we’re not interested in; this uses the little trick of replacing the matched

string with nothing. The while loop at the end then calls show_result instead

of hey, passing it the current index and the target menu as arguments.

Some Examples

Now that we’ve fooled around with hey a little and found out how to deter-

mine what in our applications is scriptable (by poking around with hey’s get-
suites command), let’s try doing something a little more useful, and actually

use hey to automate the GUI.

Hiding the Unhidable The PoorMan Web server has an annoying short-

coming: You can’t hide its window automatically.

If you’re starting PoorMan in your UserBootscript (so it comes up automati-

cally every time you boot into BeOS), you’ll end up either moving the

PoorMan status window out of the way every time, or double-clicking on its

title bar to hide it. Wouldn’t it be better if you could hide it automatically

when it starts?

You can do this by adding a couple of lines to your UserBootscript. Try adding

these just after the line that starts PoorMan:

79BeOS Application Scripting

 BeOS Scripting chapter 5/24/99 4:01 PM Page 79

#! /bin/sh
...
Start PoorMan
/boot/beos/apps/PoorMan &

Give PoorMan a chance to get started, then hide its window:
sleep 2
hey PoorMan set Minimize of Window [0] to "bool(true)"

You might be able to sleep for one second (or no time at all), but that will

depend on how fast your system can launch PoorMan. Now after PoorMan

starts, its window will be minimized, and you won’t have to look at it.

Where Am I? In Chapter 6, you learned that you could change the shell

prompt from its default ($) to other things, including your current directory:

export PS1='$PWD> '

For some people (I’m not naming names; you know who you are!) this isn’t

enough, especially if they’ve got several Terminal windows open. You can still

forget which directory you’re in by ignoring the prompt.

It might help if the title of the Terminal window changed from “Terminal 1” to

“Terminal: /boot/your/current/directory” but how could you make this work?

As mentioned in Chapter 6, the cd command is used for moving around the

filesystem. If we want to update the Terminal window every time we change

directories, we’ll have to make up our own version of this command to

change the directory and then tell the Terminal to update its window title.

Let’s stick these shell functions in our /boot/home/.profile:

mycd() {
Change to the directory specified on the command line.
cd "$@"

Use hey to set the title of the window to reflect
the current directory. We direct all of hey's output
to /dev/null because we don't want to see it every time
we change directories.
hey Terminal set Title of Window [0] to "Terminal: $PWD" \
> /dev/null

}

After you reload the .profile (by typing /boot/home/.profile) you’ll be able

to use mycd to move around the filesystem and update the Terminal’s title to

show your current directory. We send hey’s output to the bit bucket because

we don’t want to see it. Give it a try and see what happens!

80 Scripting

 BeOS Scripting chapter 5/24/99 4:01 PM Page 80

Using builtin This isn’t very convenient, though; you’ve got to remember

to use a different command every time you want to move around and you’ve

got to type more characters every time. Wouldn’t it be easier if we could

somehow name this cd? The shell has a command named builtin that tells it

to use the built-in version of a command; this is exactly what we need!

Change mycd to look like this:

cd() {
Change to the directory specified on the command line
using the original built-in "cd" command.
builtin cd "$@"

Use hey to set the title of the window to reflect
the current directory. We direct all of hey's output
to /dev/null because we don't want to see it every time
we change directories.
hey Terminal set Title of Window [0] to "Terminal: $PWD" \
> /dev/null

}

In other words, the shell has a command called cd, and we’re defining our

own function called cd. By using builtin, we can have our cake and eat it too.

After you reload the .profile again, cd will update the Terminal’s title bar to

include the current directory.

If you’re a fan of the pushd and popd commands (see your favorite bash man-

ual for details), you can easily update these scripts to work with those com-

mands as well, just by adding a couple of extra functions as variants of the cd
function.

If you’ve got more than one Terminal window open, you’ll notice a slight

problem. The title bar of the first Terminal window is being updated, even if

you’re working in another window! To see this, hit Alt+N (or

Command+N) in the Terminal; this fires up a new Terminal window. It’ll

load the .profile and use the new cd function. Now try using cd to change

directories; as if by magic, the title bar of the first Terminal window tells you

where the second Terminal’s current directory is.

Unfortunately, there’s no way to fix this, other than to limit yourself to only

one Terminal window. The shell has no way of finding out which window it’s

running in. This isn’t such a good thing (programmers and power users love

having lots of Terminal windows open; I’ve usually got three or four going

with different things happening in each one), so I’ve asked Be to add a feature

to let the shell figure out what Terminal window it’s running in.

81BeOS Application Scripting

 BeOS Scripting chapter 5/24/99 4:01 PM Page 81

In R4, the Terminal learned a new trick: It can use the same sequence of

magic characters that the X Window System’s xterm terminal uses to set its

title. This little trick lets us get around the problem of not knowing what

Terminal we’re using.

By using this sequence of magic characters, all of your Terminals can have

titles that follow you through the filesystem! Try adding this version of cd to

your .profile:

cd() {
If the cd command succeeds, set the Terminal title.
if builtin cd "$@" ; then

echo -e "\E]0;$PWD\a"
fi

}

The text inside between the ; and the \ (in this case, the contents of the PWD
variable) will be displayed in the current Terminal’s title bar.

Name That Picture The ShowImage application that comes with BeOS

will display any image on your system, as long as you’ve got an appropriate

Translator installed.When you use ShowImage to open an image, it uses the

filename as the title for the window.

After starting ShowImage, you’ll get a small, blank window with a menu.

Open a Terminal and find one of the images on your hard drive. Let’s get

ShowImage to load the BeOS logo that gets installed in

/boot/home/SampleMedia/images:

hey ShowImage load "file(/boot/home/SampleMedia/images/Be Logo 1)"

After a second, ShowImage will pop up a window titled “Be Logo 1” with a

very nice rendered 3D Be, Inc. logo inside. This isn’t nearly enough informa-

tion for me, though. I’ve got a program called file installed from the

GeekGadgets repository. file is a command-line tool that uses a set of rules to

give you back information about a file’s type. Usually this includes a little

more information than the MIME type that you can get in the Tracker or the

FileTypes application. Running file on this image, I can see what it is:

$ file "/boot/home/SampleMedia/images/Be Logo 1"
Be Logo 1: TIFF image data, big-endian

The file command works with most common types of files and can some-

times tell you useful stuff (with GIF files, for example, it’ll tell you how big

the image is).

82 Scripting

 BeOS Scripting chapter 5/24/99 4:01 PM Page 82

Let’s stick this extra info into our ShowImage window’s title:

hey ShowImage set Title of Window "Be Logo 1" to \
"$(file '/boot/home/SampleMedia/images/Be Logo 1')"

We can write a little script to load a bunch of images and update their titles to

show the extra file information, too:

#! /bin/sh

Loop through the command-line arguments.
for name in "$@" ; do

Tell ShowImage to load the current file. Note that we
assume that ShowImage is already running.
echo Trying to load "$name"...
hey ShowImage load "file($name)"

Give ShowImage a chance to load the file. You can probably
tune this down a bit; it'll depend on the amount of memory
you've got, what other applications are running, etc.
sleep 5

Now tell ShowImage to change the title of this image's
window. We store the output from "file" in the "info"
variable just to keep things clean.
echo Trying to update title for "$name"...
info=$(file "$name")
hey ShowImage set Title of Window "$name" to "$info"

Give ShowImage a chance to update the title. If you have
a fast system, you can probably lower this to 1, or even
remove it completely.
sleep 2

done

Run this with a few images and you’ll have a screen full of pictures with more

information than just their file names.

Email Settings BeOS comes with a useful email server and client.

Unfortunately, the basic mail client, BeMail, can only cope with one user at a

time. If you’ve got several email accounts, you’ll be running the E-mail pref-

erences application all the time, switching back and forth between your

accounts to check for new mail (for information about setting up your email,

see Chapter 4, Get Online Fast).

This is exactly the sort of thing that application scripting can make easier.

We should write a script that changes the POP username, POP password,

POP host, and SMTP host (if you’ve got multiple email servers), as well as

83BeOS Application Scripting

 BeOS Scripting chapter 5/24/99 4:01 PM Page 83

the “Real name” and “Reply to” settings (especially if the accounts are for

multiple people). Once we’ve done that, we should immediately check for

new email.

The E-mail preferences application only has one window, so we’ll be dealing

with “something of Window [0]” here. After some poking around with hey, it

looks like the interesting views are inside “View 0 of Window 0” (see Table 8).

You can easily modify the script we used to list the names of the items in

NetPositive’s File menu to give you a list of the views in the E-mail prefer-

ences panel. Try it! You’ll need to change:

The show_result function’s call to hey (you want to get the “Label of View
[$1]” and you want to talk to E-mail)

The target_menu to “View [0] of Window[0]”

It’s probably a good idea to turn on the email status window while you’re

doing this, to make sure everything is working properly. You can check the

“Show status window” checkbox and hit the Save button, or you can type this:

hey E-mail set Value of View [13] of View [0] of Window [0] to 1
hey E-mail set Value of View [18] of View [0] of Window [0] to 1

After a second or two the email status window will appear on your Desktop.

Be sure to turn on the Log checkbox if it’s not already on! With the Log

turned on, you’ll be able to see what’s happening when your system tries to

download your email.

Now that we’ve found the views we want to script, we need to think about

what our script is going to do. A script that can take one command-line argu-

ment (for the name of the email account), set everything up, and then check

for new email should be pretty useful. We’re going to need to:

84 Scripting

Table 8 Finding all the interesting views in the E-mail
preferences app

Specifier Label

Label of View [0] of View [0] of Window [0] POP username

Label of View [1] of View [0] of Window [0] POP password

Label of View [2] of View [0] of Window [0] POP host

Label of View [3] of View [0] of Window [0] SMTP host

Label of View [10] of View [0] of Window [0] Real name

Label of View [11] of View [0] of Window [0] Reply to

Label of View [16] of View [0] of Window [0] Check Now

 BeOS Scripting chapter 5/24/99 4:01 PM Page 84

1. Check for the right number of arguments (the email account)

2. Get settings for all of these things based on the email account

3. Start the E-mail preferences application if it’s not already running

4. Set the fields in the E-mail preferences application

5. Simulate a click on the Check Now button

You already know how to do all of this, believe it or not! Let’s look at the

script (which I’ve called check_mail):

#! /bin/sh
#
Script to set up the E-mail preferences application for various
different email accounts and check for new mail.

Check for the right number of arguments; if there isn't one argument
we exit with an exit status of 1 to indicate that something went
wrong.

if [$# -ne 1] ; then
echo "usage: $0 account"
exit 1

fi

Now use a case statement to decide what settings to use. From the
look of things, my cats have been using email again, and they've
edited this script to make it easier...
#
NOTE: some.net.com is a fictional ISP; you'll have to customize
this case statement to include your accounts and settings!

Attempt to match the first (and only) argument against the
names of the accounts we know about.
case "$1" in

poe)
Settings for Poe's email account.
pop_user_name="poe"
pop_password="claws"
pop_host="pop.some.net.com"
smtp_host="smtp.some.net.com"
real_name="Poe (Lord of the Carpet)"
reply_to="poe@cats.net.com"
;;

byron)
Settings for Byron's email account.
pop_user_name="byron"

85BeOS Application Scripting

 BeOS Scripting chapter 5/24/99 4:01 PM Page 85

pop_password="canteloupe"
pop_host="pop.some.net.com"
smtp_host="smtp.some.net.com"
real_name="Byron (Baddest cat in the land)"
reply_to="byron@cats.net.com"
;;

meaghan)
Settings for Meaghan's email account.
pop_user_name="meaghan"
pop_password="furball"
pop_host="pop.some.net.com"
smtp_host="smtp.some.net.com"
real_name="Meaghan the Cutie"
reply_to="meghan@cats.net.com"
;;

chris)
Settings for Chris's email account.
pop_user_name="chrish"
pop_password="funkburg3r"
pop_host="pop.some.othernet.com"
smtp_host="pop.some.othernet.com"
real_name="Chris Herborth"
reply_to="chrish@qnx.com"
;;

lynette)
Settings for Lynette's email account.
pop_user_name="lynette"
pop_password="semprini"
pop_host="pop.some.net.com"
smtp_host="smtp.some.net.com"
real_name="Lynette Woodward-Herborth"
reply_to="lynette@some.net.com"
;;

*)
We didn't match any of the accounts we know
about, so gripe at the user and exit with an
exit status of 2 to indicate the kind of error.
echo "$1" is not a valid email account
exit 2
;;

esac

86 Scripting

 BeOS Scripting chapter 5/24/99 4:01 PM Page 86

Now we should start up the E-mail preferences app if it's not already
running.
#
We check to see if E-mail is already running by attempting to get
its Title. We aren't actually interested in the title, so we
send hey's output to /dev/null.
#
The test in the if statement is to see if hey's exit status is
not "all's well"; this will be the case if E-mail isn't running
yet (because hey won't be able to get its window title).
if ! hey E-mail get Title of Window 0 > /dev/null ; then

echo Starting E-mail preferences...
/boot/preferences/E-mail &

Just in case you've got a slow machine...this until
loop will print the message and sleep for one second
over and over until hey is able to get E-mail's
window title (which means it's running). The test
in the "until" will only be true when hey can get the
title.
#
Again, we don't want the output of hey (we just want its exit

status) so we send it to the bit bucket.

until hey E-mail get Title of Window 0 > /dev/null ; do
echo Sleeping for a second while E-mail starts...
sleep 1

done
fi

E-mail is now up and running, so we can set our fields based on our
account info.
#
All of these hey commands are redirected to /dev/null because we
don't really care about their output. The commands still do
something (send a scripting message to E-mail), but by redirecting
hey's output to /dev/null, we won't be interrupted by all of the
reply messages that every hey command prints.
#
The \ at the end of each line just tells the shell that we're
not done with the command yet; it ties it together with the next line.
This is just to make things fit nicely on the page; in your version
of this script, you could just type it all on one line without
the \ character.

87BeOS Application Scripting

 BeOS Scripting chapter 5/24/99 4:01 PM Page 87

echo Setting up email preferences for account: "$1"

To save typing we'll use $container as shorthand:
container="View [0] of Window [0]"

hey E-mail set Value of View [0] of $container to "$pop_user_name" \
> /dev/null

hey E-mail set Value of View [1] of $container to "$pop_password" \
> /dev/null

hey E-mail set Value of View [2] of $container to "$pop_host" \
> /dev/null

hey E-mail set Value of View [3] of $container to "$smtp_host" \
> /dev/null

hey E-mail set Value of View [10] of $container to "$real_name" \
> /dev/null

hey E-mail set Value of View [11] of $container to "$reply_to" \
> /dev/null

Now simulate a click on the Check Now button by setting the
button's value to 1:

echo Checking for new mail...
hey E-mail set Value of View [16] of $target to 1 > /dev/null

That's all folks! We leave with the exit status of the last
hey command.
exit

The Python heymodule package found on BeWare includes a Python-based

version of this script. It’s much easier to read, and runs a lot faster!

After you run this, you can hit the Revert button and close the E-mail prefer-

ences window to restore your original settings.

Another approach to this problem would be to find where the E-mail prefer-

ences are stored and keep one preferences file for each account. Then you

could swap the preferences, fire up the E-mail preferences app, and hit Check

Now to get that account’s email.

I could be a total freak, but I like the scripting solution better; it doesn’t cause

permanent changes to anything, and I don’t really have to do much. I could

even set up icons on my Desktop that called check_mail for one of the

accounts; then I could just double-click on the icon and find out if one of my

cats has any extra email lying around.

88 Scripting

 BeOS Scripting chapter 5/24/99 4:01 PM Page 88

Where Now?

Now that you’ve learned the basics of application scripting under BeOS, the

best thing for you to do is fire up a few applications and experiment. As

scripting takes off, you’ll be able to do more and more useful things with

applications via remote control, such as asking an FTP client to automatically

download all new or updated files since the last time you were online.

Until then, though, you can manipulate controls in running applications,

move their windows around, hide or show windows, and do a host of other

things using what you’ve learned in this section. Be sure to read the docu-

mentation that came with your favorite applications to see what interesting

scripting commands they support, and keep an eye on BeWare’s Languages

section for updates to scripting languages like Python and Perl that will let

you write your scripts in something other than the shell.

Don’t be afraid to experiment! Until programmers document their software

better, you’ll need to experiment to find the views for the controls you want

to script. Luckily, this is one of those things that will improve over time. If a

program includes some interesting scripting abilities, be sure to thank the

developer!

Making Your Scripts
Run from the Tracker

You don’t always want to run a script from a Terminal window; sometimes

you just want to drag and drop a file onto a script from the Tracker and have it

do something, or create a double-clickable custom icon you can store on your

Desktop to launch your own scripts.

Unfortunately, this may not work the way you’d expect; you won’t see any

output from the script, and the script probably won’t be able to find your

files. Even if it does produce output, it’ll probably put it somewhere strange.

The shell has the “current working directory” concept (see Chapter 6, The

Terminal), and shell scripts often depend on this to function properly. Without

a Terminal to run in, the script’s output (including any error messages) will

disappear, and nothing will seem to happen.

Luckily, BeOS developer Pete Goodeve has stepped up to help us out with

this problem with his xicon utility (available on BeWare).

89Making Your Scripts Run from the Tracker

 BeOS Scripting chapter 5/24/99 4:01 PM Page 89

xicon lets you run scripts from Tracker icons as if they were regular applica-

tions. It automatically opens a Terminal window for the script to run in so

you can see the output and interact with it if necessary. You can also drag and

drop other icons onto the script’s icon in the Tracker, and the script will then

run with the dragged items as arguments.

With the help of magic cookies (covered earlier in the Magic Cookies section),

xicon can run any kind of script: shell, Perl, Python, Tcl, REXX...whichever

language you prefer. As with any script, the magic cookie will control the

script interpreter that xicon uses.

Installing xicon

Download xicon from BeWare (both PowerPC and x86 flavors are available),

unpack the archive, open the PROGRAM folder in the new xicon folder, and move

the appropriate version of xicon to your /boot/home/config/bin directory.

To make sure the Registrar (see Chapter 5, Files and the Tracker) knows about

the script filetypes used by xicon, you can run the mimeset command on the

newly installed xicon program:

mimeset -f -all /boot/home/config/bin/xicon

This’ll make things a little smoother, and your special xicon scripts will have

nice icons in the Tracker.

You should delete the unused binary (x86 if you’re running on a PowerPC

system, or vice versa) right now. If you drop it in the Trash, be sure to empty

the Trash right away. A small bug in the Tracker considers BeOS binaries from

the other architecture to be valid executables, and you could end up trying

to run the x86 version of xicon on your PowerPC (or the PowerPC version on

your x86). As you can imagine, this doesn’t work out very well, and you’ll get

an error message (“Not an executable.”) from the Tracker.

Testing xicon To make sure you’ve installed xicon properly, try double-

clicking one of the sample scripts that came in the archive. If you run the test
example, you should see a Terminal window like the one in Figure 8 pop up.

(The directory displayed by test will probably be different and show you the

full path to the xicon folder.)

You can also drag and drop something onto test to get an ls -l listing for that

file, its filetype, and a listing of its file attributes, as shown in Figure 9.

90 Scripting

 BeOS Scripting chapter 5/24/99 4:01 PM Page 90

91Making Your Scripts Run from the Tracker

Figure 8

xicon’s test
example

Figure 9

Dropping
something onto
xicon’s test
example

 BeOS Scripting chapter 5/24/99 4:01 PM Page 91

Using xicon

To actually use xicon with a script, all you have to do is drop the script onto

the convert to xicon script file that comes with the xicon archive. This does

several helpful things:

• Makes the script executable (sets the x bit)

• Changes the script’s filetype to text/x-script.xicon

• Sets the script’s preferred application to xicon

• Tells the Tracker to let the script accept any type of file using drag
and drop

Now when you drop a file on the script, a Terminal window will pop up, the

script will run, then the Terminal window will vanish.

Enhancing xicon Scripts

You don’t always want the Terminal to close as soon as the script is done;

sometimes it’s nice to see what happened, and windows that pop up and van-

ish quickly tend to make people think their system is about to crash. Not to

mention the fact that windows flashing in and out of existence are annoying.

So how can you keep the window from closing when it’s running from xicon?

The flipside of this question is, how can you tell when you’re running from

xicon?

When your shell script is launched by the Tracker using xicon, the

FOLDER_PATH environment variable is set to the directory where the script lives.

If your FOLDER_PATH isn’t set to anything, you’re running from a normal com-

mand line, but if it is, you’re running in one of these temporary Terminal

windows that xicon opens for you.

92 Scripting

What xicon Really Does

To do this yourself on a script named my_script, you’d execute a series of commands like this in

a Terminal window:

$ chmod +x my_script
$ settype -t text/x-script.xicon my_script
$ addattr BEOS:PREF_APP application/x-xicon my_script
$ rmattr BEOS:FILE_TYPES my_script

(If the script doesn’t have any supported filetypes, you’ll get an error for that last command.

That’s OK—we’re just making sure the script can accept any kind of file.)

 BeOS Scripting chapter 5/24/99 4:01 PM Page 92

The window will stick around if your script is asking for input from the user

(such as the test script, above, which asks you to “Type a return to
continue”). A simple way to make sure this happens is to add these lines to

the end of your script:

#! /bin/sh
...
if [-n "$FOLDER_PATH"] ; then

read
fi

The if statement is checking to see if the FOLDER_PATH environment variable is

set to anything. If it is, we use the read statement to wait until the user hits

the Enter key.

To see how this works, take your test_script from earlier in the chapter:

#! /bin/sh

echo "Hello world"

and drop it on the convert to xicon script icon in the

xicon folder. The test script’s icon should change to a

document with a big red plus sign on it and what looks

like a grey Terminal window inside.

Now if you double-click test_script from the Tracker

it’ll run in a window, thanks to xicon. If you didn’t see

anything, your system is too fast (I’ll bet you never

thought you’d hear that!) and the window is vanishing

immediately.

Change the test_script to include the if statement:

#! /bin/sh

Print our message of peace.

echo "hello world"

Now, if FOLDER_PATH is set to something, wait for the user
to press Enter.

if [-n "$FOLDER_PATH"] ; then
read

fi

If your favorite editor didn’t preserve the file’s type (maybe it changed it to a

plain text file, and the icon looks like a plain old document now), drop it on

the convert to xicon script icon again.

93Making Your Scripts Run from the Tracker

Figure 10

xicon’s special script icon

 BeOS Scripting chapter 5/24/99 4:01 PM Page 93

When you double-click the new test_script, you’ll get a Terminal window

with your friendly message in it. The window will stick around until you

close it or you hit the Enter key.

Your scripts can use this FOLDER_PATH environment variable to help find other

files or to save some output in the directory containing the script. Use some-

thing like

#! /bin/sh
if [-n "$FOLDER_PATH"] ; then

cd "$FOLDER_PATH"
fi
...

at the start of your script to change into the script’s directory before you do

anything else.

94 Scripting

Figure 11

test_script running
in its own Terminal,
courtesy of xicon

 BeOS Scripting chapter 5/24/99 4:01 PM Page 94

Learning More
If you’re interested in learning more about writing shell scripts, be sure

to check out some of the books mentioned in the Learning More section

of Chapter 6, The Terminal (especially Learning the Bash Shell and Unix in

a Nutshell).

There’s also a wealth of shell scripts available on the Internet, although not

many are aimed at the beginner. TrackerBase, by Scot Hacker (you may have

heard of him), is full of great examples for scripting newbies; you can find

TrackerBase on BeWare or at Scot’s BeOS software archive at

http://www.birdhouse.org/beos/software/.

Lurking around Usenet groups like comp.unix.shell and comp.sys.be.help
isn’t a bad idea either.

To get more bang for your buck with BeOS GUI application scripting,

keep an eye out for scripting languages that support BeOS messaging (in

BeWare’s Languages section), read the documentation that comes with

your applications, and encourage developers to support scripting in their

applications. Again, comp.sys.be.help will be a good place to ask ques-

tions and share scripting experiences, and so will the beusertalk mailing list

(http://www.be.com/aboutbe/mailinglists.html).

You might also find some useful tidbits (including heymodule, which

brings BeOS application scripting to Python) on my Web site,

http://www.beoscentral.com/home/chrish/Be/. There’s a lot more

there than just heymodule; look for a large BeOS community page listing

BeOS developers, useful information, links, and lots of software.

95Learning More

 BeOS Scripting chapter 5/24/99 4:01 PM Page 95

http://www.birdhouse.org/beos/software/
http://www.be.com/aboutbe/mailinglists.html
http://www.beoscentral.com/home/chrish/Be/

