

 March 8, 2001 12:02 pm

BeIA JavaScript : Section Title

page 1

preliminary — content subject to change

Be Incorporated — Confidential Information

BeIA JavaScript

This document is confidential and may not be distributed without the permission of Be Inc.

Be Incorporated — Confidential Information

March 8, 2001 12:02 pm

BeIA JavaScript : Section Title

page 2

preliminary — content subject to change

copyright © 2000 Be Incorporated

 March 8, 2001 12:02 pm

Chapter Title : Section Title

page 1

preliminary — content subject to change

Be Incorporated — Confidential Information

BeIA JavaScript

Table of Contents

beos . 3

1

 Properties . 3

binder

 . 3

globals

 . 3

2

 Functions . 3

dprintf()

. 4

exec()

 . 4

sendMessage(), sendMessageSync(), reply[]

. 4

beos.exec . 7

1

 Functions . 7

beos.binder . 9

1

 Properties . 9

application

. 9

service

 . 9

user

 . 10

2

 Functions . 10

observe(), observeContents()

. 10

valueOf()

. 11

Be Incorporated — Confidential Information

March 8, 2001 12:02 pm

Chapter Title : Section Title

page 2

preliminary — content subject to change

 March 8, 2001 12:02 pm

Chapter Title : Section Title

page 3

preliminary — content subject to change

Be Incorporated — Confidential Information

BeIA JavaScript

beos

Genus:

JavaScript object

Description:

Entry point for Be-defined JavaScript elements

beos

 is a global Javascript object that’s the entry-point for all Be-defined JavaScript elements. You can
access

beos

 from any HTML page within your BeIA configuration. There’s only one instance of the

beos

object; it’s created by BeIA when the system is booted, and destroyed when the system is halted.

1

Properties

binder

• Object that represents the root of the Binder tree.

binder

The

binder

 property represents the root of the Binder tree. See the argument

text

 to standard output.
You use this function while you’re debugging your code. You should remove (or disable) all

dprintf

calls before you ship.

globals

• Miscellaneous storage object

globals .

field

The globals property is a BMessage that’s persistent and global to the browser. Provided as a
convenience, you can add whatever fields you want to the property. The property contains no Be-
defined fields.

2

Functions

All arguments to the

beos

 functions are strings. To pass a number, simply put it in double quotes—the
conversion from string to numeric value will be done for you.

Be Incorporated — Confidential Information

March 8, 2001 12:02 pm

Chapter Title : Section Title

page 4

preliminary — content subject to change

dprintf()

• Prints to standard output

dprintf (

text

)

dprintf

 prints the argument

text

 to standard output. You use this function while you’re debugging your
code. You should remove (or disable) all

dprintf

 calls before you ship.

exec()

• Executes an application or program

exec (

pathname

,

arg1

,

arg2

,

arg3

, ...

)

• Closes the application’s input and output streams

exec(). close ()

• Kills the launched application

exec(). kill ()

• Reads and returns a line from standard input

exec(). readln ()

• Waits for the application to die and returns its exit code

exec(). wait ()

• Reads and returns a line from standard input

exec(). write (

string

)

exec()

 executes the application (binary) located at

pathname

, passing it as many as 63 arguments. The

pathname

 must be an absolute path. The function returns an object that can be used to control the
application, through the following functions:

•

exec().close()

 closes the application’s input and output streams. This is useful for applications
that block on the input stream; you have to call

close()

 before the application will exit.

•

exec().kill()

 abruptly terminates the application. You should only

kill()

 an application as a last
resort. The function doesn’t return a reliable exit code; if you need an exit code, call

wait()

 instead.

•

exec().readln()

 reads a line from the application’s standard input stream and returns it as a string.

•

exec().wait()

 waits for the application to die and then returns the application’s exit code. Note
that

wait()

 doesn’t induce the application to die, it simply waits for it to die naturally. If the
application is already dead, the exit code may be invalid.

•

exec().write()

 writes

string

 to the application’s standard input stream.

sendMessage(), sendMessageSync(), reply[]

• Sends an asynchronous message

sendMessage (

recipient

,

command,
name1

,

type1

,

value1

,

name2

, t

ype2

,

value2

,

March 8, 2001 12:02 pm

Chapter Title : Section Title

page 5

preliminary — content subject to change

Be Incorporated — Confidential Information

name3

,

type3

,

value3

...)

• Sends a synchronous message

sendMessageSync (

recipient

,

command

,

name1

,

type1

,

value1

,

name2

,

type2

,

value2

,

name3

,

type3

, value3
...)

• Reads a value from a message field

reply [field]

sendMessage() /sendMessageSync() sends a message to a running application or server. The
arguments are:

• recipient is the application signature of the app or server you want to send the message to. For
example, to send a message to the Sound Server, you would use “application/x–vnd.be–snd_server”.

• command is a four-character command constant that symbolizes the type (or intent) of the message
you’re sending. The recipient must understand what the symbol means; the string is otherwise
arbitrary. For example, the Sound Server understands “MAVS” to mean “set the volume.”

• Each nameN, valueTypeN, and valueN triplet adds a single data field to the message. nameN is the field
name, typeN is its type (“string”, “float”, or “int32”), and valueN is its value. The number and type of
fields that are expected and how their values are applied is determined by the message’s receiver. To
set the volume of the built-in speaker, for example, you would add the “be:speaker.volume” field to
the message:

beos.sendMessage(“application/x–vnd.be–snd_server”, “MAVS”,
“be:speaker.volume”, “float”, 0.5);

All messages must have recipient and command arguments. Some messages don’t require the additional
data fields (nameN/typeN/valueN).

sendMessage() sends the message and returns immediately (it doesn’t wait for a reply).
sendMessageSync() doesn’t return until a reply is sent back. To read the reply message, look at
beos.reply[] immediately after calling sendMessageSync() .

The reply[] function lets you access a field of the message that’s sent back to your code. You use
reply[] immediately after calling sendMessageSync() . For example, if you want to retrieve the
volume of the internal speaker, you would send a volume-querying message to the Sound Server, and
then immediately examine the “be:speaker_volume” field by accessing it through reply[] :

<!--Ask for the volume settings. -->
beos.sendMessageSync("application/x–vnd.be–snd_server", "MAVG");
<!--Look at the speaker setting. -->
beos.reply["be:speaker_volume"];

Be Incorporated — Confidential Information

March 8, 2001 12:02 pm Chapter Title : Section Title page 6
preliminary — content subject to change

 March 8, 2001 12:02 pm BeIA Technical Specification : page 7
preliminary — content subject to change

Be Incorporated — Confidential Information

BeIA JavaScript

beos.exec

Genus: JavaScript object
Description: Executes an application or program

exec (pathname, arg1, arg2, arg3, ...)

beos.exec() executes the application (binary) located at pathname, passing it as many as 63 arguments.
The pathname must be an absolute path. The function returns an object that can be used to control the
application, through the following functions:

1 Functions

close()

:: Closes the standard input stream

close()

close() closes the application’s standard input stream. If your application is waiting for input from the
stream, you have to call close() before the application will exit.

kill()

:: Kills the launched application

kill()

kill() abruptly terminates the application. You should only kill() an application as a last resort. The
function doesn’t return a reliable exit code; if you need an exit code, call wait() instead.

readln()

readln()

readln() reads a line from the application’s standard input stream and returns it as a string.

Be Incorporated — Confidential Information

March 8, 2001 12:02 pm BeIA Technical Specification : page 8
preliminary — content subject to change

wait()

wait()

wait() waits for the application to die and returns the application’s exit code. The exit code is
legitimate, even if the application has already died when you call wait() . Note that wait() doesn’t
induce the application to die, it simply waits for it to die naturally. Keep in mind that for applications
that read from standard input, you may need to call close() first.

write()

write(“input”)

write() writes input to the application standard input.

 March 8, 2001 12:02 pm BeIA JavaScript : beos.binder page 9
preliminary — content subject to change

Be Incorporated — Confidential Information

BeIA JavaScript

beos.binder

Genus: JavaScript object
Description: Represents the root of the Binder tree

beos.binder represents the root node of the Binder tree. All other nodes in the tree are given, in
JavaScript, as properties of beos.binder . For example, the user node is represented by the
beos.binder.user object.

This document lists the top level beos.binder properties. For more information on the Binder tree (and,
thus, the JavaScript objects that represent the Binder nodes and properties), see the The Binder chapter.

1 Properties

application

• Used by applications to store data

The application node is used by applications (or plug-ins) to store app-specific data. An application
registers itself within application by creating a node that’s named for the application’s MIME signature.
For example, this node...

beos.binder.application.x-vnd-MoviePlayer

...would contain data for the (fictitious) plug-in with the MIME signature
“application/x–vnd–MoviePlayer”.

It’s anticipated that new application nodes will only be created programmatically (through C++), when
a new application or plug-in is first launched.

service

• System wide services and settings

The service node provides system-wide information (device ID numbers, network configuration
information, etc.), and software capabilities (lists of supported languages, printers, fonts, etc.). As
examples, the ISP’s telephone number is given in the service.network node; the various resolutions
that a printer can handle for a given page are listed in the service.printing node.

Be Incorporated — Confidential Information

March 8, 2001 12:02 pm BeIA JavaScript : beos.binder page 10
preliminary — content subject to change

user

• User account settings

The user node contains a node for every user account, each of which contains user-specific settings and
data—language, locale, bookmarks, email info, and so on. The XML template for new user accounts is
stored in /boot/home/config/settings/binder/user–record.skel . When a new user account is
added to the system, the user-record.skel definition is automatically copied into the account.

2 Functions

Unless otherwise noted, the following JavaScript functions can be invoked on any Binder property or
node.

observe(), observeContents()

• Monitor changes to a property

observe (callbackFunction, userData)

• Monitor changes to the properties in a node

observeContents (callbackFunction, userData)

• Binder observer callback function syntax

function callbackFunction (userData,
nodeObject,
propertyName,
eventCode)

• Binder observer event codes

" added ", " changed ", " removed ", " unknown "

observe() /observeContents() registers a callback function that’s invoked when an observed property
changes. observe() is used to monitor (and is invoked upon) a specific property; observeContents()
monitors changes to any of the properties in the invoked-upon node. The first argument names the
callback function that will be invoked; the userData argument is passed to the callback function when it’s
invoked.

The arguments to the callback function are:

• userData is the data that was passed to the observe() /observeContents()

• nodeObject is a JavaScript object that represents the node that contains the changed property.

• propertyName is the name of the property that changed.

• eventCode describes what happened to the property: it was added , its value changed , it was removed ,
or some other change occurred (unknown).

Reporting a change to a property is completely in the hands of the property’s node—the system doesn’t
compel a node to report any changes.

March 8, 2001 12:02 pm BeIA JavaScript : beos.binder page 11
preliminary — content subject to change

Be Incorporated — Confidential Information

valueOf()

• Returns the value of a property

valueOf ()

valueOf() returns the value of a property or node.

Be Incorporated — Confidential Information

March 8, 2001 12:02 pm BeIA JavaScript : beos.binder page 12
preliminary — content subject to change

	beos
	1��� Properties
	binder
	globals

	2��� Functions
	dprintf()
	exec()
	sendMessage(), sendMessageSync(), reply[]

	beos.exec
	1��� Functions

	beos.binder
	1��� Properties
	application
	service
	user

	2��� Functions
	observe(), observeContents()
	valueOf()

