Be Incorporated — Confidential Information

This document is confidential and may not be distributed without the permission of Be Inc.

March 7, 2001 TheBinder: page 1
preliminary — content subject to change

Be Incorporated — Confidential Information

copyright © 2000 Be Incorporated

March 7, 2001 TheBinder: page 2
preliminary — content subject to change

Be Incorporated — Confidential Information

Description: BelA global namespace;repository for system and user settings.

The Binder is a namespace tree that lets programs expose data and functionality to the rest of the system.
The Binder’s most important role is to expose system and user settings to programs, modules, and (local)
HTML pages.

BelA automatically loads the Binder tree on startup. The tree is statically defined in an XML file, and can
be accessed dynamically through C++ code, through JavaScript code, or through the binder shell tool.
Although C++ access is the most robust, JavaScript access coupled with modifying the XML definition
should be sufficient for most vendors. Access through the binder tool is provided for testing and
debugging.

This document looks at the Binder tree architecture and takes a brief look at the default Binder definition,
particularly as it interests the vendor. The other Binder documents are:

e JavaScript access is described in Binder JavaScript.

e The C++ interface is <<forthcoming>>.

e The Binder XML file syntax is given in The Binder XML Format.

e The complete layout of the BelA-defined Binder tree is in The Binder Tree.

e The binder tool is described in The binder Program.

1 Binder Architecture and Access

The binder tree is organized into branches, or nodes; each node contains named properties. A property is
a name/value pair:

e The name is unique within that node.

e The value can be a simple type (a string or a number) or it can be another node object (that contains
properties and other nodes, and so on).

Binder nodes can be nested to 64 levels, although it’s anticipated that even in the most full-figured
configuration, nesting won’t need to be any deeper than ten or fifteen levels.

Note: Keep in mind that every node is a property. In general, features that apply to
properties apply to nodes as well. Exceptions to this rule are pointed out in the
documentation.

March 1, 2001 12:11 pm The Binder : Introduction to the Binder page 7
preliminary — content subject to change

Be Incorporated — Confidential Information

2 The XML Binder Description File

At boot time, the system builds the Binder tree by reading the XML file
/boot/home/config/settings/binder/root . The file contains a persistent, human-readable depiction
of the Binder’s nodes and properties (with values). Here’s a snippet from the file:

<object name="service" perms="rmd">

<object name="audio" perms="r">
<prototype perms="rw" stacking="true"/>
</object>

<object name="locale" perms="r">
<prototype perms="rw" stacking="true"/>
<string name="language">en</string>
</object>

</object>

This excerpt creates the service node and its audio and locale subnodes. The locale node contains
the language property which is set to the string value “en”.

The complete Binder XML syntax is in 7he Binder XML Format. The following sections give a brief
overview of the XML file definition provided by BelA, particularly as it interests the vendor.

2.1 The user—record.skel File

If you look in /boot/home/config/settings/binder/ , you'll see, in addition to root , a file called
user—record.skel . This is an XML Binder description that’s copied into each user account as the
accounts are created. This topic is discussed in greater detail in “3.1.1 The User Account Template.”

Each user account is represented in a separate file. Management of the user account files is taken care
of by a “user node” Binder plug-in.

2.2 Referring to Other Files

A property declaration in the root file can use the storage attribute to refer to some other file for its
description:

<object name="vendor" perms="r">

<prototype storage="/boot/binder/service/vendor" perms="rwcdm"
stacking="true"/>
</object>

This declares that the vendor node is defined in the /boot/binder/service/vendor file. When the
Binder tree is initially created, this file is used to populate the vendor node. (The file doesn’t exist by
default—it’s up to the vendor to create it.)

2.3 File Synchronization

Changes that are made to the Binder tree while a device is running are written to the appropriate storage
file. For example, when the user changes a setting, the new value of that setting is written to the user’s
account file.

File-synchronization only applies to non-root files—the root XML file is never rewritten. To modify the
root file on a user’s device (once the device has been deployed) the vendor must replace it through a
remote update to the device.

March 1, 2001 12:11 pm The Binder : Introduction to the Binder page 8
preliminary — content subject to change

Be Incorporated — Confidential Information

2.4 Vendor Files

The vendor is invited to augment the default Binder definition by creating or modifying these files:

e /boot/binder/service/vendor . As mentioned above, this is the file that represents the
beos.binder.service.vendor node. The vendor is invited to define system-wide settings in this
file.

¢ /boot/home/config/settings/binder/user-record.skel . This file was also described earlier. The

file contains an empty vendor node declaration. The vendor is invited to create default user settings
by filling out this node.

3 Predefined Binder Nodes

The root node contains three “subroot” nodes: user , service , and application . The following
sections look briefly at the features of the three subroots. A map of the entire predefined Binder tree is
given in The Binder.

3.1 The user Subroot

The beos.binder.user subroot contains a node for every user account, each of which contains user-
specific settings and data—language, locale, bookmarks, email info, and so on.

3.1.1 The User Account Template

BelA defines a template for new user accounts; the template is defined in the XML file
/boot/home/config/settings/binder/user—record.skel . When a new user account is added to the
system, the user-record.skel definition is automatically copied into the account. Subsequent changes
to user—record.skel are not propagated into existing accounts.

3.1.2 Adding Vendor-defined Nodes and Properties

If, as a vendor, you want to supply your own user settings, you should add your nodes and properties to
the vendor node in the user-record.skel file. How nodes and properties are organized within the
vendor node is up to the vendor.

3.1.3 User Account Files

The data for each user account is stored as a user-record XML file in a subdirectory of the
/boot/binder/user directory. The subdirectory is given the user’s name; for example, if a device has
accounts for adam, betty, and charlie, the following XML files are created to store their settings:

/boot/binder/user/adam/user-record
/boot/binder/user/betty/user-record
/boot/binder/user/charlie/user-record

Freshly created, a user-record file is simply a copy of the template defined in the
/boot/nome/config/settings/binder/user-record.skel . As a user modifies his or her settings
(language, email accounts, bookmarks), the corresponding user account file is automatically and
immediately updated.

March 1, 2001 12:11 pm The Binder : Introduction to the Binder page 9
preliminary — content subject to change

Be Incorporated — Confidential Information

Although you can create a user account simply by creating a new subdirectory of /boot/binder/user
and copying the desired user-record file into it, it's expected that user accounts will be managed
dynamically, through the JavaScript calls explained in “3.1.5 Adding and Removing User Accounts.”

By default, the system creates a system user account that’s used on single-user systems:

/boot/binder/user/system/user-record

3.1.4 The Current User

The current user account (i.e. the account for the user that’s logged into the device) is represented by the
tilde (“~”) node in user , thus:

var currentUser = beos.binder.user["~"7;
As another example, here’s how you retrieve the vendor node for the current user:
var vendorNode = beos.binder.user["~"].vendor;
To set the current user, you do this:
beos.binder.user["~"] = "Adam";

If you set the current user to undefined |, the current user is set to the system account.

Note that the “~” node is a pointer to the node ofthe current user—the “~” account doesn’t exist as user-
record file.

3.1.5 Adding and Removing User Accounts

To create a new user account dynamically and add it to the user node, pass the account name to the
node’s addUser() function. For example:

beos.binder.users.addUser("Adam");

This creates the node beos.binder.users.Adam that contains properties that are copied from the
user—record.skel file.

To delete a user account:
beos.binder.users.deleteUser("Adam");

You can’t delete the system or “~” accounts.

3.2 The service Subroot

The beos.binder.service subroot provides system-wide information (device ID numbers, network

configuration information, etc.), and software capabilities (lists of supported languages, printers, fonts,
etc.). As examples, the ISP’s telephone number is given in the service.network node; the various

resolutions that a printer can handle for a given page are listed in the service.printing node.

3.2.1 The service.vendor Node

The service subroot contains a vendor node in which vendors can install their own machine-specific
settings:

var vendorNode = beos.binder.service.vendor;

As with the user.system.vendor node, data organization within the service.vendor node is up to the
vendor.
March 1, 2001 12:11 pm The Binder : Introduction to the Binder page 10

preliminary — content subject to change

Be Incorporated — Confidential Information

To modify the user.system.vendor node, edit the definition in the
/boot/home/config/settings/binder/root file.

3.3 The application Subroot

The beos.binder.application subroot is used by applications (or plug-ins) to store app-specific data.
An application registers itself within application by creating a node that’s named for the application’s
MIME signature. For example, this node...

beos. bi nder. appl i cati on. x- vnd- Movi ePl ayer

...would contain data for the (fictitious) plug-in with the MIME signature
“application/x—vnd-MoviePlayer”.

It’s anticipated that new application nodes will only be created programmatically (through C++), when
a new application or plug-in is first launched.

March 1, 2001 12:11 pm The Binder : Introduction to the Binder page 11
preliminary — content subject to change

Be Incorporated — Confidential Information

March 1, 2001 12:11 pm The Binder : Introduction to the Binder page 12
preliminary — content subject to change

Be Incorporated — Confidential Information

This document provides a general overview of how you use JavaScript to access the Binder tree. Many
of the functions mentioned in this document are described in greater detail in the BelA JavaScript
reference documentation.

1 Identifying a Property

The Binder tree is accessed through the global beos.binder JavaScript object; this is the “root” of the
Binder tree. To get to a specific property in the Binder, you add, to beos.binder | the names of the
nodes that lead to that property, dot-delimiting each node. For example, this “node path”:

beos.binder.service.locale.language
...refers to the language property that’s inside the locale node that’s inside the service node.
You can also identify a property by indexing the name off of the parent node:

beos.binder.service.locale["language"]

1.1 Iterating over a Node’s Properties

A node lets you iterate over its properties. To do this, you treat the node as an array and ask for its 7’th
property. Use the length property to test for the end of the (iterable) property list. The following
example builds a list of printers:

var n;
var printers = beos.binder.service.printing;
for (n=0; n < printers.length; n++)

document.writeln("" + printers[n].name);

An object that’s returned through iteration is a name/value pair that must be “decoded” through the name
and value properties:

printers[n].name
printers[n].value

When accessing a property through iteration you must use value to get its value—even if the property is
a node. For example, to tell the 7’th printer (which is a node) to print, you would do this:

printers[n].value.Print()

Since printers[n] was retrieved through iteration, leaving out the value keyword would be an error.

1.2 Functional Properties

Some properties are functions. To pass arguments to a functional property, put the arguments in
parenthesis:

February 26, 2001 6:39 pm The Binder : Binder JavaScript page 13
preliminary — content subject to change

Be Incorporated — Confidential Information

beos.binder.service.printing.Select("PrinterName")
Functional properties can act as nodes:

beos.binder.service.printing.Selected().Print()

2 Property Permission

There are five permission bits associated with each property (including nodes): read, write, create,
delete, and (remote) mount. The permissions are defined in the XML Binder file; new properties (created
dynamically by JavaScript) inherit their permissions from a prototype property declaration in the XML
file.

You can’t set the permission bits of an existing property through JavaScript, nor can you query for a
property’s permissions.

For more on property permissions, see perms in “The Binder XML Format” section.

3 Property Values

3.1 Getting a Property Value
A reference to a property returns its value:

if (beos.binder.service.locale.language == "en")

Note that for simple-valued properties, value-retrieval retrieves the value on/y—it doesn’t retrieve the
object that represents the property. This is a subtle point that’s particularly important when you’re using
JavaScript variables: When you retrieve the value of a simple-valued property and stuff it into a
JavaScript variable, as shown here, the variable is not “live”—a change to the property in the Binder does
not update the value of the variable. If you need a live value, create a variable that points to the
property’s node, and then reference the property off of that node variable; for example:

var localeNode = beos.binder.service.locale;

if (localeNode.language == "en")

Setting the value of a simple-property through a JavaScript variable abides by the same restriction, as
explained in “3.3 Setting a Property Value.”

You can’t get the value of a property that’s read-protected.

3.2 Testing a Property Value's Data Type
To ask for the data type of a property’s value, you call typeof() on the value returned by valueOf()

typeof(beos.binder.service.locale.language.valueOf())

3.3 Setting a Property Value

«_»

You set a Binder property value through the assignment operator (“="). For example:

beos.binder.service.audio.speaker.Mute = 0

February 26, 2001 6:39 pm The Binder : Binder JavaScript page 14
preliminary — content subject to change

Be Incorporated — Confidential Information

The Sounds preference panel would use a line like this to unmute the internal speaker.

Keep in mind that if you're using JavaScript variables to represent a property’s value, you can’t simply set
the value of the variable—the change won’t be written back to the Binder. For example, consider these
two versions of the speaker-muting code:

/* DO THIS: This works because "speakerNode" represents Mute's node: */
var speakerNode = beos.binder.service.audio.speaker;
speakerNode.Mute = 0;

/* DON'T DO THIS: It simply sets the value of the JavaScript variable "muteProp";
* it doesn't actually set the value of the Mute property itself.

*/

var muteProp = beos.binder.service.audio.speaker.Mute;

muetProp = 0;

You can’t set the value of a property that’s write-protected.

Monitoring Properties

Binder lets you monitor changes to the values of properties. To monitor changes to a specific property,
call observe() on the property:

beos.binder.service.locale.language.observe("watchPropFunc", "userData");

This registers watchPropFunc , a JavaScript that you create yourself, as the callback function that’s called
whenever the value of language changes. The second argument, userData , is arbitrary data that’s
passed back as an argument to the callback function.

To monitor all the properties in a node, call observeContents() on the node:
beos.binder.service.locale.observeContents("watchNodeFunc", "userData");

For more information on these functions, see beos.binder in the BelA JavaScript chapter.

Creating a Property

To create a new property from JavaScript, simply set its value. If the property doesn’t exist, it’s
automatically created and added to the referenced Binder node. For example, to add a (non-existent)
“OldName” property to the service.vendor node, you would set the property’s value:

beos. bi nder . servi ce. vendor[O dNane] = Esso;

The permission prototype for the node you’re trying to add the property to must be writable and
creatable (see the prototype documentation in “The Binder XML Format” section). Furthermore, the
new property inherits the prototype’s ~ permissions , with one modification: All JavaScript-created
properties are deletable (the “d” bit is set).

Deleting a Property

You can delete a property (i.e. remove it from the Binder) by setting its value to undefined | given that
the property is deletable. For example, the following line removes SomeProp:

beos.binder.service.vendor.SomeProp = undefined

February 26, 2001 6:39 pm The Binder : Binder JavaScript page 15
preliminary — content subject to change

Be Incorporated — Confidential Information

If the property is deletable, the value is set to undefined

Creating a Node

To create a new Binder node, you first instantiate a Binder node template, and then add the instantiation
to an existing Binder node. The available templates are defined as skel elements in the XML file that
was used to create the Binder tree.

For example, let’s say the XML file defines a skel called toys in the beos.binder.vendor node. To
instantiate the skel , you reference off of the beos.binder.vendor node through the expression
“+toys 7

var toysNode = beos.binder.vendor["+toys"];

(The + syntax is required when you’re referencing a skel —it tells the Binder that the referenced object
must be created first.)

toysNode is a real node object that can be modified. For example, if the skel definition declares a
Bells property, you can set the value of that property as you would any other:

toysNode.Bells = 5;

If you want your new node to be persistent (i.e. to implant it in the Binder tree), you have to add it to a
Binder node. Here we add our new node into the beos.binder.vendor node; we call the new node
“toy1”:

beos.binder.vendor["toy1"] = toysNode;

At this point toysNode and beos.binder.vendor.toyl are the same object—a change to one will
affect the other.

Typically, and as shown above, you add your new node back into the node that defined the skel . But
this isn’t a requirement—you can add the new node to any node that accepts new properties. For
example, you could instantiate another toys skel and add it to the toyl node:

var subtoysNode = beos.binder.vendor["+toys"];
subtoysNode.Bells = 10;
beos.binder.vendor.toy1["'subToy1"] = subtoysNode;

For more information, see skel in The Binder XML Formait.

Property Objects and Reference Counting

When a Binder property is accessed, an object (in memory) is created by the system to represent it. Each
node in the node path to the property is represented by a separate object. An object persists only if
there’s a reference to it (such as a variable). Subsequent references to the same properties are handed
the previously created objects. References to a given object are counted; when the reference count goes
to 0, the object is destroyed.

The persistence of property objects can be used to your advantage: By caching and reusing references to
a property object, you can avoid recreating the same objects over and over. For example, the following
code is extremely inefficient because each line creates (and then immediately destroys) the same set of
objects:
if (beos.binder.service.web.cache.size > 3000000)
beos.binder.service.web.cache.size =

February 26, 2001 6:39 pm The Binder : Binder JavaScript page 16
preliminary — content subject to change

Be Incorporated — Confidential Information

beos.binder.service.web.cache.size *
beos.binder.service.web.cache.reduce_to;

The version below is much more efficient:

var webCache = beos.binder.service.web.cache;

if (webCache.size > 3000000)
webCache.size = webCache.size * webCache.reduce_to;

Note that this example can’t be further reduced by creating a variable that refers to webCache.size and
then setting the value of that variable. As explained earlier, setting the value of a property must be done
in reference to the property’s node—you can’t simply set the value of a variable that directly represents
the property.

February 26, 2001 6:39 pm The Binder : Binder JavaScript page 17
preliminary — content subject to change

Be Incorporated — Confidential Information

February 26, 2001 6:39 pm The Binder : Binder JavaScript page 18
preliminary — content subject to change

Be Incorporated — Confidential Information

The Binder XML Format

The system builds the Binder tree at boot time by reading the XML file
/boot/home/config/settings/binder/root . The file contains a persistent, human-readable depiction
of the Binder’s nodes and properties (with values). The document describes the syntax of the XML file.
A separate document, The Binder, looks at the root file itself.

This document assumes you understand standard XML 1.0 syntax. The specification for XML 1.0 can be
found at

http://www.w3.0rg/TR/REC-xml

1 Files
As mentioned above, the default Binder tree is read from the
/boot/home/config/settings/binder/root file. This file may refer to other Binder XML files (Binder

storage files) or plug-ins (Binder handlers) for the definitions of certain nodes. All Binder XML files have
the same structure and vocabulary.

1.1 Synchronization with the Binder

The root Binder file is never rewritten by the system. The only way to modify the root file is through an
update to the user’s device. Thus, you should take care to define a robust and intelligent root file
organization (in general, the default root file provided by Be should be sufficient).

Storage files, on the other hand, are automatically synchronized with the state of the Binder. Any
(accepted) change to a property that was originally read from a Binder storage file is written back to the
storage file by the system. If you want to be able to update the properties in a node and then store the
new values across system reboots, you should store your node in a Binder storage file; see the object
element for details.

Files that are created and managed by a Binder handlers are updated according to the handler. For
example, the “user node” handler, which creates a user file for each user account, updates the
appropriate file as the user adds bookmarks, changes his password, sets his email signature, and so on.

2 File Structure

The overall structure of the Binder XML file looks like this:

March 7, 2001 5:02 pm The Binder : The Binder XML Format page 19
preliminary — content subject to change

Be Incorporated — Confidential Information

<?xml version="1.0"?>
<binder-object>

< element >
< element >
< element >

</binder-object>

Everything between the open and close binder-object elements makes up the default Binder
definition. Most of the contents of the file is a series of nested object elements. Each object
represents a node; object s contains property-defining elements such as string , number , undefined
and object (a nested node). Each object should also contain a prototype element that sets the
permission bits for new properties that are created dynamically. A property can also set permissions for
itself.

)

A section of the definition looks something like this:

<object name="nodeA" >
<prototype perms="rwcd" /> <!-- Permissions for new properties of nodeA -->
<object name="nodeAl" perms="r">
<prototype perms="rw" /> <!-- Permissions for new properties of nodeAl -->
<string name="propertyAla" perms="r">valuel</string>
<number name="propertyAlb" perms="rd">5</string>
<undefined name="propertyAlc" />
</object>

<object name="nodeA2"... >
<prototype perms="r" />
<string name="propertyA2a" perms="rd">value2</object>
<number name="propertyA2b" >6</object>
<undefined name="propertyA2c" />
</object>
</object>

<object name="nodeB" storage="boot/binder/nodeB" />

The specifications of the elements are given in the next section.

Elements

There are eleven Binder elements:

e binder-object delimits the scope of the Binder XML definition.
e object and mountpoint define nodes.

e skel defines a template for a node.

e string , number, and undefined define properties. (In the spirit of completeness, we should
mention that since nodes are properties, object and mountpoint define properties as well.)

e prototype defines a set of attributes that are copied into a node’s properties.
e overlay and inherit tell a node takes on the properties of some other node.
e include tells the XML file reader to include the contents of some other XML file.

A number of the elements take the perms attribute, which sets the permissions for the entity created by
the element. There are five permission bits, represented by the characters 'r’, 'w’, ’c’, ’d’, and 'm’. The

March 7, 2001 5:02 pm The Binder : The Binder XML Format page 20
preliminary — content subject to change

Be Incorporated — Confidential Information

meanings of these permissions depends on the element; each element that supports the attribute explains
their meanings.

binder-object

< Binder hierarchy declaration
< binder-object >
elements
</ binder-object >

The binder-object element declares that the contents should be used to create a Binder hierarchy. The
binder-object in the /boot/home/config/settings/binder/root file defines the hierarchy at the root
of the binder (in JavaScript parlance, it’s added to the beos.binder object). When read from other XML

files that are referred to from the root file, the hierarchy is placed in the node at which the file is read
(see the storage argument for details).

include

* Include the contents of some other XML file.
< include attributes />

The include element lets you read and include the contents of some other XML file. Including a file is

relevant only when the Binder is being constructed—the Binder doesn’t write back into the included file.
The element takes a single attribute:

e storage . The absolute pathname of the included XML file.

inherit

< inherit handler = handlerName >
handlerArguments
</ inherit >

inherit declares that the node that contains this statement will take on the properties in the node
defined by the named handler. You can pass whitespace delimited arguments to the handler through the

handlerArguments data. If the handler defines a property that already exists in this node, the node’s
property takes precedence.

mountpoint

< mountpoint attributes / >

mountpoint defines a placeholder for a node that’s “mounted” by a remote application (i.e. an
application that’s not running in Binder’s address space). The element takes the following attributes:
e name. The name of the mountpoint.

[]

perms. Permission bits. If the element doesn’t include a perms attribute, the property inherits its
permissions from the node’s prototype element.

March 7, 2001 5:02 pm The Binder : The Binder XML Format

page 21
preliminary — content subject to change

Be Incorporated — Confidential Information

number

« Creates a number-valued property.

< number attributes >
value
</ number >

number creates a number-valued property. In all other details, it's the same as string

object

* Binder node declaration

< object attributes >
elements
</ object >

The object element creates a new Binder node. It takes the following attributes:
e name. The string name of the property. The name must be unique within the parent node.

e handler . The name of the Binder add-on (or plug-in) that’s loaded and executed to handle the
creation and management of this node. The named add-ons is searched for in these directories (in
this order): /boot/beos/~/add—ons/binder , boot/beos/common/add-ons/binder ,
/boot/beos/system/add—ons/binder

e storage . The full path of the file that the node’s XML representation is written to. By convention,
the pathname emulates the node path to the node, but with /boot replacing beos. For example, the
beos.binder.service.vendor node is stored in the /boot/binder/service/vendor file. When the
Binder is shut down (and at other convenient moments), the contents of the node are written to the
storage file; when the Binder is restarted, the node is populated with the contents of the file.

e perms. Permission bits. If the element doesn’t include a perms attribute, the property inherits its
permissions from the node’s prototype element.

handler and storage are optional. A node can have both a handler and a storage file.

The object element can contain any of the other elements except binder-object . Of particular
importance is the prototype element; if you want to be able to add properties dynamically to your node
(through JavaScript), the object that represents the node must contain a prototype element. New
properties that are added to the node “inherit” the prototype’s permissions.

Typically, an object element contains one prototype element followed by a series of elements that
define the node’s properties (string , number, undefined , and object).

overlay

< overlay handler = handlerName >
handlerArguments
</ overlay >

This is the same as inherit | except that in the case of property-name collisions, the handler wins.

March 7, 2001 5:02 pm The Binder : The Binder XML Format page 22
preliminary — content subject to change

Be Incorporated — Confidential Information

prototype

« Template for dynamically-created properties.
< prototype attributes />

prototype is used inside an object element to declare attributes that apply or are copied into the
node’s other properties. It takes the following attributes:
e stacking . << forthcoming >>

e ordered . << forthcoming >>

e perms. The permission bits are copied into dynamically created properties, as well as into any
existing (i.e. XML-defined) properties that don’t have explicit perms attributes of their own. To be

able add new properties to this protoype ’s node from JavaScript, the perms attribute must include
the “c” and “w” bits.

skel

« Template for dynamically-created nodes.

< skel attributes >
elements
</ skel >

A skel element is a template for a dynamically created node. The elements in the skel object are the

same as those found in object : Typically, a skel contains a prototype , followed by elements that
define the node’s properties.

skel takes the same attributes as object

string

¢ Declares a string-valued property

< string attributes >
value
</ string >

string creates a string-valued property. The property’s value is set to value ; without a value , the
property is set to undefined . The element takes these arguments:

e name. The name of the property.

e perms. Permission bits. If the element doesn’t include a perms attribute, the property inherits its
permissions from the node’s prototype element.

undefined

* Reserves a property name without giving it a value.
< undefined attributes / >

The undefined element lets you “reserve” a property name without giving it a value, and without
declaring the value’s type. undefined takes the following attributes:

March 7, 2001 5:02 pm The Binder : The Binder XML Format page 23
preliminary — content subject to change

Be Incorporated — Confidential Information

e name. The name of the property.

e perms. Permission bits. If the element doesn’t include a perms attribute, the property inherits its

permissions from the node’s prototype

element.

4 Attributes

name

* Provides a name for an element.
<element name =name...>

ordered

¢ Declares

<element ordered ="true"|"false"...

perms

<element perms ="rwcdm"...>

>

The perms argument declares whether a Binder node, property, or property prototype can be read,
written, deleted, and so on. There are five permission bits, represented by the characters listed below.
The value of perms is a concatenation of the appropriate characters.

Char

Meaning

r

Read: The value of the property can be read. For a node, it means the names of the
node’s properties can be retrieved and referenced.

Write: The value of the property can be modified. Writable properties can change
type. For example, if you set the value of a (writable) node to be a string, the node
will “lose” its property list and “become” a string.

Create: The property is creatable. This is primarily significant for prototype
elements. If a prototype doesn’t include the “c” bit, you won’t be able to add new
properties to the prototype ’s node.

Delete: The property can be removed from the Binder tree. When you set a
(deletable) property’s value to the JavaScript value undefined , the property is
deleted. If it’s not deletable, the property’s value is set to undefined . Dynamically
created properties always have the delete bit set.

Mount: This applies to nodes only. A mountable node can be “mounted” from an
application that’s running in some other address space (i.e. other than the address
space that Binder runs in).

March 7, 2001 5:02 pm The Binder : The Binder XML Format

preliminary — content subject to change

page 24

Be Incorporated — Confidential Information

Description: Default Binder tree content.

API Type: XML definition that can be interpreted as JavaScript or C++ objects.
Declared in: /boot/home/config/settings/binder/root et al

This document describes the contents (nodes and properties) of the Binder tree as defined by Be.

When a BelA device is launched, the Binder tree is populated by reading the node and property
definitions in the /boot/home/config/settings/binder/root XML file. This file refers to other XML
files (user account files, network settings, vendor-specific files, and so on) to complete the Binder tree
population. The Binder’s nodes and properties are most often interpreted as JavaScript objects; you can
also explore the Binder tree through the C++ Binder classes.

The major sections below describe the contents of each of the XML files that BeIA uses to populate the
Binder tree.

1 The Root File (The binder Node)

Declared in: /boot/home/config/settings/binder/root
Permissions: node: none prototype: r

Description: Defines the binder node (beos.binder in JavaScript), declares the three major Binder
nodes (application |, user , and service), and populates most of the service node.

Nodes: application
Used by applications to store app-specific data.

service
System-wide settings and lists of device capabilites.

user
User accounts.

1.1 application

Permissions: node: r prototype: rmd

Description: The application node is used by applications (or plug-ins) that store app-specific
data. The default definition is empty.

February 26, 2001 6:39 pm The Binder : The Binder Tree page 25
preliminary — content subject to change

Be Incorporated — Confidential Information

1.2 service

Permissions:

Description:

Nodes:

node: rmd prototype: none

The service node provides system-wide information (device ID numbers, network
configuration information, etc.), and software capabilities (lists of supported languages,
printers, fonts, etc.).

audio
Audio information.

auto_mounter
Mounted file systems.

email
Global email settings and functions.

indicators
Interface to the hardware status indicators (LEDs and the like).

locale
Location-specific information.

mca
MAP client agent settings.

updater
Remote update settings.

network
Network settings.

printing
List of available printers, and print commands.

softkeyboard
On-screen keyboard info and access.

system
Miscellaneous device information (ID, software build date, etc.)

vendor
Reserved for use by the vendor.

video
Video information

web
Web browser information.

1.2.1 service.audio Currently unused

Permissions: node: r prototype: rw stacking: true
Description: Audio information.
February 26, 2001 6:39 pm The Binder : The Binder Tree page 26

preliminary — content subject to change

Be Incorporated — Confidential Information

1.2.2 service.auto_mounter

See “2 Vendor-specific Extensions to the Root File”.

1.2.3 service.locale

Permissions: node: r prototype: rw stacking: true
Description: Location-specific information.

Properties: language
The two-character ISO representation of the device’s natural language.
by default.

Set to “en”

1.2.4 service.network

Permissions: node: r prototype: none
Description: ~ Network configuration information.

Note: Documentation for thenetwork node is currently being
developed. Preliminary documentation is provided in The
service.network Node.

1.2.5 service.printing

Permissions: node: r prototype: rm
Description: Each node in service.printing represents a currently available printer.

Note: The service.printing node is managed by a Binder plug-in; the
root file doesn’t populate the node.

Properties: Selected

service.printing ’s nodes.

Select (printer)
Sets the current printer to printer |, which must be the name of one of
service.printing ’s nodes.

Nodes: <printer>
Represents an available printer.

The name of the currently selected printer. This will be the name of one of

1.2.5.1 service.printing.<printer>

Permissions: NA

February 26, 2001 6:39 pm The Binder : The Binder Tree
preliminary — content subject to change

page 27

Be Incorporated — Confidential Information

Description: ~ Each printer node represents a currently available printer. The information for the
printer is provided by the driver for that printer.

Properties: Cancel
Cancels a print job.

GetOrientation
Returns the paper’s layout orientation; either “portrait” or “landscape”.

InkLevel
Number [0, 100] that represents the amount of ink that’s in the printer. 0 means
empty; 100 means full. InkLevel doesn’t appear in the node until the printer has
actually printed.

PrettyName
The Ul-acceptable form of the printer’'s name.

Print
Commands the printer to print.

SelectedPaperFormat
Returns the name of the currently selected paper format (“Letter”, “Legal”,
“Tabloid”, etc., as defined by the printer driver). This will be the name of one of
the nodes in printing.<printer>.papers_formats

SelectedPaperType
Returns the name of the currently selected paper type (“Glossy”, “Matte”, “Normal”,
etc., as defined by the printer driver). This will be the name of one of the nodes in
printing.<printer>.papers

SelectedResolution
Returns the name of the currently selected resolution (“Fine”, “Normal”, “Course”,
etc., as defined by the printer driver). This will be the name of one of the
resolution properties in printing.<printer>.papers.<paper> . The resolution is
set as a side-effect of SelectPrintMode()

SelectPaperFormat (format)
Sets the current paper format. format must be one of the properties in
printing.<printer>.papers_formats

SelectPrintMode (mode)
Sets the current “printing mode”. This is a combination of a paper type and a paper
resolution. You get a mode suitable for use here through one of the resolution
properties in printing.<printer>.papers.<paper> . In other words, you set the
mode by passing in a resolution. Because resolutions are grouped by paper type,
the paper type implied by the resolution is unambiguous.

SetOrientation (orientation)
Sets the paper’s layout orientation; orientation must be either “portrait” or
“landscape”.

Status

Returns a printing status code. This is a string that looks like one of the Be error
codes (“B_OK”, “B_PRINTER_COVER_OPEN”, “B_UNKNOWN?”, etc.). The status is
“B_UNKNOWN” until the printer is actually used.

February 26, 2001 6:39 pm The Binder : The Binder Tree page 28
preliminary — content subject to change

Be Incorporated — Confidential Information

Nodes: papers
List of paper types (nodes).

paper_formats
List of paper formats (nodes).

1.2.5.1.1 service.printing.<name>.papers

Permissions: NA

Description: ~ Contains a list of paper types, where each type is represented by a separate node.

Nodes: <paperType>
Each node represents a type of paper.

1.2.5.1.1.1 service.printing.<name>.papers.<paperType>

Permissions: NA

Description: ~ Publishes a list of resolutions for this paper type.

Properties: <resolution >

Each property names a resolution. In the interest of unambiguous U, each
resolution name should be unique across all paper types.

1.2.5.1.2 service.printing.<name>.paper_formats

1.2.6 service.softkeyboard

Note: Most of the node descriptions from here to the end of the document have yet
to be converted to the style used in the top half of this document. The difference

in formatting shouldn’t be construed to signify anything meaningful about the
nodes themselves

Node perms: r

Prototype perms: rw

service.softkeyboard contains properties that describe features of the on-screen keyboard:

e repeat_delay . The amount of time to wait, in microseconds, before repeating a key. 750000 by
default.

e repeat_rate . The number of repeated key iterations per second. 13 by default.

February 26, 2001 6:39 pm The Binder : The Binder Tree page 29
preliminary — content subject to change

Be Incorporated — Confidential Information

1.2.7 service.system

Node perms: r

Prototype perms: r

service.system contains information about the operating system. Its properties are:

altg . A boolean value: 1 if alt+g dumps the user into the desktop environment, and 0 if alt+g does
nothing.

bootmode . The environment the device boots into. One of “tools”, “validate”, “firstboot”, and

)

“normal”. See “Boot Mode” in the BelA Support book for more information.
build . The date the operating system was built, given as “yyyy.mm.dd”.

device_type . Defined by the device; see “3 Device-specific Extensions to the Root File” for more
information.

product . The name of the operating system (“BelA”).

version . A string that identifies the version of the operating system.

1.2.8 service.system.bios_node

Provides information about the BIOS:

1.2.9

bios_date
bios_vendor
bios_version
device_id

service.updater

Node perms: r

Information used by the update mechanism.

1.2.10 service.vendor

Node perms: r

Prototype perms: rwcdm

The service.vendor node is reserved for the vendor. See “2 Vendor-specific Extensions to the Root
File” for more information.

February 26, 2001 6:39 pm The Binder : The Binder Tree page 30

preliminary — content subject to change

Be Incorporated — Confidential Information

1.2.11 service.video Currently unused

Node perms: r

Prototype perms: rw

The service.video node contains video information.

1.2.12 service.web

Permissions: node: r prototype: rw stacking: true
Storage: /boot/binder/service/web
Description: Information used by a Web browser to access the Web.

Nodes: ¢ cache
e macros
e navigator
e proxy
e security
* state

1.2.12.1 service.web.cache

Permissions: node: none prototype: rw
Description: ~ Web page cache size information.

Properties: size
Size of the browser cache, in bytes.

reduce_to
Factor by which the cache is reduced, if necessary.

1.2.12.2 service.web.macros

Prototype perms: rwcd

e RESOURCESPathname to the user interface files.
e SCRIPTS. Pathname to the cgi-bin scripts.

1.2.12.3 service.web.navigator

Prototype perms: rw

e user_agent

® app_version

e app_name.

e app_code_name .
e platform

February 26, 2001 6:39 pm The Binder : The Binder Tree page 31
preliminary — content subject to change

Be Incorporated — Confidential Information

1.2.12.4 service.web.proxy

Prototype perms: rw

e http_server
e http_port

1.2.12.5 service.web.security

Prototype perms: r

service.web.security contains a list of servers that are given special access.

1.2.12.5.1 service.web.security.acl

Node perms: r

Prototype perms: rwcd

Each node in service.web.security.acl (Access Control List) describes a set of access permissions that
are applied to a group of secure servers (as defined in “1.2.12.5.2 service.web.security.groups”). The

types of access are listed as properties of the individual nodes; the value of an access property is either

“grant” or “revoke”.

1.2.12.5.1.1 service.web.security.acl.custom_content

Prototype perms: rwcd

e custom_content . Granted.
e mail_workers . Granted.

1.2.12.5.1.2 service.web.security.acl.internet

Prototype perms: rwcd

e all . Granted.

1.2.12.5.1.3 service.web.security.acl.intranet

Prototype perms: rwcd

e custom_content . Granted.

February 26, 2001 6:39 pm The Binder : The Binder Tree page 32
preliminary — content subject to change

Be Incorporated — Confidential Information

1.2.12.5.1.4 service.web.security.acl.local_machine

Prototype perms: rwcd

e all . Granted.
e internet . Revoked.
e intranet . Revoked.

1.2.12.5.1.5 service.web.security.acl.malil

Prototype perms: rwcd

e custom_content . Granted.
e mail . Granted.
e mail_workers . Granted.

1.2.12.5.1.6 service.web.security.acl.mail_workers

Prototype perms: rwcd

e custom_content . Granted.
e mail . Granted.
e mail_workers . Granted.

1.2.12.5.2 service.web.security.groups

Node perms: r

Prototype perms: rwcd

service.web.security.groups contains a list of “secure” servers identified by URL. A server URL
address can contain “*” as a wildcard, but use caution—use wildcards only at the leaf end of a URL.

e URL. The name of each property is a separate URL. The value of the property is the name of one of
the Access Control List nodes (described in “1.2.12.5.1 service.web.security.acl”).

1.2.12.6 service.web.state

1.3 user

The user node contains a list of user accounts. Creation and management of these accounts is handled
by a Binder plug-in. Properties for a new account are copied from the user-record.skel file (see
“4 The User Account Template”).

February 26, 2001 6:39 pm The Binder : The Binder Tree page 33
preliminary — content subject to change

Be Incorporated — Confidential Information

2 Vendor-specific Extensions to the Root File

Declared in: /boot/home/config/settings/binder/vendor-specific-root

The vendor-specific-root file contains nodes and properties that are defined by (or for) the vendor.
The file is overlaid on top of the Binder tree defined in root , and takes precedence in case of conflicting
properties.

2.1 service

2.1.1 service.auto_mounter

service.auto_mounter provides access to the file-system volume mounter. It contains nodes that list
the drives and the volumes that are currently attached to the system.

2.1.1.1 service.auto_mounter.drives

Node perms: rwd

The drives node contains a node for each drive attached to the system, as described below.

2.1.1.1.1 service.auto_mounter.drives.<name>

Each named node provides the following information about the drive it represents:

e device .

e product

e removable .
e type .

e vendor .

e version

2.1.1.2 service.auto_mounter.volumes

Node perms: rwd

The volumes node contains a node for each volume attached to the system, as described below.

2.1.1.2.1 service.auto_mounter.volumes.<name>

Each named node provides the following information about the volume it represents:

e volume_name .
e vounted_at

e device .

e block size

e total blocks

e free_blocks

February 26, 2001 6:39 pm The Binder : The Binder Tree page 34
preliminary — content subject to change

Be Incorporated — Confidential Information

e removable .
e read_only

3 Device-specific Extensions to the Root File

Declared in: /boot/home/config/settings/binder/device-specific-root

The device-specific-root file contains information that pertains to the type or model of this device.

3.1 service

3.1.1 service.system
One property is added to the service.system node:

e device_type . A string that identifies this device’s type.

4 The User Account Template

Declared in: /boot/home/config/settings/binder/user-record.skel

The user-record.skel file is a template that’s used as the basis for user accounts. When a new user is
added to the device, the system creates a subdirectory of /boot/binder/user, names the subdirectory
after the new user, and then copies user-record.skel into the subdirectory (renaming the file
user-record) . For example, if a device has accounts for adam, betty, and charlie, the following XML
files are created to store their settings:

/boot/binder/user/adam/user-record
/boot/binder/user/betty/user-record
/boot/binder/user/charlie/user-record

4.1 user
The user node defines these functions:

e addUser(name). Adds a new user account by creating new user—record file in the directory

/boot/binder/user/< name>.
e deleteUser(name). Deletes the name user account by removing the /boot/binder/user/< name>
directory.

4.1.1 user.vendor

Node perms: r

Prototype perms: rwcd

The user.vendor node contains information that’s written by (or for) the vendor.

February 26, 2001 6:39 pm The Binder : The Binder Tree page 35
preliminary — content subject to change

Be Incorporated — Confidential Information

4.1.2 user.info

Node perms: rw

Prototype perms: rw

user.info contains user information:

e FirstName . The user’s first name.
e LastName. The user’s last name.

4.1.3 user.email

The user’s email information.

4.1.3.1 user.email.account

Prototype perms: rw

Information about the user’s “current” email account.

e DisplayName . Name that appears in the “From” field in messages that are written by this user.
e Organization . Optional email header information.

e Email . The user’s email address.

e ReplyTo . The user’s reply-to address.

e Signature . The default signature for this account.

e Login . Login name to the Imap server.

e Password . Password to the Imap server.

e ImapServer . Hostname or IP address of the Imap server.
e ImapPort . Imap port number; typically 43 (the default).

e SmtpPort . SMTP port number; typically 25 (the default).
e SmtpServer . Hostname or IP address of the SMTP server.

4.1.3.2 user.email.signatures Currently unused

4.1.4 user.bookmarks

Node perms: rwcdm

Prototype perms: rwcdm

The user’s browser bookmarks (or “favorites”). Each node is the name of a bookmark.

4.1.4.1 user.bookmarks.<name>

Node perms: rwcdm

Prototype perms: rwcdm

A bookmark description node contains these properties:

February 26, 2001 6:39 pm The Binder : The Binder Tree page 36
preliminary — content subject to change

Be Incorporated — Confidential Information

e URL The URL of the bookmark.
e IsSecure . A boolean value: 1 if this is a secure site, 0 if not.
e IsDeletable . A boolean value: 1 if this bookmark can be deleted, 0 if not.

4.1.5 user.cookies

Node perms: rwcdm

Prototype perms: rwcdm

The user’s cookie list. Each node is a single cookie.

4.1.5.1 user.cookies.<name>

Node perms: rwcdm

Prototype perms: rwcdm

A cookie description node contains these properties:

e name. The cookie’s ID.

e value . The cookie’s value.

e domain. The domain this cookie applies to.

e path . File system pathname where the cookie was created.
e expiration . Expiration date as a time_t

4.1.6 user.addressbook

Node perms: rwcdm

Prototype perms: rwcdm

The user’s address book. Each node contains information for an entry.

4.1.6.1 user.addressbook.<name>

Node perms: rwcdm

Prototype perms: rwcdm

An addressbook entry contains these properties:

e nickname .
e firstName
e |astName .
e email .

February 26, 2001 6:39 pm The Binder : The Binder Tree page 37
preliminary — content subject to change

Be Incorporated — Confidential Information

5 Node Map

The following list provides a quick reference to all the Binder nodes currently defined by Be.

application (no nodes)

service

service.audioCurrently unused
service.automounter
service.automounter.drives
service.automounter.drives.<name>
service.automounter.volumes
service.automounter.volumes.<name>
service.locale

service.network

service.printing
service.printing.<name>
service.printing.<name>.papers
service.printing.<name>.papers.<paperName>
service.printing.<name>.paper_formats
service.softkeyboard

service.system
service.system.bios_node
service.updater

service.vendor

service.videoCurrently unused
service.web

service.web.cache
service.web.macros
service.web.navigator
service.web.proxy
service.web.security
service.web.security.acl
service.web.security.acl.custom_content
service.web.security.acl.internet
service.web.security.acl.intranet
service.web.security.acl.local_machine
service.web.security.acl.mail
service.web.security.acl.mail_workers
service.web.security.groups
service.web.state

user

user.vendor

user.info

user.email
user.email.account
user.email.signature€urrently unused
user.bookmarks
user.bookmarks.<name>
user.cookies
user.cookies.<name>
user.addressbook
user.addressbook.<name>

February 26, 2001 6:39 pm

The Binder : The Binder Tree
preliminary — content subject to change

page 38

Be Incorporated — Confidential Information

Description: Contents of the beos.binder.service.network node.

API Type: Can be interpreted as JavaScript or C++.
Declared in: A Binder add-on.

This document describes the contents (nodes and properties) of the service.network branch of the
Binder tree. The main Binder tree description is in The Binder Tree section. The network branch is
broken out and described here because of its size.

Note: This information in this documentation is up-to-date, but the explanations,
layout, and formats are preliminary.

1 Concepts

1.1 service/network
service/network is the top level of the network portion of the Binder tree:

'service/network' --> "

+-'country_codes' -->

+-'profiles’ -->

+-'control' -->

e service/network/country_codes is read-only backing store for all the modem country codes used by
the unit's modem. This is pretty much only used by the UI, so most of you can ignore it.

e service/network/profiles is the backing store of network configuration data. It is read/write, but in
practice no current state info is read from it.

e service/network/control is the object used to control networking and monitor status.

1.1.1 service/network/control
The service/network/control object is the most interesting bit (see the Reference section for the full deaD):

'service/network/control’ --> "

I
+'DNS' -->

February 26, 2001 6:39 pm The Binder : The service.network Node page 39
preliminary — content subject to change

Be Incorporated — Confidential Information

+-'status' -->
| *hostname' --> string(‘'gpz.be.com’)
| *'profile’ --> string(‘dhcp’)

+-'interfaces' -->

+-'route’ -->

There are three functions not shown here:

service/network/control/adopt(const char *)
this fuction causes the net node to adopt and use a named profile from the backing store

service/network/control/upQO
this function brings the current profile up

service/network/control/downQ
this function brings the current profile down

1.1.1.1 service/network/control/DNS

service/network/control/DNS is an object that reports the current DNS settings.

1.1.1.2 service/network/control/status

service/network/control/status is an object reflecting the in-kernel state of the network interfaces and
default route. It also reports the name of the current profile being used and the hostname. The status
node is where all current state info should be read from/ observed/etc.

1.1.1.2.1 service/network/control/status/interfaces

service/network/control/status/interfaces is a read-only list of the interfaces as currently configured. Each
interface under interfaces has a number of properties. Using the ppp interface as an example:

+-'status' -->

+-'interfaces' -->

| +Pppp0’ -->

*address' --> string('10.1.1.1")
*pandwidth' --> number(56000.000000)
*hwaddr' --> string(‘unknown")

*index' --> number(4.000000)
*linkmsg' --> string('ok’)

*linkstatus' --> string(‘disconnected')
*mask’ --> string('255.0.0.0")

*'status' --> string(‘down’)

*type' --> string('ppp’)

e address is the current (or last) IP address of the interface.

e bandwidth is the number of bits/sec that the interface can be expected to achieve at max throughput.

e hwaddr is the hardware address of the interface (useful only on ethernet cards).

e index is the internal index number of the interface.

¢ linkmsg and linkstatus are (currently) PPP-specific items that reflect both the detailed current state of
the device, and what happened.

February 26, 2001 6:39 pm The Binder : The service.network Node page 40

preliminary — content subject to change

Be Incorporated — Confidential Information

e linkstatus will have values like connected, dialing, disconnected, etc.

¢ linkmsg will contain the "why" in case an error happens, withsample values like "no carrier", "busy",
"no answer", etc.

e mask is the IP address mask in use.

e status is the current state of the interface. It has three posible values: up, down, or pending. A device
may be pending while dialing, waiting for a DHCP lease, etc.

e type is the type of interface (in this case, ppp). Other values are pppoe, ethernet, or loopback.

1.1.1.2.2 service/network/control/status/route
service/network/control/status/route reports the current in-kernel default route.

Both the default route and each of the interfaces are updated asynchronously when things change in the
kernel. They should be observed. You can poll them if you like, but observing them is much better for
obvious reasons.

1.1.2 service/network/profiles

The service/network/profiles object is the backing store for all network configuration data. I'm not going
to descibe all the many parameters here, but I will give an overview of how it works.

'service/network/profiles' --> "
| *currentprofile’ --> string(‘dhcp”)

+-'custom’ -->

|
‘dhep’ -->

+-'interfaces' -->

+-'ethernet' -->
I
+-'loopback’ -->
I
+'ppp’ -->

ppp’ -->

+
I

I

|

|

I

|

I

|

|
+
|

| +-'interfaces' -->
|1

| +-'ethernet' -->
I
|
I
I
I
+
|
|
|
I
|
|
I
I

+-'loopback’ -->
I
+-'ppp’ -->

-'ppp800" -->

I
+-'interfaces' -->

+-'ethernet’ -->

+-'loopback’ -->
I
+-'ppp’ -->

February 26, 2001 6:39 pm The Binder : The service.network Node page 41
preliminary — content subject to change

Be Incorporated — Confidential Information

I+- pppoe' -->
: |Jr-'interfaces' -->
I I+-'ethernet' -->
I I+-'Ioopback' -->
i I+-'DI0I0' -

+-'staticip’ -->
| *dns_domain' --> string('be.com’)
| *primary_dns' --> string('207.155.183.72")
| ¥*secondary_dns' --> string('206.173.119.72")

+-'interfaces' -->
|

| +-'ethernet' -->
|

| +-'loopback’ -->
|

| +'ppp’ -->

I

+-'route’ -->

service/network/profiles/currentprofile contains the name of the profile to be used on boot by the node.
Ignore service/network/profiles/custom for now, it is not used.

service/network/profiles/dhcp, ppp, pppoe, ppp800, and staticip are what are known as Networking
Profiles. Each Networking Profile contains configuration info for all devices on the system. Essentially
each networking profile is a snapshot of the configuration for each type of use. Each contains an
interfaces object, which is a list of all the interfaces on the device. For all devices so far, this list contains
one ethernet interface, one loopback interface, and one ppp interface. Each of the interface objects in the
list contains various properties used to configure that interface.

The staticip profile also contains backing store for the static IP DNS information and the static IP default
route/gateway.

There are many properties, please see the attached sample files.

1.1.3 service/network/country _codes
The country_codes object is simple:

+-'country_codes' -->
| | *command' --> string(‘+gci=")
|1

| +-'codes' -->

[*Argentina' --> string('07")

(-]
e country_codes/command is the command issued to the modem to use for the country codes.

e country_codes/codes contains a series of codes, one per region.

February 26, 2001 6:39 pm The Binder : The service.network Node page 42
preliminary — content subject to change

Be Incorporated — Confidential Information

2 Reference

'service/network/control' --> "

+-'DNS' -->

*domain' --> string(")

*primary' --> string('207.155.183.72")
*'secondary' --> string('206.173.119.72")

I
I
I
+-

'status' -->
| *hostname' --> string('gpz.be.com’)
| *'profile’ --> string(‘dhcp")

+
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
+

-'interfaces' -->

-'/dev/net/tulip/0' -->
*address' --> string('192.168.1.100")
*bandwidth’ --> number(10000000.000000)
*hwaddr' --> string('00:¢0:f0:37:63:ec’)
*index' --> number(1.000000)
*mask' --> string('255.255.255.0")
*status' --> string(‘'up')
*'type' --> string(‘ethernet’)

+-'loop0' -->

*address' --> string('127.0.0.1")
*pandwidth' --> number(10000000.000000)
*hwaddr' --> string('zen-like'")

*index' --> number(2.000000)

*mask' --> string('255.0.0.0")

*status' --> string(‘'up")

*type' --> string('loopback’)

+pppo0’ -->

*address' --> string('10.1.1.1")
*bandwidth' --> number(56000.000000)
*hwaddr' --> string(‘'unknown’)

*index' --> number(4.000000)
*linkmsg' --> string('ok’)

*linkstatus' --> string(‘disconnected’)
*mask' --> string('255.0.0.0")

*status' --> string(‘down’)

“type’ --> string(‘ppp’)

+-'route’ -->

*address' --> string('192.168.1.1")
*interface' --> string(‘/dev/net/tulip/0")

'service/network' --> "

+-'country_codes' -->

*command' --> string(‘+gci=")

+-'codes' -->

*Argentina’ --> string('07")
*Australia’ --> string('09")
*Austria' --> string(‘0a’)

February 26, 2001 6:39 pm The Binder : The service.network Node

preliminary — content subject to change

page 43

Be Incorporated — Confidential Information

*Belgium' --> string('0f")
*Boliva' --> string('14")
*Brazil' --> string('16")
*Bulgaria’ --> string(‘1b’)
*Canada' --> string('20")
*Chile' --> string('25")
*Columbia' --> string('27")
*Costa Rica' --> string('2b")
*Cyprus' --> string(‘2d')
*Czech Republic' --> string('2e")
*Denmark' --> string('31")
*Ecuador' --> string('35")
*Finland’ --> string(‘3c’)
*France' --> string('3d")
*Germany' --> string('42")
*'Greece' --> string('46")
*Guatemala' --> string('49")
*Hong Kong' --> string('50")
*Hungary' --> string('51")
*|celand' --> string('52")
*India' --> string('53")
*Indonesia’ --> string('54")
*[reland' --> string('57")
*|sreal' --> string('58")

*[taly' --> string('59")

*Japan' --> string('00")
*Korea' --> string('61")
*Liechtenstein' --> string('68")
*Luxembourg' --> string('69’)
*Malaysia' --> string('6c¢’)
*Mexico' --> string('73")
*Netherlands' --> string('7b")
*New Zealand' --> string(‘7e")
*Nicaragua' --> string('7f)
*North America' --> string('b5')
*Norway' --> string('82')
*Pakistan' --> string('84")
*Panama' --> string('85")
*Paraguay' --> string('87")
*People's Republic of China' --> string('26')
*Peru' --> string('88")
*Philippines’ --> string('89')
*Poland' --> string('8a’")
*Portugal’ --> string('8b")
*Puerto Rico' --> string('8c")
*Russia' --> string('b8")
*Saudi Arabia' --> string('98")
*Singapore' --> string('9c’)
*South Africa’ --> string(‘9f')
*Spain' --> string(‘a0’)
*Sweden' --> string('a5')
*Switzerland' --> string(‘a6’)
*Taiwan' --> string('b5")
*Thailand' --> string('a9")
*Turkey' --> string(‘ae’)
*United Kingdom' --> string('b4")
*Uruguay' --> string('b7")
*\enezuela' --> string('bb’)
*Vietnam' --> string('bc’)

February 26, 2001 6:39 pm The Binder : The service.network Node

preliminary — content subject to change

page 44

Be Incorporated — Confidential Information

rofiles' -->
‘currentprofile’ --> string(‘dhcp’)

custom' -->

‘dhcp' -->
I
+-'interfaces' -->
I
+-'ethernet’ -->
| *device' --> string(‘/dev/net/tulip/0")
*dhcp' --> string('1")

I
I
+-'loopback’ -->

| *address'--> string('127.0.0.1")

| *device' --> string('loop0")

| *dhcp' --> string('0")

| *flags' --> string('loopback fastloop noarp’)
| *mask’--> string('255.0.0.0")

I

+-'ppp’ -->
*'device' --> string(‘/dev/ports/serial2’)
*dhcp' --> string('0")
*flags' --> string('ptp’)

I

+

| |*

| |

| +-

||

| +-

| |

||+

| |

||

||

||

|

|

| |

||

||

||

|

|

||

| |

| |

||

|

M

| | +'interfaces' -->
[

| | +-'ethernet' -->

| | | *device'--> string('/dev/net/tulip/0")
|] *dhcp' --> string('0")

||
||
||
|
|
||
||
||
||
|
| |
||
| |
| |
| |
|
| |
||
||
||
| +-
|
||+
||
||
| |

I
I
+-'loopback’ -->

| *address'--> string('127.0.0.1")

| *device' --> string('loop0’)

| *dhcp' --> string('0")

| *flags' --> string('loopback fastloop noarp’)
| *mask’--> string('255.0.0.0")

I

+'ppp’ -->
*'device' --> string(‘/dev/ports/serial2’)
*dhcp' --> string('0")
*dial_prefix' --> string(")
*flags' --> string(‘ptp’)
*hidden_init' --> string(")
*modem_init' --> string('AT")
*password' --> string(‘baron’)
*phone_number' --> string('16503252485")
*ppptype' --> string(‘serial’)
*user_name' --> string(‘bigmp1’)

'ppp80O0' -->
|

+-'interfaces' -->

+-'ethernet’' -->
| *device' --> string(*/dev/net/tulip/0")

February 26, 2001 6:39 pm The Binder : The service.network Node page 45
preliminary — content subject to change

Be Incorporated — Confidential Information

*dhcp' --> string('0")

I
I
+-'loopback’ -->

| *address'--> string('127.0.0.1")

| *device' --> string(‘loop0")

| *dhcp' --> string('0")

| *flags' --> string('loopback fastloop noarp’)
| *mask’ --> string('255.0.0.0")

I

I

I

I

|

I

I

I

I

I

| +'ppp' >

| *'device' --> string(‘/dev/ports/serial2")
| *dhcp' --> string('0")

| *dial_prefix' --> string('9,")

| *flags' --> string('ptp’)

| *hidden_init' --> string(")

| *modem_init' --> string('AT')

| *password' --> string(‘bigmp1")

| *phone_number' --> string('18005551212")
| *ppptype’ --> string('serial’)

| *user_name' --> string(‘baron’)

|

I

+-'interfaces' -->

I

+-'ethernet’ -->

| *device' --> string(‘/dev/net/tulip/0")
*dhcp' --> string('0")

I
I
+-'loopback’ -->

| *address' --> string('127.0.0.1")

| *device' --> string('loop0’)

| *dhcp' --> string('0")

| *flags' --> string('loopback fastloop noarp’)
| *mask’ --> string('255.0.0.0")

I

+-'ppp’ -->
*'device' --> string(‘/dev/net/tulip/0")
*dhcp' --> string('0")
*flags' --> string('ptp")
*password' --> string('bigmp1")
*'ppptype’ --> string(‘pppoe’)
*user_name' --> string(‘baron’)
+-'staticip' -->
| *dns_domain' --> string(‘be.com’)
| *primary_dns' --> string('207.155.183.72")
| *'secondary_dns' --> string('206.173.119.72")
I

+-'interfaces' -->
I

+-'ethernet’' -->

| *address'--> string('192.168.1.69")

| *device' --> string(*/dev/net/tulip/0")

| *dhcp' --> string('0")

| *mask' --> string('255.255.255.0")

I

+-

I

'loopback’ -->

I
I
|
|
I
I
I
I
|
I
I
I
I
I
|
I
I
I
I
|
|
I
I
I
I
|
|
I
I
I
I
|
I
I
I
I
I
|
I
I
I
I
|
|
I
I
I
I
|
I
I
I
I
I
|
I
I
I
[*address' --> string('127.0.0.1")

February 26, 2001 6:39 pm The Binder : The service.network Node page 46
preliminary — content subject to change

Be Incorporated — Confidential Information

I
I
I
I
I
o

*device' --> string('loop0")

*dhcp' --> string('0")

*flags' --> string('loopback fastloop noarp’)
*mask' --> string('255.0.0.0")

ppp’ -->

*'device' --> string(‘/dev/ports/serial2’)
*dhcp' --> string(‘0")

*flags' --> string('ptp")

+-'route’ -->

*address' --> string('192.168.1.1")
*interface' --> string(‘/dev/net/tulip/0")

+-'control' -->

+-'DNS' -->

*domain' --> string(")

*primary' --> string('207.155.183.72")
*'secondary' --> string('206.173.119.72")

I
I
I
+-'status' -->

| *hostname' --> string('gpz.be.com’)
| *'profile’ --> string(‘dhcp”)

+
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
+

-'interfaces' -->

-'/dev/net/tulip/0' -->
*address' --> string('192.168.1.100")
*pandwidth' --> number(10000000.000000)
*hwaddr' --> string('00:c0:f0:37:63:ec’)
*index' --> number(1.000000)
*mask' --> string('255.255.255.0")
*'status' --> string('up’)
*type' --> string(‘ethernet’)

+-'loopQ’ -->

*address' --> string('127.0.0.1")
*bandwidth' --> number(10000000.000000)
*hwaddr' --> string(‘zen-like")

*index' --> number(2.000000)

*mask' --> string('255.0.0.0")

*status' --> string('up’)

*type' --> string(‘'loopback’)

+'ppp0’ -->

*address' --> string('10.1.1.1")
*pandwidth' --> number(56000.000000)
*hwaddr' --> string(‘'unknown’)

*index' --> number(4.000000)
*linkmsg' --> string('ok’)

*linkstatus' --> string(‘disconnected')
*mask' --> string('255.0.0.0")

*'status' --> string(‘down’)

*'type’ --> string('ppp’)

+-'route’ -->

*address' --> string('192.168.1.1")
*interface' --> string(‘/dev/net/tulip/0")

February 26, 2001 6:39 pm

The Binder : The service.network Node
preliminary — content subject to change

page 47

Be Incorporated — Confidential Information

'service
| *cur

/network/profiles’ --> "
rentprofile' --> string(‘dhcp’)

+-'custom’ -->

+-

*'device' --> string(‘/dev/ports/serial2")
*dhcp' --> string('0")

*dial_prefix' --> string(")

*flags' --> string('ptp")

*hidden_init' --> string(")

*modem_init' --> string(‘AT")

*password' --> string('bigmp1")
*phone_number' --> string('16503252485")
*ppptype' --> string('serial’)

*user_name' --> string('baron’)

-'ppp800" -->

I
+-'interfaces' -->

+-'dhcp' -->

|1

| +-'interfaces' -->

||

| +-'ethernet' -->

| | *device'--> string(‘/dev/net/tulip/0")
| | *dhcp'--> string('1")

|1

| +-'loopback’ -->

| | *address'-->string('127.0.0.1")
| | *device'--> string('loop0")

| | *dhcp'--> string('0")

| | *flags' --> string('loopback fastloop noarp')
| | *mask'--> string('255.0.0.0")
||

| +'ppp' >

[*device' --> string(‘/dev/ports/serial2")
[*dhcp' --> string('0")

[*flags' --> string('ptp")

|

+-'ppp’ -->

|

| +-'interfaces' -->

|

| +-'ethernet' -->

| | *device'--> string('/dev/net/tulip/0’)
| | *dhcp'--> string('0")

||

| +-'loopback’ -->

| | *address'-->string('127.0.0.1")
| | *device'--> string(‘loop0’)

| | *dhcp'--> string('0")

| | *flags'--> string('loopback fastloop noarp’)
| | *mask'--> string('255.0.0.0")
||

| +'ppp’-->

|

I

I

I

I

|

|

I

I

I

I

+

I

I

I

I

‘ethernet’ -->

February 26

, 2001 6:39 pm The Binder : The service.network Node
preliminary — content subject to change

page 48

Be Incorporated — Confidential Information

I
I
|
I
I
I
I
I
|
I
|+
I
I
|
|
I
I
I
I
|
|
I

I
+-
I
I
I

+-

I
I
I
I
I
+-

*device' --> string(‘/dev/net/tulip/0")
*dhcp' --> string(‘0")

'loopback’ -->

*'device' --> string('loop0")

*dhcp' --> string('0")

flags' --> string(‘loopback fastloop noarp)
*mask' --> string('255.0.0.0")

[

[

I

+-

| *address' --> string('127.0.0.1")
[

[

[

I

[

‘Ppp’ -->
*'device' --> string(‘/dev/ports/serial2")
*dhcp' --> string('0")
*dial_prefix' --> string('9,")
*flags' --> string(‘ptp")
*hidden_init' --> string(")
*modem_init' --> string('AT")
*password' --> string('bigmp1")
*phone_number' --> string('18005551212")
*ppptype' --> string(‘serial’)
*user_name' --> string(‘baron’)

+-'interfaces' -->

‘ethernet' -->
*device' --> string('/dev/net/tulip/0")
*dhcp' --> string('0")

'loopback’ -->
*address' --> string('127.0.0.1")
*device' --> string(‘'loop0")
*dhcp' --> string('0")
*flags' --> string(‘loopback fastloop noarp')
*mask' --> string('255.0.0.0")

'ppp’ -->
*'device' --> string(‘/dev/net/tulip/0")
*dhcp' --> string('0")
*flags' --> string(‘ptp’)
*password' --> string('bigmp1")
*ppptype’ --> string(‘pppoe’)
*'user_name' --> string(‘baron’)

+-'staticip’ -->

| *d
| *p

ns_domain' --> string(‘be.com’)
rimary_dns' --> string('10.0.0.2")

| *secondary_dns' --> string(*10.0.0.4")

+
K
| +
N
N
N
N
K
| +

-'interfaces' -->

‘ethernet’ -->
*'address' --> string('192.168.1.69")
*device' --> string(‘/dev/net/tulip/0")
*dhcp' --> string('0")
*mask' --> string('255.255.255.0")

'loopback’ -->

February 26,

2001 6:39 pm The Binder : The service.network Node
preliminary — content subject to change

page 49

Be Incorporated — Confidential Information

| *address' --> string('127.0.0.1")

| *device' --> string(‘loop0’)

| *dhcp’ --> string('0")

| *flags' --> string('loopback fastloop noarp')
| *mask' --> string('255.0.0.0")
I
+-

I
I
I
I
I
I
| +'ppp’ -->

| *device' --> string(‘/dev/ports/serial2’)
| *dhcp' --> string('0")

| *flags' --> string(‘ptp")

I

+

-'route’ -->
*address' --> string('192.168.1.1")
*interface' --> string(‘/dev/net/tulip/0’)

February 26, 2001 6:39 pm The Binder : The service.network Node page 50
preliminary — content subject to change

Be Incorporated — Confidential Information

API Type: Command line program

Description: Communicates with the Binder
Declared in: /boot/beos/bin/binder

binder is a command-line program that communicates with the Binder. binder lets you examine the
structure of the Binder tree, and lets you get, set, and create properties (permissions allowing).
Currently, it doesn’t let you create new nodes or let you examine a property’s permissions.

binder is provided as a debugging tool. Its primary usefulness is in letting you look at the branches and
values in the Binder tree, particularly if you're running Wagner at the same time. For example, you can
invoke a Binder-setting part of the Wagner interface, and then use binder to check that the setting value
was properly implanted. Using binder to set or create properties, except as a learning experience, is a
misuse of the tool.

1 Running binder

To run binder , the smooved daemon must be running and you must have a bterm or Terminal window
open. Note that Wagner doesn’t have to be running to use binder .

Note: If you're on a BelA device, type alt+g to drop into the desktop environment, and
then bring up a bterm window. The device must be in tools mode for this to
work. See Boot Modefor details.

Type binder in the bterm /Terminal window to execute a Binder request. binder doesn’t set up an
“environment”—it executes the request and immediately returns you to the terminal’s prompt.

2 Syntax
binder [dir | rdir | get| put] property [value]

binder executes a value setting or getting operation on the specified Binder property. The operations are:

e dir - list the properties in property (which must be a node). If you don’t specify a property , the
subroot nodes are listed.

e rdir - display a tree of nodes and properties starting at property (which must be a node).
e get - print the value of property (which can be a simple property or a node).

e put - set the value of property (which must be a simple property) to value .

March 7, 2001 5:02 pm The Binder : The binder Program page 51
preliminary — content subject to change

Be Incorporated — Confidential Information

property is given as a slash-delimited path, with the root node (beos.binder) assumed. For example,
to list the properties in the beos.binder.service.web , you would type this:

$ binder dir service/web

You can’t use index notation (i.e. no node[n] expressions), but you can represent the current user

“ _»

account as “~”:
$ binder dir user/~

To protect a property name that contains whitespace, protect the name with single quotes (not double
quotes!):

$ binder get user/~/bookmarks/'Welcome to Be!'

value is taken as a string. Use quotes (single or double) to protect the string if it contains whitespace.

2.1 Listing Properties
The dir operator lists the properties in a node. Each listed property is given as
‘name' --> 'value'

Properties that have a value of “‘<object>"" are nodes. Properties that are “unkown!” were declared as
undefined in the XML root file. For simple properties, the actual value is given (in single quotes).

For example, the listing for service.web looks like this:

$ binder dir service/web
‘cache' --> '<object>'
'macros' --> '<object>'
‘navigator' --> '<object>'
‘proxy" --> '<object>'
'security’ --> '<object>'
'state' --> unknown!

The state property was declared as undefined; all other properties are nodes.
The listing for service.system (which contains simple properties) will look something like this:

$ binder dir service/system
‘altg' -->'1'

‘bootmode’ --> 'tools'
‘build' -->'2000.09.11"
'‘product’ --> 'BelA'

If you exclude the property argument, you get the listing for the root node:

$ binder dir

‘application’ --> '<object>'
'service' --> '<object>"'
‘user' --> '<object>"'

2.2 Displaying a Tree
The rdir operator displays a tree of nodes and properties in a node. For example, this command...
$ binder rdir service/web/security/web
...produces this output:

'service/web/security' --> '<object>'

+-'acl' --> '<object>'

March 7, 2001 5:02 pm The Binder : The binder Program page 52
preliminary — content subject to change

Be Incorporated — Confidential Information

- 'custom_content' --> '<object>'
*custom_content' --> 'grant’
*'mail_workers' --> 'grant’

—_— =

| *custom_content' --> ‘grant'
I
+- 'internet' --> '<object>'
| *all'-->'grant'
and so on

I
I
|
I
I
| +-'intranet' --> '<object>'
I
I
|
I

2.3 Getting a Property Value
To get the value of a single property, use the get operator:

$ binder get service/system/bootmode
tools

The value is given unquoted. Nodes are given as “<object>":

$ binder get service
<object>

2.4 Setting a Property Value
To set the value of a single property, use the put operator:
$ binder put user/~/bookmarks/'Search Engine' http://www.google.com

If the property doesn’t exist and the parent node is writable, the property is created.

3 Updating the Binder XML File

Just like any other Binder data, properties added or modified by binder are written to the Binder’s
backing store, according to the rules given in “2.3 File Synchronization” in Introduction to the Binder.

March 7, 2001 5:02 pm The Binder : The binder Program page 53
preliminary — content subject to change

Be Incorporated — Confidential Information

March 7, 2001 5:02 pm The Binder : The binder Program page 54
preliminary — content subject to change

	Introduction to the Binder
	1��� Binder Architecture and Access
	2��� The XML Binder Description File
	2.1��� The user–record.skel File
	2.2��� Referring to Other Files
	2.3��� File Synchronization
	2.4��� Vendor Files

	3��� Predefined Binder Nodes
	3.1��� The user Subroot
	3.1.1��� The User Account Template
	3.1.2��� Adding Vendor-defined Nodes and Properties
	3.1.3��� User Account Files
	3.1.4��� The Current User
	3.1.5��� Adding and Removing User Accounts

	3.2��� The service Subroot
	3.2.1��� The service.vendor Node

	3.3��� The application Subroot

	Binder JavaScript
	1��� Identifying a Property
	1.1��� Iterating over a Node’s Properties
	1.2��� Functional Properties

	2��� Property Permission
	3��� Property Values
	3.1��� Getting a Property Value
	3.2��� Testing a Property Value’s Data Type
	3.3��� Setting a Property Value

	4��� Monitoring Properties
	5��� Creating a Property
	6��� Deleting a Property
	7��� Creating a Node
	8��� Property Objects and Reference Counting

	The Binder XML Format
	1��� Files
	1.1��� Synchronization with the Binder

	2��� File Structure
	3��� Elements
	binder-object
	include
	inherit
	mountpoint
	number
	object
	overlay
	prototype
	skel
	string
	undefined

	4��� Attributes
	name
	ordered
	perms

	The Binder Tree
	1��� The Root File (The binder Node)
	1.1��� application
	1.2��� service
	1.2.1��� service.audio Currently unused
	1.2.2��� service.auto_mounter
	1.2.3��� service.locale
	1.2.4��� service.network
	1.2.5��� service.printing
	1.2.6��� service.softkeyboard
	1.2.7��� service.system
	1.2.8��� service.system.bios_node
	1.2.9��� service.updater
	1.2.10��� service.vendor
	1.2.11��� service.video Currently unused
	1.2.12��� service.web

	1.3��� user

	2��� Vendor-specific Extensions to the Root File
	2.1��� service
	2.1.1��� service.auto_mounter

	3��� Device-specific Extensions to the Root File
	3.1��� service
	3.1.1��� service.system

	4��� The User Account Template
	4.1��� user
	4.1.1��� user.vendor
	4.1.2��� user.info
	4.1.3��� user.email
	4.1.4��� user.bookmarks
	4.1.5��� user.cookies
	4.1.6��� user.addressbook

	5��� Node Map

	The service.network Node
	1��� Concepts
	1.1��� service/network
	1.1.1��� service/network/control
	1.1.2��� service/network/profiles
	1.1.3��� service/network/country_codes

	2��� Reference

	The binder Program
	1��� Running binder
	2��� Syntax
	2.1��� Listing Properties
	2.2��� Displaying a Tree
	2.3��� Getting a Property Value
	2.4��� Setting a Property Value

	3��� Updating the Binder XML File

