

 March 8, 2001

BeIA Miscellany :

page 1

preliminary — content subject to change

Be Incorporated — Confidential Information

BeIA Miscellany

This document is confidential and may not be distributed without permission of Be Incorporated.

Be Incorporated — Confidential Information

March 8, 2001

BeIA Miscellany :

page 2

preliminary — content subject to change

copyright © 2000 Be Incorporated

 March 8, 2001

BeIA Miscellany :

page 3

preliminary — content subject to change

Be Incorporated — Confidential Information

BeIA Miscellany

Table of Contents

Introduction . 7

Boot Mode . 9

1

 The Modes. 9

1.1

 Tools Mode . 9

1.2

 Validate Mode . 9

1.3

 First Boot Mode . 10

1.4

 Normal Mode. 10

2

 Switching Between Modes . 10

2.1

 The bootmode Program . 10

2.2

 The BOOTMODE Variable . 11

3

 Implementation. 11

Be Incorporated — Confidential Information

March 8, 2001

BeIA Miscellany :

page 4

preliminary — content subject to change

The Update Mechanism . 13

1

 Update Terms . 13

2

 Update Players and Rules . 13

2.1

 The Update Server . 14

2.2

 The Update Daemon. 14

2.3

 Update Packages (Verification, Encryption, and Security) . 14

2.4

 The Update Scripts . 15

3

 Update Session Outline . 15

3.1

 Initiating an Update Session. 15

3.2

 Contacting the Server . 15

3.3

 Receiving a Response . 16

3.4

 Executing updatescript . 16

3.5

 Updating and After . 16

4

 Update Environment Variables . 16

4.1

 Defined in /etc/update/revision . 17

4.2

 Defined in /etc/update/update_url. 17

4.3

 Defined in /etc/update/updt_ident. 17

4.4

 Defined by the Update Daemon . 17

5

 Scripts . 17

5.1

 updt . 18

5.1.1

 Variables . 18

5.1.2

 How it Works . 18

5.2

 updatescript . 18

5.2.1

 Variables . 19

5.2.2

 How it Works . 19

5.3

 doupdate . 19

5.3.1

 Variables . 19

5.3.2

 How it Works . 20

5.4

 doupgrade . 20

5.4.1

 Variables . 20

5.4.2

 How it Works . 21

5.5

 doscript . 21

5.5.1

 Invocation . 21

5.5.2

 Variables . 22

5.5.3

 How it Works . 22

6

 Upgrade Alert Files . 22

7

 Check List . 22

8

 Configurability . 23

March 8, 2001

BeIA Miscellany :

page 5

preliminary — content subject to change

Be Incorporated — Confidential Information

Digital Signature Algorithm . 25

1

 How the Digital Signature Algorithm Works . 25

2

 DSA on BeIA (dsasig) . 25

2.1

 Generating DSA Parameters . 26

2.2

 Generating Keys. 26

2.3

 Signing a Document . 26

2.4

 Verifying a Document. 26

2.5

 Creating a Hash Value . 26

3

 Division of Labor . 27

4

 Default DSA Files . 27

The Microshell . 29

1

 Script Syntax and Grammar . 29

2

 Built-in Commands . 30

2.1

 Environment Variables . 30

2.2

 File System Navigation and Access . 30

2.3

 System Settings. 31

2.4

 System Execution . 31

2.5

 Process Execution . 31

2.6

 Boolean Logic . 32

2.7

 File Existence . 32

2.8

 Miscellaneous. 32

3

 External Commands . 32

3.1

 Script Interpreter . 33

3.2

 Communication with the Server and other Apps . 33

3.3

 RAM Disk Management . 33

3.4

 System Checks . 33

3.5

 File Decryption and Verification . 33

Be Incorporated — Confidential Information

March 8, 2001

BeIA Miscellany :

page 6

preliminary — content subject to change

 March 8, 2001

BeIA Miscellany : Introduction

page 7

preliminary — content subject to change

Be Incorporated — Confidential Information

BeIA Miscellany

Introduction

The sections in this chapter are:

• “Boot Mode” describes the different modes in which a BeIA device operates. You switch modes
during the product creation cycle to move from development, to testing, to deployment.

• “The Update Mechanism” describes how to update a BeIA device by downloading new software from
a remote update server.

• “Digital Signature Algorithm” tells you how to create digital signatures for validating update packages.

• “The Microshell” describes the commands you can use in the BeIA microshell (

bterm

).

Be Incorporated — Confidential Information

March 8, 2001

BeIA Miscellany : Introduction

page 8

preliminary — content subject to change

 March 8, 2001

BeIA Miscellany : Boot Mode

page 9

preliminary — content subject to change

Be Incorporated — Confidential Information

BeIA Miscellany

Boot Mode

The developer or user environment that a BeIA device boots depends on the device’s

boot mode

. This
document describes the four boot modes, and explains how to switch between them.

1

The Modes

 There are four boot modes:

•

Tools mode

 is used during development and customization.

•

Validate mode

 runs diagnostics on the device. This is the mode you want to be in when you duplicate
your BeIA image.

•

First boot mode

 is used when the user first boots the device.

•

Normal mode

 is the normal operating mode—it’s the mode the user sees on the second and
subsequent boots.

1.1

Tools Mode

While you’re developing your BeIA device, you want to be in

tools mode

. In this mode, the device boots
into the browser, but you can go to the BeIA desktop environment by typing

alt

+

q

. From the desktop
you can examine and modify files, launch a

bterm

 window to download customization files (through

ftp

), and launch the browser (through

TellBrowser

) to test your BeIA configuration.

Tools mode is the default—when you receive a new BeIA image, it’s automatically in tools mode.

When you’re satisfied with your customization—in other words, when you’re ready to copy your BeIA
image onto other device—you run the

Make_Release_Image

 program by clicking the application’s icon
on the desktop:

<<illo>>

Make_Release_Image

 removes the tools mode-only files (such as the

bterm

 program), runs

checksum

 on the rest of the files (for later validation), switches your device to

validate mode

, and then
shuts down your device. At this point, your device’s image is ready to be duplicated.

Note that you can put your device in validate mode (or any other mode) without removing the tools
mode files by running the

bootmode

 program from the command line, as described in “

2

Switching
Between Modes.”

1.2

Validate Mode

When you boot a device that’s in

validate mode

, the BeIA validation test suite is run. The suite comprises
some user-driven diagnostics—“Press a key,” “Click the mouse,” etc.—as well as a

checksum

 test.

Be Incorporated — Confidential Information

March 8, 2001

BeIA Miscellany : Boot Mode

page 10

preliminary — content subject to change

If the device passes the validation tests, it’s automatically put into first boot mode. At this point, the
device is ready to be shipped to an end user.

For more information on factory validation, see "Factory Validation."

1.3 First Boot Mode

When the user boots a device that’s in first boot mode (and it’s assumed that the user’s first boot will be in
this mode), the device launches the browser which immediately displays the HTML page defined in
$RESOURCES/firstboot.html . This first boot page is expected to welcome the user, help him set things
up, and so on. As with all local HTML pages, firstboot.html is fully customizable.

After launching the browser in first boot mode, the device is put into normal mode.

1.4 Normal Mode

Normal mode is what the user normally sees: When the device is booted (or wakes up), the
$RESOURCES/login.html file is evaluated by the browser. See <<customization spec>> for more
information.

2 Switching Between Modes

Normally, you switch between modes by following the natural course of events, as described in the
sections above. However, you can force a device into a particular mode through the bootmode
command line program, or by setting the BOOTMODE variable in the file
/boot/home/config/settings/beia-bootmode .

2.1 The bootmode Program

The bootmode program is typically used to set the device’s boot mode state. The syntax is:

bootmode --set [--altq] tools | validate | firstboot | normal

The altq switch, if present, turns on the alt+q to the desktop feature. If altq is absent, alt+q will not
exit to the desktop.

For example, to put a device in firstboot mode, but retain the alt+q feature, you would open a bterm
window and type...

$ bootmode --set --altq firstboot

bootmode performs other system state maintenance as well: The no_boot_keys switch turns off
access to the boot menu, and disables kernel debugging output:

$ bootmode --no_boot_keys

The configure_recovery switch reads a “factory settings” file:

$ bootmode --configure_recovery file

The factory settings file contains device configuration information that’s described <<elsewhere>>.

If you invoke bootmode with no arguments, it prints, to standard output, the current boot mode.

Note that Make_Release_Image deletes the bootmode program (as well as bterm and other tools
mode files). In other words, after you’ve run Make_Release_Image you’ll no longer be able to switch
between modes in this manner.

March 8, 2001 BeIA Miscellany : Boot Mode page 11
preliminary — content subject to change

Be Incorporated — Confidential Information

2.2 The BOOTMODE Variable

You can also set the mode by setting the BOOTMODE environment variable, stored in
/boot/home/config/settings/beia-bootmode , to one of “tools” , “validate” , “firstboot” , or
“normal” . To turn on or off the alt+q feature, set the ALTQ variable. For example:

BOOTMODE=”tools”
ALTQ=1

This puts the device into tools mode, and turns on alt+q.

3 Implementation

When your BeIA machine boots, it runs the /system/boot/Bootscript script. Within this script is a
command that tells the system to determine the current boot mode by reading the mode from the file:

/boot/home/config/settings/beia-bootmode

(The programs and HTML pages—Make_Release_Image, firstboot.html , etc.—that need to switch
the mode do so by writing to this file.) The boot mode is stored as the $BOOTMODE environment variable.

Next, the bootscript runs the mode-specific script stored in...

/system/boot/Bootscript.$BOOTMODE

There are four mode-specific script files, Bootscript.tools , Bootscript.validate ,
Bootscript.firstboot , and Bootscript.normal .

You can edit these scripts, although you should understand that you may subvert the expected sequence
of modes if you do so.

Be Incorporated — Confidential Information

March 8, 2001 BeIA Miscellany : Boot Mode page 12
preliminary — content subject to change

 March 8, 2001 BeIA Miscellany : The Update Mechanism page 13
preliminary — content subject to change

Be Incorporated — Confidential Information

BeIA Miscellany

The Update Mechanism

Note: The update mechanism described here is made obsolete by the new BeIA MAP
technology.

One of the features of a BeIA device is that its software can be easily upgraded. An upgrade can be as small
as a single GIF or HTML file, or it can comprise major system components, such as servers or the browser.
Since the device is always (or periodically) connected to the internet, the new software can be downloaded
from a remote “update server” on the Web; the device itself then takes over and installs the new software
automatically, often without the user being aware that an update has been installed.

This document describes the process by which the software and data on a user’s BeIA device is upgraded
from a remote server, explains what a vendor must do to take part in the system, and describes how a
vendor can modify the system.

1 Update Terms

• The term “client” means the user’s BeIA device that’s being updated.

• An “update package” is a compressed file that contains new data that’s applied to the client.

• The “update server” (or, simply, “server”) is the remote computer that provides update packages to
the client.

• A “major update” refers to the installation (on the client) of an update package that’s greater than 1
megabyte or that touches critical system components that mustn’t be upgraded while the device is
being used. During a major update, the client machine is effectively unusable—the browser is killed,
and the machine reboots when the update has finished. The user is told when a major update is
about to happen, and is allowed to defer the update. A major update is also called an “upgrade”.

• A “minor update” refers to the installation of an update package that’s less than 1 megabyte and that
only replaces “safe” files (HTML, GIF, etc.). Minor updates happen without affecting the browser and
don’t require that the client device be rebooted. The user should never be aware that a minor update
is going on.

2 Update Players and Rules

The components of the update mechanism, and some of the rules that they play by, are described in the
following sections.

Be Incorporated — Confidential Information

March 8, 2001 BeIA Miscellany : The Update Mechanism page 14
preliminary — content subject to change

2.1 The Update Server

The update server is a remote machine, provided by the device’s ISP, that maintains and serves update
packages. The URL of the update server is identified in the client’s /etc/update/update_url file. Every
client device must be apprised of its update server’s URL before it’s delivered to the user.

Note: Although it’s possible for the vendor to change the update server’s URL, “legacy”
URLs will need to be supported until all client devices have been updated to
use the new URL.

The update server is expected to provide or maintain:

• A database of update packages, indexed by language, local, and client hardware, as appropriate for
the array of client devices it supports.

• An “version control script” that identifies the latest update package, and that provides the logic for
bringing any client up-to-date. This may mean downloading a single update, a series of small
updates, a single upgrade, an upgrade followed by a series of updates—it all depends on how old the
client’s files are. A functional version control script is provided as part of BeIA.

• Zip and digitally sign all packages that it makes available for downloading (see “2.3 Update
Packages (Verification, Encryption, and Security)”).

The server isn’t expected to:

• Keep track of which version of the software a specific client device is running. The client knows its
own version, and compares itself to the server when it runs the version control script.

• Push data onto a client. The update server never sends data to the client without being asked.

• Provide an HTML interface. The user never needs to—and probably shouldn’t be allowed to—initiate
an update, so the server doesn’t need to present an interface to the database of update packages.

2.2 The Update Daemon

Running on every BeIA client device is an “update daemon”. The daemon contacts the update server
every four hours to check for, download, and install a new update package (or series of packages). If
the previous check resulted in an error (because the server is down, or a package couldn’t be verified, or
some other problem), the daemon runs every 15 minutes until the error is resolved.

Note that the daemon won’t connect to the update server unless the device already has a network
connection in place. For example, the daemon doesn’t wake up a sleeping device to check for a new
update.

There’s no user interface associated with the update check; it happens automatically in the background.

2.3 Update Packages (Verification, Encryption, and Security)

All update packages provided by the update server must be zipped and then digitally signed. On the
client side, any package that’s downloaded from the server is verified before it’s unzipped; invalid
packages are thrown away.

BeIA clients use the Digital Signal Algorithm (DSA) program dsasig to perform the digital signature
verification. The public DSA key that the client uses to authenticate a package must be installed on the
client device before it’s delivered to the user. dsasig is described in the “Digital Signature Algorithm”
document in the BeIA Miscellany chapter.

Note: Although dsasig will prevent Web pirates from altering your packages, it isn’t
a secure encryption scheme—it won’t prevent them from stealing and reading
your packages. Data encryption for security purposes is up to the vendor—BeIA
doesn’t supply a secure encryption scheme.

March 8, 2001 BeIA Miscellany : The Update Mechanism page 15
preliminary — content subject to change

Be Incorporated — Confidential Information

2.4 The Update Scripts

Most of the update mechanism is driven through a series of Microshell scripts that are executed on the
client. For example, the update daemon contacts the update server by executing the “update script”; the
server must provide a “version control script” that’s downloaded to and executed by the client; to
download and install update packages, the client executes the “do update” and “do upgrade” scripts.

The scripts provided by BeIA live in the /etc/update directory; they’re examined in a later section
“(5 Scripts”)

The BeIA scripts can be used as is, or they can be modified or replaced by the BeIA vendor.

3 Update Session Outline

An outline of the update mechanism looks like this:

1. 1.Initiating an Update Session. The update daemon wakes up and (if an internet connection is
already in place) executes the updt script.

2. 2.Contacting the Server. updt sends a message to the update server that describes the client’s
machine (language, locale, and product type—but not the client’s revision number).

3. 3.Receiving a Response. The update server sends back an updatescript file that’s been fined-
tuned for the client’s machine.

4. 4.Executing updatescript. updt executes updatescript, which determines if the client machine is
up-to-date: If it is, no action is taken (wait four hours and go to step 1); if it isn’t, updatescript
downloads a new update package.

5. 5.Updating and After. If this is a minor update, the update package is installed without alerting (or
otherwise interrupting) the user. If it’s a major update, an alert lets the user proceed with or defer
installation, after which the device rebooted.

 The following sections go into greater detail about the process.

3.1 Initiating an Update Session

Whenever a BeIA client device connects to the network—because it was just turned on, or was just
awakened, or because the network went down but is back up—the device’s update daemon
(/system/servers/updated) initiates a new “update session” by executing the updt script
(/etc/update/updt).

Note: Since it’s called by the update daemon, the /etc/update/updt script must exist.
However, the contents of the script are completely configurable. The rest of
the update mechanism is “driven” from updt—if you replace updt, you’ve
effectively replaced the entire update mechanism.

3.2 Contacting the Server

updt sends a message to the update server (i.e. to the UPDATE_URL URL) by executing the doupdate
script. (This script, described in detail later, is used to download small update packages.)

Be Incorporated — Confidential Information

March 8, 2001 BeIA Miscellany : The Update Mechanism page 16
preliminary — content subject to change

3.3 Receiving a Response

The update server looks at the arguments to the message sent by the client to determine the most recent
update package that applies to the client’s configuration. It then provides a version of the updatescript
file that identifies the candidate package; the updatescript file is downloaded to the client as part of the
doupdate script that the client is executing.

Note that the update server doesn’t care (or even know) whether the update package that it chooses is
already running on the client.

3.4 Executing updatescript

The first thing the client does after downloading updatescript is to verify its authenticity through the
digital signature program dsasig (see “Digital Signature Algorithm” in the BeIA Miscellany chapter). This
verification is part of the doupdate script.

The client then executes updatescript (again, through a line in doupdate) which is expected to contain
the logic for determining the steps that are necessary to bring the client’s machine up-to-date. If the
client is up-to-date, then no further steps are taken and the update process will begin again in four hours
when the update daemon wakes up and executes updt. If the client needs to be updated,
updatescript executes doupdate (for minor updates) or doupgrade (for major updates).

Note that updatescript can also furnish its own download-and-install instructions, rather than
depending on doupdate/doupgrade.

3.5 Updating and After

Minor updates (a la doupdate) are performed without notifying the user. After a minor update is
successfully installed, the update daemon waits four hours and again executes updt. However, if a
minor update installation fails, the daemon will try the installation again after fifteen minutes, and
continue trying until the installation is successful.

In a major update (a la doupgrade), an alert is presented that gives the user a chance to defer the
installation. If the user chooses to defer, the daemon tries again after fifteen minutes (i.e. the alert is
presented every fifteen minutes until the user acquiesces). If the installation is successful, device will
automatically reboot; when it comes back up and connects to the network, the daemon will execute
updt and restart its four hour (or fifteen minute) cycle. If the installation of a major update fails, the
recovery system takes over.

Warning: After a major system upgrade the client device may be in an inconsistent state. Because of this,
you should call reboot as soon as possible after the upgrade. If you need to perform some clean up before
rebooting, you should only call Microshell-internal commands; other (binary) commands may crash the
system. See “The Microshell” in the BeIA Miscellany chapter for a list of the Microshell-internal commands.

4 Update Environment Variables

The client device defines a set of environment variables that identify the update server and describe some
client parameters. The variables are maintained as text in various files on the client, or are defined by the
update daemon.

Variables are defined one-per-line in this format:

variable=value

If the value is a string, it should be quoted. Numeric values needn’t be; for example:

March 8, 2001 BeIA Miscellany : The Update Mechanism page 17
preliminary — content subject to change

Be Incorporated — Confidential Information

UPDATE_URL=”http:/www.myISP.com/updates/”
REVISION=23

To read a file’s variables (from the Microshell or from a script) you source the file:

source /boot/home/config/beia-redirect

Environment variables are referred to with the $ operator. For example:

echo $REVISION

The variables are listed by in the sections below.

Note: Some files use the setenv expression (“setenv variable value”) to set their
variables’ values. The setenv expression is equivalent to the “variable=value”
formula shown above.

4.1 Defined in /etc/update/revision

/etc/update/revision contains a single variable:

• REVISION. A value (typically numeric) that describes the lastest major update that was downloaded
to the client device. The value of this variable is reset whenever a new major update is installed.

4.2 Defined in /etc/update/update_url

/etc/update/update_url contains a single variable:

• UPDATE_URL. The URL of the update server for this client.

4.3 Defined in /etc/update/updt_ident

/etc/update/updt_ident contains a single variable:

• updt_ident . A value (typically numeric) that describes the lastest minor update that was
downloaded to the client device. The value of this variable is reset whenever a new minor update is
installed.

4.4 Defined by the Update Daemon

The update daemon sets these variables:

• RELOAD. This is a boolean variable that’s used to determine whether a new update script needs to be
downloaded from the server, as explained in “5.1 updt.”

• SCRIPT_URL. The address of a script you want to download and execute via the doscript script. The
value of SCRIPT_URL is set through a message to the update daemon. See “5.5 doscript” for more
information.

5 Scripts

The update scripts are located in /etc/update/ . They are:

• updt: Responsible for downloading and executing the latest updatescript.

• updatescript: Downloadable script responsible for version control logic.

• doupdate: Non-interactive script used for minor updates.

Be Incorporated — Confidential Information

March 8, 2001 BeIA Miscellany : The Update Mechanism page 18
preliminary — content subject to change

• doupgrade: Interactive script used for major updates.

• doscript: Convenient, non-interactive script that can download and execute arbitrary, unzipped
scripts.

The scripts are described in the following sections. Since the scripts are text files, you can easily modify
or replace them. As explained earlier, only /etc/update/updt is hard-coded as a pathname (because it’s
called from the update daemon). All other script are invoked, directly or indirectly, from updt.

All scripts return 0 on success and non-0 on failure.

5.1 updt

Declared in: /etc/update/updt

updt sets up the update environment, (possibly) downloads a new updatescript file from the update
server, and then executes the script. updt is invoked by the update daemon—you shouldn’t invoke it
directly from your own scripts.

5.1.1 Variables

updt expects the following environment variable to be set:

• RELOAD: This is set by the update daemon to be true if this is a normal four hour update check, and
false if this is a fifteen minute check (see “3.5 Updating and After” for more information on the four
hour vs. fifteen minute check). RELOAD is used to by updt to determine whether a new updatescript
file should be downloaded (true) or if the existing updatescript should be used (false).

5.1.2 How it Works

1. 1. source the environment variables in /boot/home/config/settings/beia-redirect .

2. 2.Check to see if the system is awake (the nut command), continuing only if it is, and returning 0
otherwise.

3. 3. If RELOAD is true , set the update variables (UPDATE_...) that are used by doupdate, and then
invoke that script. This downloads the updatescript file from the update server and places it in
/etc/update/ . If RELOAD is false , this step is skipped.

4. 4.Check for the existence of /etc/update/updatescript , and then execute it (if it exists). The
value returned by updatescript is returned by updt. If updatescript doesn’t exist, updt returns
0.

5.2 updatescript

Declared in: /etc/update/updatescript

updatescript contains the logic that determines whether the client device needs to be upgraded, and, if
it does, what upgrade path it should take (major update, minor update, major update followed by one or
more minor updates, etc.). The client downloads updatescript from the update server during an update
session, as described in “5.1 updt.” The default version—which is provided for example purposes
only—is described here.

March 8, 2001 BeIA Miscellany : The Update Mechanism page 19
preliminary — content subject to change

Be Incorporated — Confidential Information

5.2.1 Variables

updatescript expects the following variables to be set:

• REVISION: Defined in /etc/update/revision , this is a numeric value of the latest major update that
was installed on the client device.

• UPDT_IDENT: Defined in /etc/update/updt_ident , this is a numeric value of the latest minor update
that was installed on the client device.

updatescript is expected to set these variables to values it brings from the server:

• CUR_REVISION: The value of the latest major update available (for this device) on the server.

• CUR_IDENT: The value of the latest minor update available (for this device) on the server.

As it’s running, updatescript defines these variable:

• NEXT_REVISION: The value of the major update that’s being installed right now. This is only
significant if the upgrade path passes through multiple major upgrades.

• UPDT_STATUS: Update installation error code.

5.2.2 How it Works

1. 1. Set the CUR_REVISION and CUR_IDENT numbers.

2. 2.Retrieve the value of REVISION by source ’ing /etc/update/revision . If the file doesn’t exist, set
REVISION to 0.

3. 3.Retrieve the value of UPDT_IDENT by source ’ing /etc/update/updt_ident . If the file doesn’t
exist, set UPDT_IDENT to 0.

4. 4. Set UPDT_STATUS to 0.

5. 5.Major update: Compare REVISION to CUR_REVISION; if they match, we don’t need to do a major
update—skip to step 6. If they don’t match, set the proper variables and call doupgrade. If
doupgrade is successful, update the /etc/update/revision file, spawn a process that will reboot
the device, and then exit with 0. If doupgrade fails, exit with non-0.

6. 6.Minor update: Compare UPDT_IDENT to CUR_IDENT; if they match, we don’t need to do a minor
update—exit with 0. If they don’t match, set the proper variables and call doupdate. If doupdate
is successful, update the /etc/update/updt_ident file, spawn a process that will reboot the device,
and then exit with 0. If doupdate fails, exit with non-0.

7. Note that updatescript never performs a major update and a minor update.

5.3 doupdate

Declared in: /etc/update/doupdate

doupdate is used to download, verify, and unzip small (less than 1 MB) update packages. It operates
without interrupting the user—no alert panel is presented by the script.

5.3.1 Variables

doupdate expects the following variables to be set:

Be Incorporated — Confidential Information

March 8, 2001 BeIA Miscellany : The Update Mechanism page 20
preliminary — content subject to change

• UPDATE_PACKAGE: A string identifier that names the resource that you want to download from the
update server. The name must be meaningful to the server.

• UPDATE_TEMP: The pathname of the file on the client device that you want the update package to be
copied to. UPDATE_TEMP should be an absolute pathname; the file is automatically deleted after the
package is installed.

• UPDATE_TARGET: The directory on the client device into which the update package will be installed.

• UPDATE_KEY: The path to the public key used to verify the package. UPDATE_KEY can be a relative or
absolute pathname; relative names are appended to /etc/update/keys/ .

doupdate also uses the variables defined in /boot/home/config/settings/beia-redirect (see
“Update Environment Variables”).

5.3.2 How it Works

1. 1. Send a wget command to the update server (UPDATE_URL) requesting that UPDATE_PACKAGE be
downloaded to the client (as UPDATE_TEMP).

2. 2.Verify the package by running dsasig on the downloaded file using UPDATE_KEY as the public key.

3. 3. If the verification fails, UPDATE_TEMP is deleted and doupdate returns non-0. If it succeeds,
UPDATE_TEMP is unzip’d into UPDATE_TARGET.

4. 4. If unzip fails, UPDATE_TEMP is deleted and doupdate returns non-0. If it succeeds, the
UPDATE_TEMP file is deleted and doupdate returns 0.

5.4 doupgrade

Declared in: /etc/update/doupgrade

doupgrade performs a major update. Because of the disruption to the user that it causes, upgrades
should only be performed when large or delicate parts of the system are being replaced. When
executed, doupgrade displays an “Upgrade?” alert that lets the user Upgrade Now or Defer . If the user
defers, the “Upgrade?” alert is presented again every 15 minutes; when the user finally consents,
doupgrade shuts down the browser and presents an alert that shows the running status of the upgrade
(and that warns the user not to interrupt the process).

If the upgrade completes successfully, the devices reboots itself. If it fails, the browser is restarted.

5.4.1 Variables

doupgrade expects these variables to be set:

• UPDATE_PACKAGE, UPDATE_TARGET, UPDATE_KEY: See the doupdate variables (“5.3.1 Variables”).

• UPDATE_SIZE: The size of the update package file, in megabytes.

Note that doupgrade doesn’t use the UPDATE_TEMP variable.

doupgrade also uses the variables defined in /boot/home/config/settings/beia-redirect (see
“Update Environment Variables”).

March 8, 2001 BeIA Miscellany : The Update Mechanism page 21
preliminary — content subject to change

Be Incorporated — Confidential Information

5.4.2 How it Works

1. 1. Send a message to TellBrowser that causes the upgrade alert to be displayed, and capture the
user’s response (Install now or Defer). (The upgrade alert is describe in the next major section.)

2. 2. If the user wants to defer, exit with non-0. This will put the update daemon into fifteen minute
mode, and the upgrade alert will reappear after fifteen minutes. If the user wants to proceed with
the update...

3. 3. ...shut down the browser, and send a message to TellBrowser telling it to display the upgrade
status alert.

4. 4.Download the update package (UPDATE_PACKAGE) into a specially-built RAM disk, verify it with
dsasig, and unzip it into the target directory (UDPATE_TARGET).

5. 5. If the package is successfully installed, tell the user by putting up a new alert, then sync the file
system and reboot the device. If the installation is unsuccessful, tell the user, tear down the RAM
disk, and return non-0.

5.5 doscript

Declared in: /etc/update/doscript

doscript is used to download, verify, and execute an abitrary, non-zipped script. doscript isn’t an
automated part of the update system so you don’t have to use it for anything. And if you do want to use
it, you have to explicitly tell the update daemon to run it (by sending a message, as explained below).
Of course, you could just execute doscript yourself; the advantage of having the update daemon run it
is that the execution will be synchronous with the rest of the update mechanism. In other words, by
telling the update daemon to execute doscript, you are guaranteed that the script won’t be executed
while an update is going on.

Typically, doscript is tied to a UI object that the user can press—push the button and doscript is
executed.

doscript always copies the downloaded file to /etc/update/script .

Note: Keep in mind that the file that doscript downloads must not be zipped.

5.5.1 Invocation

To invoke doscript, you use the global beos JavaScript object to send a “command request” message to
the update server:

beos.sendMessageSync(“application/x–vnd.be–UPDT” ,“ScRq”,
“command”, “string”, “doscript”,
“SCRIPT_URL”, “string”, serverScriptURL);

The parts of the message are:

• "application/x–vnd.be–UPDT" is the update daemon’s signature.

• "ScRq" is understood (by the update daemon) to indicate that this is a “command request” message.

• The "command" /"string" /"doscript" triplet identifies (by string name) the command you want to
execute (i.e. doscript).

• The triplet on the final line sets the SCRIPT_URL environment variable to the serverScriptURL that you
supply.

Be Incorporated — Confidential Information

March 8, 2001 BeIA Miscellany : The Update Mechanism page 22
preliminary — content subject to change

You can retrieve the script’s return code by looking at beos.reply when the function returns.

For more information on the beos JavaScript object, see “JavaScript” in the BeIA Development chapter.

5.5.2 Variables

doscript expects this environment variable to be set:

• SCRIPT_URL: Address of the script you want to download.

5.5.3 How it Works

1. 1. source the environment variables in /boot/home/config/settings/beia-redirect (just in
case).

2. 2.Remove the existing /etc/update/script file.

3. 3.Download SCRIPT_URL from the server and copy it to /etc/update/script .

4. 4.Verify /etc/update/script , set its execution bits (chmod 755), and execute the script.

5. 5. If the script can’t be verified, remove it and return non-0; otherwise, return 0.

6 Upgrade Alert Files

The template files used for the upgrade alerts are:

• custom/resources/$LANGUAGE/Alerts/alert2.html is the html template for the upgrade alert.

• custom/resources/$LANGUAGE/Alerts/upgradeinfo.html is the html template for the upgrade
status alert.

• custom/resources/$LANGUAGE/Alerts/doupgrade.txt contains the strings that the alerts display.

7 Check List

Before a BeIA client device is shipped the following needs to be done:

• A machine should be configured to act as a server. The sever must be able to provide the appropriate
updatescript file based on the arguments described in “3.2 Contacting the Server.”

• Update packages (and updatescript files) on the server need to be zip’d and digitally signed.

• The client device’s /etc/update/update_url file needs to identify the URL of the server.

• The client device needs to be configured with the correct server parameters.

• A new set of DSA keys must be created.

• The alert panels and strings should be modified or localized.

• The sample updatescript should be modified to suit your update needs.

March 8, 2001 BeIA Miscellany : The Update Mechanism page 23
preliminary — content subject to change

Be Incorporated — Confidential Information

8 Configurability

The most important ingredients in the BeIA update mechanism are the update scripts. These scripts
control the communication with the update server, and provide the logic and rules for determining how
The script are written in the Microshell scripting language (see “The Microshell” in the BeIA Miscellany
chapter) and are completely configurable by the vendor.

The vendor can also configure the alert panel and text that’s used to warn the user of an impending
upgrade.

The process that drives the update mechanism—the BeIA update daemon
(/system/servers/updated)—is not configurable. The update daemon’s primary responsibility is to
execute, every four hours, the script that contacts the update server. As mentioned above, you can’t
(currently) change the four hour timing. Also, the fact that the daemon doesn’t automatically create a
connection to the network if a connection isn’t already in place can’t be changed.

Be Incorporated — Confidential Information

March 8, 2001 BeIA Miscellany : The Update Mechanism page 24
preliminary — content subject to change

 March 8, 2001 BeIA Miscellany : Digital Signature Algorithm page 25
preliminary — content subject to change

Be Incorporated — Confidential Information

BeIA Miscellany

Digital Signature Algorithm

A digital signature is a verification code that’s used to ensure that a document comes, untampered, from a
known source. The BeIA updater mechanism expects digital signatures to be added to all packages that are
sent from the update server to a client device. It uses the Digital Signature Algorithm (DSA) as its signature
method.

1 How the Digital Signature Algorithm Works

The Digital Signature Algorithm uses a pair of cryptographic keys (a “private” key and a “public” key), a
hash function:

• The keys, which are generated by the document’s sender, are related in that a document encrypted
with the private key can only be decrypted with the public key. The document sender “hides” the
private key but makes the public key known to the document’s recipient (and to anyone else—the
whole point of DSA is that publicizing the public key doesn’t violate the integrity of the system).

• It doesn’t matter what hash function is used as long as the sender and recipient use the same function.

Before sending a document, the sender creates a “message digest” by running the document through the
hash function. The sender then creates a digital signature by encrypting the message digest with the
private key. Both the document and the digital signature (i.e. the private key-encrypted message digest)
are sent to the recipient.

When it receives a digitally-signed document, the recipient runs the document through the hash function
to create his own message digest, and decrypts the digital signature using the public key to recreate the
sender’s message digest. Then it’s simply a matter of comparing the two digests—if they’re identical, the
document is authentic and hasn’t been tampered with.

2 DSA on BeIA (dsasig)

On BeIA, digital signatures are used to check the authenticity and integrity of all documents (scripts and
update packages) that are sent from the update server to the client device. Update requests sent from the
client to the server don’t need to be signed since these requests don’t—or shouldn’t—contain executable
data or private information.

The default DSA implementation on BeIA centers around the dsasig command line program. The server
uses dsasig to generate new DSA parameters and keys, and to encrypt outgoing documents. The client
uses dsasig to verify incoming documents. These operations are invoked by dsasig’s first argument:

• mkparams: generate a new set of DSA parameters (used by the other operations).

• mkkey: generate a pair of keys.

• sign : generate a signature and append it to an out-going document.

Be Incorporated — Confidential Information

March 8, 2001 BeIA Miscellany : Digital Signature Algorithm page 26
preliminary — content subject to change

• verify : strip the signature from an in-coming document and test it for authenticity.

One other dsasig operation—the 160-bit hash routine invoked by sha1 —can be used by the client or the
server wherever a hash value is of use. sha1 is invoked during sign so it isn’t needed (directly) as part
of the digital signature mechanism.

2.1 Generating DSA Parameters

dsasig mkparams keyLength outputFile

Generates a new set of DSA parameters of the specified key length (1024 is recommended) and writes
the parameters to outputFile. The client and server must have identical copies of the DSA parameters file.

Creating a new set of parameters takes a significant amount of time.

2.2 Generating Keys

dsasig mkkey paramsFile keyFile

Generates a new private/public key pair. paramsFile defines the length of the keys (use
dsasig mkparams to generate this file).

The private and public keys are written to keyFile.priv and keyFile.pub , respectively (keyFile can be a
full path name). Access to the private key file should be protected; the public key file can be made
public without risk of compromising the private key. The two key files must be kept in the same
directory.

When dsasig mkkey is run, the user is prompted for a password that’s used to encrypt the private key.
This same password must be used during dsasig sign when the key is used to create a digital signature.

2.3 Signing a Document

dsasig sign paramsFile keyFile documentFile

Creates a digital signature based on paramsFile and keyFile (which must point to the same files as in
dsasig mkkey) and appends it to documentFile. During this process, the user is prompted for the private
key password that was defined in dsasig mkkey .

If the generated signature is invalid (because the wrong private key password was used, for example) the
program exits with an error (non-zero). If the program is successful, documentFile is ready to be sent.

2.4 Verifying a Document

dsasig verify paramsFile keyFile documentFile

Verifies the authenticity of the in-coming documentFile using the parameters in paramsFile and the
public key in keyFile.pub . If the document is judged to be inauthentic, the program exits with an error
(non-zero). If the document is authentic, documentFile will be left in a state that’s ready to be read.

2.5 Creating a Hash Value

dsasig sha1 documentFile

Calculates and prints (to standard output) a 160-bit SHA1 value for documentFile. You never need to
invoke this operation directly when you’re creating a digital signature; it’s invoked for you as part of the
signing operation (dsasig sign). However, you can use this operation wherever a 160-bit hash value is
of use (such as in generating a value for the CUR_IDENT variable).

March 8, 2001 BeIA Miscellany : Digital Signature Algorithm page 27
preliminary — content subject to change

Be Incorporated — Confidential Information

3 Division of Labor

When you’re setting up your update server and creating new clients, the process should work like this:

• dsasig mkparams is run on the server. The parameter file that’s generated is then copied to all client
machines.

• dsasig mkkey is run on the server. The key.priv file is kept on the server (only!) and key.pub is
copied to all client machines.

• When the server wants to send a document to the client, it runs dsasig sign on the document. Note
that the same parameters and keys can be used to sign any number of documents.

• When the client receives a document from the server, it runs dsasig verify —and throws the
document away if the function doesn’t return 0.

If the private key is compromised—if the server suspects that someone has broken the private key and is
sending bogus update packages—the server will have to regenerate a new key pair, and send the new
public key to its clients. Of course, the clients will have to use the old key to in order to get the new
one; coordinating all of this is the server’s responsibility. It’s anticipated that if a server wants to update
the public key, it will have to be moved to a new URL, and the old URL maintained until all clients have
been updated—which may be difficult to determine.

4 Default DSA Files

BeIA includes a set of default DSA parameters and keys. A server can use these defaults when it’s being
tested and debugged. Under no circumstances should a server use the defaults as part of the final,
shipping product.

The following files are needed by the updater for signatures to work:

• DSA Parameters (/etc/update/keys/params): DSA parameters used by all keys

• Public Key (/etc/update/keys/master.pub): This key is used to verify all update scripts and
packages.

• Private Key (/etc/update/keys/master.priv on the server only): This key is used to sign
documents.

The password for the sample private key is “B80ACE4C3F8F0D”.

Be Incorporated — Confidential Information

March 8, 2001 BeIA Miscellany : Digital Signature Algorithm page 28
preliminary — content subject to change

 March 8, 2001 BeIA Miscellany : The Microshell page 29
preliminary — content subject to change

Be Incorporated — Confidential Information

BeIA Miscellany

The Microshell

The Microshell is a lightweight shell that’s used to interpret commands and execute scripts. It’s similar to,
although less powerful than, other UNIX-type command shells such as sh, csh, and bash. Microshell
scripts are used extensively by the BeIA update mechanism.

This document provides the basic rules of Microshell syntax and grammar, and lists the shell’s built-in
commands.

1 Script Syntax and Grammar

• Microshell scripts must start with the line #!/bin/sh .

• Each line is an entire, separate expression (or part of an if expression, as explained later).

• A line can contain up to 4096 characters.

• Lines starting with ‘#’ are comments.

• Leading whitespace is ignored (indentation isn’t significant).

• Environment variables are referenced as $VAR ($PATH, $SCRIPT_URL, etc.)

• Arguments are referenced as $N ($1 , $2 , $3 , and so on).

• $? holds the return value from the previously invoked command.

• \n , \t , \r are newline, tab, and carriage return characters, respectively.

• Use backslash to “uninterpret” a character (e.g. ‘\$’ or ‘\\’). protect an entire word by putting it in
double quotes.

• You can create branching logical expressions through if /else /fi and while /wend blocks. Each
statement must be on its own line:

if expression
expression

else
expression

fi
while expression

expression
wend

• if and while blocks can be nested to a depth of 128.

• When evaluating the commands in an expression, Microshell first looks through its list of built-in
command (below), then it looks in the search path ($PATH). If you want to refer to a specific
command file, use the pathname to the command.

Be Incorporated — Confidential Information

March 8, 2001 BeIA Miscellany : The Microshell page 30
preliminary — content subject to change

2 Built-in Commands

The following commands are built into the Microshell. These commands are safe to use after a major
update.

2.1 Environment Variables

env

Print all the environment variables to standard output.

read var
Set the environment variable var to the value on the next line read from standard input.

setenv var value
Set the environment variable var to value

2.2 File System Navigation and Access

All pathname arguments can be relative or absolute paths. Relative paths are appended to the current
working directory.

cat path
Print the contents of the file path to standard out.

cd path
Change the current working directory to path.

chmod mode path
Change the access mode for path.

filecat path string
Writes string to the end of the file given by path. If string contains whitespace, it must be quoted; \n
adds a newline and \t adds a tab. For example:

filecat myFile “Column A\tColumn B\nValue one\tValue two\n”

ln -s pathTo [pathFrom]
Creates a symbolic link (pathFrom) to pathTo. If pathFrom isn’t supplied, the link is placed in the
current working directory and given the same leaf name as pathTo.

ls [-l] [path]
List the names of the files in path. If no path, the current working directory is used. -l creates a
detailed listing.

mkdir path
Create a new directory at path.

mountcfs directoryPath device
Mount device as a compressed file system, and point directoryPath at it. The directory is created if it
doesn’t already exist.

mv sourcePath destPath
Move the sourcePath file or directory to destPath.

pwd

Print the current working directory.

rm path1 [path2 path3 ...]
Remove the file(s) identified by path[N].

March 8, 2001 BeIA Miscellany : The Microshell page 31
preliminary — content subject to change

Be Incorporated — Confidential Information

rmdir path
Remove the directory identified by path.

2.3 System Settings

getdialupsettings path
Read the user name, user password, and dial-up phone number from path, and stuff them into the
environment variables R_USER, R_PASSWD, and R_PHONE, respectively.

put_bios_date var
Set var to hold the BIOS release date string.

put_bios_vendor var
Set var to hold the BIOS vendor string.

put_bios_version var
Set var to hold the BIOS version string.

putserialnumber var
Set var to hold the system serial number.

2.4 System Execution

addfirstpartition
Mount the primary partition if it isn’t already mounted. Returns 0 on success and non-0 on failure.

reboot

Kill all processes and restart the device. (You may want to call sync before rebooting—it isn’t called
for you.)

rescan [component]
Republish the list of drivers for the named component. If component is excluded, all drivers are
republished.

sync

Synchronize the file system by writing all pending file changes to the storage device. When this
command returns, the file system has been synced.

2.5 Process Execution

exit [value]
Exit this shell (or script) and return value.

kill signal pid|name
Send a signal to the thread designated by process id or by name.

run path
Execute the file identified by path. The file can be an executable binary file, or a Microshell script.
The file is executed in its own context; in this sense, run is similar to sh -c (see “3.1 Script
Interpreter” for details).

sleep seconds
Pause this process for a number of seconds.

source path
Execute the script identified by path.

spawn path
 Execute the file identified by path as a background process.

Be Incorporated — Confidential Information

March 8, 2001 BeIA Miscellany : The Microshell page 32
preliminary — content subject to change

waitfor name
Pause until the named thread appears.

2.6 Boolean Logic

empty var
Return true if strlen(var) is 0.

eq var value
Return true if var is equivalent to value (both values taken as strings).

false
Return non-0.

isneg var
Returns true if var is less than 0.

neq var value
Return true if var is not equivalent to value.

not expr
Invert the boolean value of expr.

true
Return 0.

2.7 File Existence

exists path
true if path exists.

isfile path
true if path is a plain file.

isdir path
true if path is a directory.

2.8 Miscellaneous

echo args
Echo args to standard output.

help

print this list

3 External Commands

Listed below are the programs that you can run from a shell or script, but that aren’t built into Microshell
itself. You mustn’t use these programs after a major update; you have to reboot the device first.

Unless otherwise noted, all of the external commands are located in /bin .

March 8, 2001 BeIA Miscellany : The Microshell page 33
preliminary — content subject to change

Be Incorporated — Confidential Information

3.1 Script Interpreter

sh [-c] scriptFile
Execute scriptFile as a Microshell script. Note that the file, when executed with sh , needn’t start with
the ‘#!/bin/sh ’ line

-c means to setup a separate context for the execution. This means that:

• In a separate context, environment variables that are set within scriptFile will not affect the same
variables in the caller.

• If scriptFile uses exit to terminate, the -c switch prevents the exit from terminating the caller.

When you’re executing a script from within another script, you almost certainly want to use the -c
switch.

If you want the envronment variables in scriptFile to affect the caller, you should source the file rather
than execute it with sh .

If you need to execute a script after a major update, use the built-in run command.

3.2 Communication with the Server and other Apps

• wget : Used to retrieve files via HTTP or FTP over the Internet.

• sndcmd : Sends messages to others apps and waits for reply.

3.3 RAM Disk Management

• setvolumesize : Allocates and frees memory needed by the RAM disk.

• mkcfs : Initializes the RAM disk to contain the BeIA compressed file system.

• /dev/disk/virtual/ram/0 : The RAM disk device driver.

• mount and unmount: Mount and unmout the RAM disk.

3.4 System Checks

nut mode [args]
Check some aspect of the system, as determined by mode:

• check . Return true if the system is awake, and false otherwise.

• toggle . Wake the system if it’s asleep (return false) ; put it to sleep if it’s awake (return true).

• sleep device. Put device to sleep.

• wakeup device. Wake device up.

• ioctl code value device. Invoke the ioctl code, with the integer argument value, on device.

• port command portname. Invoke command on the port given by portname.

3.5 File Decryption and Verification

• unzip : File integrity check and decompression.

• dsasig : DSA digital signature app.

Be Incorporated — Confidential Information

March 8, 2001 BeIA Miscellany : The Microshell page 34
preliminary — content subject to change

	Introduction
	Boot Mode
	1��� The Modes
	1.1��� Tools Mode
	1.2��� Validate Mode
	1.3��� First Boot Mode
	1.4��� Normal Mode

	2��� Switching Between Modes
	2.1��� The bootmode Program
	2.2��� The BOOTMODE Variable

	3��� Implementation

	The Update Mechanism
	1��� Update Terms
	2��� Update Players and Rules
	2.1��� The Update Server
	2.2��� The Update Daemon
	2.3��� Update Packages (Verification, Encryption, and Security)
	2.4��� The Update Scripts

	3��� Update Session Outline
	3.1��� Initiating an Update Session
	3.2��� Contacting the Server
	3.3��� Receiving a Response
	3.4��� Executing updatescript
	3.5��� Updating and After

	4��� Update Environment Variables
	4.1��� Defined in /etc/update/revision
	4.2��� Defined in /etc/update/update_url
	4.3��� Defined in /etc/update/updt_ident
	4.4��� Defined by the Update Daemon

	5��� Scripts
	5.1��� updt
	5.1.1��� Variables
	5.1.2��� How it Works

	5.2��� updatescript
	5.2.1��� Variables
	5.2.2��� How it Works

	5.3��� doupdate
	5.3.1��� Variables
	5.3.2��� How it Works

	5.4��� doupgrade
	5.4.1��� Variables
	5.4.2��� How it Works

	5.5��� doscript
	5.5.1��� Invocation
	5.5.2��� Variables
	5.5.3��� How it Works

	6��� Upgrade Alert Files
	7��� Check List
	8��� Configurability

	Digital Signature Algorithm
	1��� How the Digital Signature Algorithm Works
	2��� DSA on BeIA (dsasig)
	2.1��� Generating DSA Parameters
	2.2��� Generating Keys
	2.3��� Signing a Document
	2.4��� Verifying a Document
	2.5��� Creating a Hash Value

	3��� Division of Labor
	4��� Default DSA Files

	The Microshell
	1��� Script Syntax and Grammar
	2��� Built-in Commands
	2.1��� Environment Variables
	2.2��� File System Navigation and Access
	2.3��� System Settings
	2.4��� System Execution
	2.5��� Process Execution
	2.6��� Boolean Logic
	2.7��� File Existence
	2.8��� Miscellaneous

	3��� External Commands
	3.1��� Script Interpreter
	3.2��� Communication with the Server and other Apps
	3.3��� RAM Disk Management
	3.4��� System Checks
	3.5��� File Decryption and Verification

