Be Incorporated — Confidential Information

This document is confidential and may not be distributed without the permission of Be Inc.

March 8, 2001 BelA Device Validation : Validation Test Specifications page 1
preliminary — content subject to change

Be Incorporated — Confidential Information

copyright © 2000 Be Incorporated

March 8, 2001 BelA Device Validation : Validation Test Specifications page 2
preliminary — content subject to change

Be Incorporated — Confidential Information

Device Validation Overview 3
1 Creating a Validation Image. 3
2 The Validate Application 3
The Validate Application i 5
1 Running Validate. oo vt ittt ittt ittt itnnnetennneeennnesennneeennnenenns 5
1.1 Validation SEtngs oottt 5
2 Validate in ACHON. 5
2.1 Starting the TESIS oo 6
2.2 Completion 7
3 Validation SUCCESS. o ot 7
3.1 Validation Failure. 7
Validation Settings 9
1 Setting the Test Order 9
2 Fine-Tuning TeSLS o ottt e 9
3 AddIng a TeSt . . . o o 9
4 Validation Operation CONtrol.o 10
Validation Test Specifications, 11
1 Keyboard 11
2 MOUSE . o ittt 11
3 External Speaker. 12
4 Internal Speakers 12
5 Modem. . .. 13
6 Ethernet 14
7 File Read oo 14
8 File Writeo 15
March 8, 2001 BelA Device Validation : Table of Contents page 1

preliminary — content subject to change

Be Incorporated — Confidential Information

March 8, 2001 BelA Device Validation : Table of Contents page 2
preliminary — content subject to change

Be Incorporated — Confidential Information

Device validation is a series of checks and tests that ensures that each tested device is suitable for

shipment to an end user. Be performs software validation before providing a BeIA image to the vendor;
the rest of the tests must be performed in the factory on the individual devices themselves. This chapter
describes how to create a “validation image”, how to run the validation tests, and gives step-by-step
opearting instructions for the validation tests.

The rest of this overview describes the validation process as it lies in the larger context of the BelA
development cycle, and introduces the principal validation programs and files. The other sections of this
chapter are:

e The Validate Application describes Validate, the application that performs the validation tests.

e Validation Settings describes the validation settings file that you can use to fine-tune the tests in the
Validate suite.

e Validation Test Specifications provides operating instructions for the Validate tests.

1 Creating a Validation Image

When a BelA image is sent to the vendor, the image’s boot mode, as explained in the Boot Mode
document, is set to tools . While in tools mode, the vendor can customize the user interface, develop
new browser plug-ins, and make other modifications to the BelA software stack.

At the end of the customization cycle—i.e. when the vendor is satisfied with the customization—the
vendor loads the image onto a target device and runs the Make_Release_Image program (this is also
explained in Boot Mode). Make_Release_Image prepares the device’s software for duplication (it
creates a “release image”), and puts the device into validate ~ boot mode; this is the mode that we're
concerned with for the purposes of validation.

After running Make_Release_Image, the vendor duplicates the release image and loads a copy onto
each shippable device. These devices will also be in validate ~ boot mode. The first time a validate
device is booted, the validation process is automatically started.

2 The Validate Application

Validate is a BelA application that comprises a series of software and middleware tests that ensure that
the BelA image was properly installed. It also tests some hardware components (the mouse, keyboard,
speaker, etc.).

On a device in validate ~ boot mode, Validate runs automatically when the device is booted. For test
debugging purposes, the application can also be launched manually when the device is in tools boot
mode: After booting the device, ype alt+g to dismiss the browser, and then double-click the Validate

icon on the desktop.

February 26, 2001 BelA Device Validation : Device Validation Overview page 3
preliminary — content subject to change

Be Incorporated — Confidential Information

Validate requires a2 human operator to monitor its progress and assess the success or failure of the tests.
When the app has finished running, the operator can choose to “prepare” the device for shipment (given

that all the test were successful). Validate is described in greater detail in The Validate Application
section of this chapter.

February 26, 2001 BelA Device Validation : Device Validation Overview page 4
preliminary — content subject to change

Be Incorporated — Confidential Information

Description: ~ Device validation application.
Executable: /boot/test/validate

The Validate application runs a series of tests in which the BelA operating system checks to ensure that
it has been properly installed, and that the device hardware—the mouse, keyboard, speakers, and so
on—is functioning correctly. The suite of tests must be human-operated, takes a few minutes to run, and
is intended to be executed on every shipped unit. The validation suite is designed to be run in the
factory, just before shipping.

1 Running Validate
Normally, Validate is launched automatically when the device is booted into validate ~ boot mode.

If the device is in tools mode, Validate can be launched manually by exiting the browser (through
alt+g) and then double-clicking the Validate icon that you'll see on the desktop.

1.1 Validation Settings

The suite of tests that Validate runs is defined by the validation settings file, /boot/test/validate.ini

This human-readable file lists the tests that are run, gives the order of the tests, provides parameter
settings for individual tests, and lets you set certain operating parameters of Validate itself. The file can
be edited by the vendor to fine-tune the existing test suite, to add more tests, and to more thoroughly
automate Validate’s operation. See BelA Device Validation: Validation Settings for details.

2 Validate in Action

When you launch Validate, the app displays the Run Tests window. As shown below, the window lists
the tests that it knows about (as set in the validate.ini file), and displays some system information.

Note: The Run Tests window shown here is for illustration purposes. The window’s
actual configuration—the number of tests and their order—may differ for each
vendor.

February 26, 2001 BelA Device Validation : The Validate Application page 5
preliminary — content subject to change

Be Incorporated — Confidential Information

Run Tests |

- Test Selection

Test Run Pass Fail Ignore
Keyboard Key Test a2 r‘ C C
Mouse Click Test @ r r C
External Speaker Test 2 r e« C
Internal Speaker Test 2 . r o
Modem Connection Test 2 r . r
Ethernet Connection Test 2 r r C
File Read Test @ r r C
File Write Test [r e« C

- Version Information
OS: Product - Version (Build date)
Machine ID:

BIOS: - ()

MAC Address: <not available>

(Test Location: /boot/test - settings = validate.ini)

The Run radio button selection for the tests indicates that the tests are prepared to run The operator can
skip a test by setting its selection to Ignore , or can “pre-approve” or “pre-fail” a test by selecting Pass or
Fail.

2.1 Starting the Tests

To start the tests, the operator presses Test. Quit will abort the application. The Prepare button only
becomes enabled when the tests have run to successful completion.

As the tests start, the Run Tests window is removed from the screen. It reappears at the end of the tests
to provide a tally of test scores (as explained in “2.2 Completion”).

Each test display at least one test-specific window. Some windows ask the operator to perform actions,
such as typing a key or clicking the mouse, while others simply report the status of a “hands free” test.

As with the Run Tests window, the individual test windows provide a Fail button.

At any time, the operator can press alt+q to abort the current test and go back to the Run Tests window.

February 26, 2001 BelA Device Validation : The Validate Application page 6
preliminary — content subject to change

Be Incorporated — Confidential Information

2.2 Completion

When Validate completes, it re-displays the Run Tests window with the radio buttons set to Pass or Fail
for each test. A machine is considered to have successfully passed the validation suite only if a/l the tests
have passed. If any one test failed, the entire validation is considered to have failed. The next two
sections describe what to do when validation succeeds and when it fails.

3 Validation Success

If Validate completes all the test successfully, the operator then presses one of the three buttons at the
bottom of the Run Tests window:

e Pressing Prepare will prepare the machine for shipment to the end user. The Prepare button is
enabled only if the validation was successful. Once you turn off the machine after a successful
preparation, do not turn it on again. The next person to turn on the machine after a successful
validation should be the end user, as the machine will ask for basic configuration information so it
can set itself up for use.

e If the operator presses Quit, the machine will not be prepared for shipment. When the machine is
rebooted, the validation tests will start again.

e Test reruns the validation tests again immediately.

3.1 Validation Failure

If one (or more) of the tests fails—either naturally or because the operator “pre-failed” it or pressed Fail
in the test window—a message is displayed saying that the unit being tested has not passed the tests, and
will not be internally configured for shipment to the user. If this happens, you must not ship the
machine until the problem has been fixed.

The operator can rerun the entire Validate suite by rebooting the machine (after fixing the problem,
ostensibly), or an individual failed test can be rerun by setting its radio button back to Run and then
clicking Test.

February 26, 2001 BelA Device Validation : The Validate Application page 7
preliminary — content subject to change

Be Incorporated — Confidential Information

February 26, 2001 BelA Device Validation : The Validate Application page 8
preliminary — content subject to change

Be Incorporated — Confidential Information

Description: ~ Settings that you use to fine-tune the Validate application.

Declared in: /boot/test/validate.ini

The validation settings file, validate.ini , contains statements that set the order in which the validation
tests are run, fine-tune individual tests, and let you add new test scripts. The file is located in
/boot/test/

The file is read and used by the Validate application; for information on Validate, see The Validate
Application.

By default, most statements in validate.ini are commented out. To “turn on” a statement, you must
remove the comment character (“#”) at the beginning of the line.

Setting the Test Order

The order of the tests can be specified in the testorder statement in validate.ini . The statement lists
the names of the tests separated by semicolons (no whitespace!). For example:

testorder=keyboard;external_sound;sound;modem;ethernet

If the testorder statement is used, tests that aren’t included in the list are ignored. Individual tests can
also be ignored by setting the name of the test to ignore in validate.ini . For example:

keyboard=ignore

Fine-Tuning Tests

Many of the settings in validate.ini are used to initialize the parameters of specific tests. For example,
the external_sound.filename statement declares the sound file that’s used in the external speaker test.

The individual settings statements are described in the Options: section of each of the tests, as listed in
Validation Test Specifications.

Adding a Test

You can add a test to the validation suite by adding a new test name to the testorder statement, and
then declaring the location of the test. For example, here we add a “check_for_files” test (a shell script):

February 26, 2001 BelA Device Validation : Validation Settings page 9
preliminary — content subject to change

Be Incorporated — Confidential Information

testorder=keyboard;external_sound;sound;modem;ethernet;check_for_files

check_for_files=/boot/test/check_for_files.sh

The location of the test must be a full pathname.

The test can be an executable or a shell script. Shell scripts must start with the line:

#1/bin/sh

The test must return 0 (for pass) or 1 (for failure).

Note: To return a value from a shell script, use “exit <value>".

4 Validation Operation Control

The validate statements in the validate.ini file provides control over certain parameters of the

Validate application:

Statement Meaning

validate.okttimeout

=microsecs

When Validate runs to successful completion, an acceptance
notice is displayed at the end of the tests. Set this statement if
you want the acceptance notice to go away automatically after
n microseconds.

validate.autoprepare

=bool

Set this statement (bool =1) if you want the device to be
automatically prepared for shipping after it passes Validate.

validate.endalert

=bool

Set this statement (bool =1) if you want to skip the “Are you
sure?” alert panel that's displayed when the Validate operator
clicks the Quit or Prepare buttons (and that’s also displayed if
validate.autoprepare is set to 1).

February 26, 2001

BelA Device Validation : Validation Settings page 10
preliminary — content subject to change

Be Incorporated — Confidential Information

Description:

Specifications of the BelA device validation tests.

The following sections describe the BelA device validation tests that are run by the Validate app. Each
test description includes preparations instructions, settings options (as set in /boot/test/validate.ini),
and the pass/fail criteria for the test.

The tests are listed in the default test order. See Validation Settings for instructions on changing the
order of the tests, and adding and removing tests.

1 Keyboard
Description: A window displays a message that asks the operator to press a specific key. The
operator has three chances to press the correct key.
Options: e keyboard.keys =key specifies the key that will be requested. A random key is
chosen in the absence of this option.
Pass: The correct key is pressed within three attempts.
Fail: Operator clicks Fail, or the wrong key is pressed in all three attempts.
2 Mouse
Description: A window displays two buttons: Click Me and Fail.
Pass: The operator clicks Click Me .
Fail: The operator clicks Fail.

February 26, 2001

BelA Device Validation : Validation Test Specifications page 11
preliminary — content subject to change

Be Incorporated — Confidential Information

3 External Speaker

Preparation:

Description:

Options:

Pass:

Fail:

External speakers must be attached to the device.

A sound is played. A window displays a message that asks the operator if the sound
can be heard. After the operator responds, a message tells the operator that the
speakers can be removed.

e external_sound.filename =filename specifies the sound file that’s played.
flename can be either an absolute pathname to the file or relative to validate’s
directory (/bootitest). In the absence of a specified sound file, a sine tone is
generated.

The operator clicks Pass.

The operator clicks Fail.

4 Internal Speakers

Preparation:

Description:

Options:

Pass:

Fail:

Notes:

The operator must be positioned as close to the (horizontal) center of the machine as
possible.

A sound is played in the left speaker, the right speaker, and then both speakers
together. A window displays a message that asks the operator if the sounds were
heard, and from the proper speakers.

e sound.left.flename =filename specifies the sound file that’s played in the left
speaker.
e sound.right.filename =filename specifies the sound file that's played in the

right speaker.

¢ sound.phase.filename =filename specifies the sound file that's played in both
speakers together.

filename can be either an absolute pathname to the file or relative to validate’s
directory (/bootitest). In the absence of a sound file specification, a sine tone is
generated.

The operator clicks Pass.
The operator clicks Fail.

The “both speakers together” test ensures that the speakers are in-phase. If the
operator is close to dead center, out-of-phase speakers will cancel the sound.

February 26, 2001

BelA Device Validation : Validation Test Specifications page 12
preliminary — content subject to change

Be Incorporated — Confidential Information

5 Modem

Description:

Attributes:

Options:

Pass:

Fail:

A window is opened that reports the status of the test and lets the operator abort
(Fail). The test then follows this script (without operator input):

1.

2
3.
4

7.
8.

Open the modem device and set some attributes (described below).
Write ‘ATZ’ to the modem and walit for an ‘ATZ’ response.
Write the modem.init option string, if specified, and wait for an ‘OK’ response.

Write ‘ATDT modem.number’ and wait for the last three digits of the phone
number in response.

Wait for a ‘CONNECT’ response (and report the connection speed in the
window).

Write ‘+++” and wait for an ‘OK’ response.
Write ‘ATH’ and wait for an ‘OK’ response.

Close the modem.

Three attempts are made at forming a connection.

Disable input SW flow control
Disable output SW flow control
Don’t allow any character to restart input
Disable input parity checking
Disable canonical input
Disable echo

Disable signals

Disable CTS/RTS

57,600 baud

8 bit, even parity, 1 stop bit
Local line

modem.init =string is an optional modem intialization string.

modem.number =number is the telephone number to dial in the ‘ATDT’ command.

modem.device =device is the pahtname of the modem device. For example,
/dev/ports/tri_modem

A modem connection is successfully formed within three attempts.

A connection isn’t formed within three attempts, or the operator clicks Fail.

February 26, 2001

BelA Device Validation : Validation Test Specifications page 13
preliminary — content subject to change

Be Incorporated — Confidential Information

6 Ethernet
Preparation: e A test server (ethernet.server_address) must be running the testsrv program
on port 6909. Note that this must be a remote server that's set up specifically for
the ethernetvalidation test—you can’t run testsrv on the device that you're testing.
The source code for the testsrv program, which may need to be recompiled for
your server, is provided by Be.
e Make sure you have enough 10.x.x.x DHCP leases to serve all the clients that
you're testing. You'll need to hold the addresses for at least an hour.
Description: The test follows this script without operator input:
1. Cache the local network configuration info.
2. Open a TCP connection to ethernet.server_address on port 6909.
3. Send and receive variously sized blocks of data.
4. Compare local test data with the data received from the server.
5. Restore the cached network configuration info.
Three attempts are made at forming a connection to the test server.
A window reports the status of the test and lets the operator abort (Fail) while the test
is in progress.
Options: ethernet.server_address =x.X.X.X is the IP address of the test server that’s
running testsrv.
Pass: The connection is formed within three attempts, and the results of the data
comparisons are acceptable.
Fail: The connection can’t be formed, the data doesn’t compare properly, or the operator
clicks Fail.
7 File Read
Preparation: To pass the File Read test, you must first run the Make_Release_Image program.
Running Make_Release_Image creates a “read these files” list which is used during
this test. The list comprises every file in the file system.
Description: ~ Without operator input, each file in the file-read list is opened, some number of bytes
are read from the file, the data is verified, and the file is closed.
A window reports the status of the test and lets the operator abort (Fail), or skip the
test without recording success or failure (Skip).
Pass: All files on the list are (sequentially) opened and their contents are confirmed as valid.

February 26, 2001

BelA Device Validation : Validation Test Specifications page 14
preliminary — content subject to change

Be Incorporated — Confidential Information

Fail: One or more files on the list are missing, one or more files are corrupt (can’t be read,
or con’t contain the expected data), or the operator clicks Fail.
Notes: The File Read test fails if run from tools or user boot modes.
Due to the length of the file-read list, this test can take a very long time.
If the test finds a file in the file system that isn’t on the list, it displays a warning; these
“extra” files don’t cause the test to fail.
8 File Write
Description: ~ Without operator input, a series of files is created, written to, read from (to verify the
write), closed, and deleted. A window reports the status of the test and lets the
operator abort (Fail), or skip the test without recording success or failure (Skip).
Pass: All files are successfully created, written to, verified, and deleted.
Fail: One of the files can’t be created or written to, its contents isn’t succssfully verified, it
can’t be deleted, or the operator clicks Fail.
Notes: The File Write test takes a fraction of the time of the File Read test.

February 26, 2001

BelA Device Validation : Validation Test Specifications page 15
preliminary — content subject to change

Be Incorporated — Confidential Information

February 26, 2001 BelA Device Validation : Validation Test Specifications page 16
preliminary — content subject to change

	Device Validation Overview
	1��� Creating a Validation Image
	2��� The Validate Application

	The Validate Application
	1��� Running Validate
	1.1��� Validation Settings

	2��� Validate in Action
	2.1��� Starting the Tests
	2.2��� Completion

	3��� Validation Success
	3.1��� Validation Failure

	Validation Settings
	1��� Setting the Test Order
	2��� Fine-Tuning Tests
	3��� Adding a Test
	4��� Validation Operation Control

	Validation Test Specifications
	1��� Keyboard
	2��� Mouse
	3��� External Speaker
	4��� Internal Speakers
	5��� Modem
	6��� Ethernet
	7��� File Read
	8��� File Write

