
 

 April 11, 2001 

 

UI Customization :   

 

page 1

 

preliminary — content subject to change

 

Be Incorporated — Confidential Information

 

UI Customization

 

This document is confidential and may not be distributed without the permission of Be Inc.



 

Be Incorporated — Confidential Information

 

April 11, 2001 

 

UI Customization :   

 

page 2

 

preliminary — content subject to change

 

copyright ©  2000 Be Incorporated 



 

 April 11, 2001 4:14 pm

 

Chapter Title :  Section Title

 

page 3

 

preliminary — content subject to change

 

Be Incorporated — Confidential Information

 

Customizing BeIA

 

Table of Contents

 

Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

 

1

 

  

 

Programming Languages and Formats

 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

 

2

 

  

 

Sample Configuration

 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

 

3

 

  

 

Directory Structure

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

 

3.1

 

  Sharing Files Between Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

 

4

 

  

 

Configuration Variables

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

 

4.1

 

  The LANGUAGE Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

 

4.2

 

  The RESOURCES Variable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

 

5

 

  

 

Localization

 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

 

6

 

  

 

The Entry Point Files

 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

 

7

 

  

 

The Content Area

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

 

7.1

 

  Creating the Content Frame  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

 

7.2

 

  Special Treatment of the Content Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

 

7.2.1

 

  References to the Top Frame from within HTML. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

 

7.2.2

 

  References to the Top Frame from within JavaScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

 

8

 

  

 

Alerts

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

 

Design Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

 

1

 

  

 

The Audience

 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

 

2

 

  

 

The Browser

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

 

3

 

  

 

Controls

 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

 

3.1

 

  Labels  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

 

4

 

  

 

Panes

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

 

5

 

  

 

Feedback and Alerts

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

 

6

 

  

 

Settings panels

 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

 

7

 

  

 

Technical Considerations

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

 

8

 

  

 

Recommended Reading

 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16



 

Be Incorporated — Confidential Information

 

April 11, 2001 4:14 pm

 

Chapter Title :  Section Title

 

page 4

 

preliminary — content subject to change

 

JavaScript Layout Concepts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

 

1

 

  

 

Prerequisites

 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

 

2

 

  

 

Fundamental Concepts

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

 

2.1

 

  Abstract the Creation of HTML Markup into HTML-Generating JavaScript Objects  . . . . . . . . . . . 17

 

2.2

 

  Layout Objects: LayoutFrames and LayoutBags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

 

2.3

 

  Features and Modes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

 

2.3.1

 

  Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

 

2.3.2

 

  Modes and Mode Clusters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

 

2.3.3

 

  The be_refresh() Function  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

 

2.3.4

 

  Activation and Deactivation Hooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

 

2.3.4.1

 

  Activation/Deactivation Function Vetoes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

 

2.4

 

  Hiding and Showing Layout Objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

 

2.5

 

  Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

 

3

 

  

 

A Larger Example: The Flag Demo

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

 

3.1

 

  What Does the Flag Demo Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

 

3.2

 

  Where to Start?:  The ui_custom.js File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

 

3.3

 

  Auxiliary Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

 

3.3.1

 

  The buttons.html File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

 

3.4

 

  The ui_custom.js Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

 

3.4.1

 

  initUIDefines() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

 

3.4.2

 

  initUIState() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

 

3.4.3

 

  initUILayout(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

 

3.4.3.1

 

  Placing your UI in the BeIA Global Namespace  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

 

3.4.3.2

 

  Getting the Desired Left to Right Layout at the Top Level . . . . . . . . . . . . . . . . . . . . . . . . . . 33

 

3.4.3.3

 

  Controlling the Layout Elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

 

JavaScript Layout Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

 

1

 

  

 

Introduction

 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

 

1.1

 

  Layout Objects: LayoutFrames and LayoutBags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

 

1.2

 

  Visibility, Features and Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

 

1.2.1

 

  Zero-Pixel Hiding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

 

1.2.2

 

  Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

 

1.2.3

 

  Modes and Mode Clusters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

 

1.3

 

  Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

 

2

 

  

 

Class and Function Reference

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

 

2.1

 

  Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

 

2.2

 

  Layout Classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

 

class LayoutBag

 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

 

class LayoutFrame

 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

 

2.3

 

  Global Layout-Related Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

 

Feature-Related API Functions

 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

 

Mode API Functions

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

 

Miscellaneous Related Functions

 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

 

The Toolbar  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

 

1

 

  

 

Changing the Appearance of the Toolbar

 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

 

1.1

 

  Changing the Appearance of Toolbar Buttons  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

 

1.2

 

  Changing Toolbar Layout and Other Appearance Properties with the “toolbar.html” File  . . . . . . 47



 

April 11, 2001 4:14 pm

 

Chapter Title :  Section Title

 

page 5

 

preliminary — content subject to change

 

Be Incorporated — Confidential Information

 

Bookmarks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

 

1

 

  

 

How the Bookmarks Interface Works

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

 

2

 

  

 

Changing the Appearance of the Bookmarks Interface

 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

 

2.1

 

  Changing the Appearance of Bookmark Controls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

 

2.1.1

 

   Names and Locations of the Bookmark Controls Image Files . . . . . . . . . . . . . . . . . . . . . . . . 50

 

2.2

 

  How to Change the Look of Buttons—Advanced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

 

2.3

 

  Changing Bookmark Layout and Other Appearance Properties with the “index.html” File . . . . . 51

 

3

 

  

 

Preconfiguring the Favorites List

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

 

3.1

 

  “Favorites” File Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

 

Buttons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

 

1

 

  

 

An Example of Button Images in Action

 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

 

2

 

  

 

The General Button Image Schema

 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

 

2.1

 

  Location of Button Image Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

 

2.2

 

  Button Image File Formats and Suffixes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

 

2.3

 

  Button Image Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

 

3

 

  

 

Button Sizes

 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

 

4

 

  PNG vs. GIF Button Images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Alerts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

1  The Alert Template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
1.1  A One Button Alert  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
1.2  A Two Button Alert  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2  The Alert Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3  Invoking the Alert Script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.1  Through C++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2  Through JavaScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.3  Through TellBrowser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61



Be Incorporated — Confidential Information

April 11, 2001 4:14 pm Chapter Title :  Section Title page 6
preliminary — content subject to change

Special Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

1  The Special Key Mapping File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2  Actions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.1  Built-in Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.2  Shell Scripts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.3  JavaScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3  Modifying Special Keys Mappings and Functionality  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

1  Browser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
1.1  Bad beos:// URL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
1.2  Bad file:// URL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
1.3  Bad http:// URL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
1.4  Unsupported Content or Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
1.5  Password Request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2  General Errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3  The Update Mechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4  Midi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5  Printer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6  RealPlayer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.1  Clip Info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.2  Authentication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.3  Error Templates  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.4  Error codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7  SmartCard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

8  Error-less Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77



April 11, 2001 4:14 pm Chapter Title :  Section Title page 7
preliminary — content subject to change

Be Incorporated — Confidential Information

User Interface Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

1  /boot/custom/cgi-bin/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2  /boot/custom/resources/$LANGUAGE/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
2.1  /boot/custom/resources/$LANGUAGE/Alerts/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
2.2  /boot/custom/resources/$LANGUAGE/Bookmarks/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
2.3  /boot/custom/resources/$LANGUAGE/Cursors/. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2.4  /boot/custom/resources/$LANGUAGE/Days/. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2.5  /boot/custom/resources/$LANGUAGE/Errors/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2.5.1  /boot/custom/resources/$LANGUAGE/Errors/template/  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
2.6  /boot/custom/resources/$LANGUAGE/glyphs/  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
2.7  /boot/custom/resources/$LANGUAGE/Home/. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
2.8  /boot/custom/resources/$LANGUAGE/Intro/. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
2.8.1  /boot/custom/resources/$LANGUAGE/Intro/WelcomeImages/  . . . . . . . . . . . . . . . . . . . . . . . 83
2.9  /boot/custom/resources/$LANGUAGE/MediaBar/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
2.10  /boot/custom/resources/$LANGUAGE/Months/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
2.11  /boot/custom/resources/$LANGUAGE/PopUpDecor/. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
2.12  /boot/custom/resources/$LANGUAGE/Settings/. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
2.12.1  /boot/custom/resources/$LANGUAGE/Settings/widgets/ . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
2.13  /boot/custom/resources/$LANGUAGE/SoftKeyboard/  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
2.13.1  /boot/custom/resources/$LANGUAGE/SoftKeyboard/key_graphics . . . . . . . . . . . . . . . . . . . 85
2.14  /boot/custom/resources/$LANGUAGE/Time/. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
2.15  /boot/custom/resources/$LANGUAGE/Toolbar/  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
2.15.1  /boot/custom/resources/$LANGUAGE/Toolbar/Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3  /boot/custom/resources/scripts/. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4  /boot/custom/sounds/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5  /boot/custom/special_keys/  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6  /boot/home/config/settings/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88



Be Incorporated — Confidential Information

April 11, 2001 4:14 pm Chapter Title :  Section Title page 8
preliminary — content subject to change



 April 11, 2001 4:14 pm UI Customization :  Introduction page 9
preliminary — content subject to change

Be Incorporated — Confidential Information

UI Customization

Introduction

Almost all graphical aspects of the BeIA browser—from the layout of the top level frames, to the images 
that are used for the cursors and toolbar buttons—can be customized.  The only graphical elements that 
aren’t customizable are scrollbars and the control objects used in Web forms (buttons, checkboxes, etc.).

This document describes the configuration environment—the languages and formats you’ll use, the 
directory structure the browser expects, the files you must supply—in which you create your customized 
interface.

1   Programming Languages and Formats

All of the customizable components of the interface are defined in or loaded by HTML pages.  These 
pages can be static or created dynamically through JavaScript and cgi-bin scripts.  The customization 
work that you’ll do will involve editing or replacing these HTML files (or the image files that they load).  
See “Web Browser” in the BeIA Technical Specification for descriptions of the languages and formats that 
the BeIA browser understands.  Briefly, the browser supports most of HTML 4.0, JavaScript 1.3, Cascading 
Style Sheets (CSS1 and CSS2), and DHTML.  The browser can display images in GIF, JPEG, and PNG 
format.  

In addition to the off-the-shelf languages and formats, BeIA provides these native extensions:

• The beos  JavaScript object provides some simple program-launching and message-sending functions.  
The beos  JavaScript object is described in the BeIA JavaScript chapter. 

• The beos.binder  JavaScript object represents the Binder, a tree of global data that lets you 
communicate with the browser and other BeIA services.  For example, you use the beos.binder  
object to ask for information about the machine’s Internet connection.   The Binder is described in the 
BeIA Binder chapter.

• The JavaScript Layout Engine is a software kit of JavaScript classes and functions that you use to 
layout the frames and other elements of your UI.  The JavaScript Layout Engine is described in the 
JavaScript Layout Concepts and JavaScript Layout Reference sections of this chapter.  

Note: The JavaScript Layout Engine is the latest addition to the BeIA UI tools.  Its
adoption makes some of the following documentation obsolete.  The general
principles layed out here still apply, but the tools through which you build the
interface are much simpler and much more organized than the rest of this
introductory section implies.

• A browser plug-in API (C++) is provided.  This API lets you create “modules” that are loaded and 
executed by the browser.  << The plug-in API isn’t available yet. >>



Be Incorporated — Confidential Information

April 11, 2001 4:14 pm UI Customization :  Introduction page 10
preliminary — content subject to change

2   Sample Configuration

A sample configuration is included with BeIA.  The sample provides a directory structure that contains all 
the files that are needed to to create a complete user interface.

The sample configuration comprises all files that you’ll find in the /boot/custom/resources  directory, as 
described in the next section.

3   Directory Structure

The BeIA file system contains the directory /boot/custom/resources .  Each configuration that you 
create (i.e. each independent set of configuration files) must be placed in a separate subdirectory of 
/boot/custom/resources .  

For example, let’s say you have localized configurations for English, French, and German.  To keep the 
configurations separate, you would put them in separate subdirectories (by convention, languages are 
represented by ISO two-character names):

/boot/custom/resources/en
/boot/custom/resources/fr
/boot/custom/resources/de

3.1   Sharing Files Between Configurations

You can use symbolic links to share files between configurations.

4   Configuration Variables

There are two configuration variables:  LANGUAGE and RESOURCES.

4.1   The LANGUAGE Variable

To tell the browser which configuration subdirectory you want it to use, you set the LANGUAGE variable to 
the name of the subdirectory (en, en/Finance , Finance/en , etc.).  Currently, the LANGUAGE variable is set 
when the user chooses a language in the Language Settings panel, and its value is brought out as a global 
value through the Binder.

4.2   The RESOURCES Variable

The browser defines the RESOURCES variable and initializes it to

/boot/custom/resources/$LANGUAGE

The RESOURCES value is prepended to all relative pathnames that are referred to from HTML pages that 
are loaded by the browser.  For example, in a tag such as this...

<A HREF="Alerts/alert1.html">

... the HREF points to the file /boot/custom/resources/$LANGUAGE/Alerts/alert1.html .

The LANGUAGE component is evaluated every time RESOURCES is evaluated.  Thus, if you update LANGUAGE, 
all subsequent references to RESOURCES will be aware of the change.



April 11, 2001 4:14 pm UI Customization :  Introduction page 11
preliminary — content subject to change

Be Incorporated — Confidential Information

You can refer to RESOURCES anywhere you want in your own HTML code.

Keep in mind that the RESOURCES is “owned” by the browser.  You never set it yourself—in other words, 
you must never send a message to beos telling it to set the value of RESOURCES.

5   Localization

Currently, BeIA doesn’t provide any tools to help you create the content of your localized interface.  But 
here’s what you need to do:

• Create a new project by copying and renaming an existing subdirectory of /boot/custom/resources .

• Translate all the hard-coded strings in your project’s files.  The “User Interface Files” and “Errors and 
UI Strings” files should help you locate most of the files that contain text.  Note that a number of 
graphics contain text as well.

• Set the LANGUAGE variable to point to your localized project, or edit the 
/boot/custom/resources/$LANGUAGE/Settings/Languages.html file to allow the user to choose 
your localized version.  If your system supports more than one language, you’ll need to edit the 
Languages.html  files in each project under /boot/custom/resources .  

6   The Entry Point Files

When the BeIA browser is launched, it loads one of three HTML files:

• $RESOURCES/firstboot.html  is loaded when the BeIA device is booted for the first time.  The file 
(typically) contains a welcome message and initial instructions for the first-time user.

• $RESOURCES/login.html  is loaded on subsequent boots.  It prompts the user for a name and 
password (for example), and generally acts as a security manager for the device.  This file may also be 
loaded when a sleeping device is woken up.

• $RESOURCES/index.html  is loaded after the user has gained access to the device.  This is the 
browser’s primary entry point into your configuration:  Essentially everything the browser displays 
during normal operation is “loaded” by this file, either directly or through referred files.  In the sample 
configuration, $RESOURCES/index.html  lays out the main areas that the browser displays (toolbar, 
“tab bar”, content area) by defining and a set of frames.  

You can modify or replace the entry point files, but keep in mind that they must exist.

How a device decides which page to display (i.e. between the first boot page and the login page) 
depends on its “boot mode,” as described in “Boot Mode” in the The BeIA User Interface.

7   The Content Area

The BeIA browser takes over the entire screen.  It’s assumed that you’ll want to divide this overall area 
into “task-specific” areas:  You’ll want an area for a toolbar, another area for branding, another for 
advertisements, and, most important, you’ll want a content area that displays pages that are downloaded 
from the Web.  



Be Incorporated — Confidential Information

April 11, 2001 4:14 pm UI Customization :  Introduction page 12
preliminary — content subject to change

7.1   Creating the Content Frame

All browser configurations are expected to define an HTML frame for the content area.  You must set the 
name of this frame to “_be:content”.  For example:

<FRAME SRC="home_page" NAME="_be:content" NORESIZE et al. '>

7.2   Special Treatment of the Content Frame

The content frame (i.e. the frame named “_be:content”) is treated specially by the browser:  A reference 
to the top frame, when made from an HTML file that’s loaded into the content area, resolves to the 
content frame.   In this way, the browser prevents Web pages from accessing frames that are “above” the 
content frame.

7.2.1   References to the Top Frame from within HTML

From within HTML, references to the top frame occur when a target  attribute is set to “_top”.  For 
example, let’s say the user loads a Web page that contains a statement such as this:

<a href="some_file.html" target="_top"> click here to refresh </a>

The browser traps the reference to “_top” and replaces it with “_be:content”.  Similarly, a target of 
“_parent” directly within the content frame is replaced with “_be:content”.

7.2.2   References to the Top Frame from within JavaScript

In JavaScript, references to the top  object, which represents the top frame, are replaced by refrences to 
the “_be:content” frame.  For example, if a page in the content frame tries to change the background 
color of the top frame thus...

top.document.bgColor="blue"

...the browser will catch the top reference and convert it to the “_be:content” frame.

8   Alerts

When an error occurs (the browser can’t get to the network, can’t load the requested page, can’t find a 
printer, and so on), an error code is sent back to the browser.  To report the error to the user, the 
browser displays an alert.  In BeIA, an alert is a dynamically-created HTML page that combines an alert 
template (which defines the layout of the HTML page) with some alert content (the text that’s displayed in 
the page).  The alert page is then displayed in the browser’s content area.

For more on alerts, see ”Alerts.”



 April 11, 2001 4:14 pm UI Customization :  Design Considerations page 13
preliminary — content subject to change

Be Incorporated — Confidential Information

UI Customization

Design Considerations

1   The Audience

BeIA was created to run on devices that are focused on a particular subset of a traditional PC's sprawling 
functionality.  This is a blessing for designers in that the user is specifically defined, and design solutions 
can cater to them directly. Of course, this requires an intimate understanding of the market for which the 
product is destined. Before undertaking a BeIA interface, make sure you know how the user that will 
ultimately make use of your product, and plan to test your work with representative subjects early and 
often.

2   The Browser

The technical foundation of BeIA is a combination of BeOS and a highly customized Opera browser. On 
startup, BeIA launches immediately into Opera, which takes over the full screen. Designing for Opera is 
a welcome relief for designers struggling to reconcile the ever-changing demands of competing browsers. 
Opera is known for rigorous adherence to HTML standards, and creators can be assured that their users 
will view the UI as it was intended—via a single, predictable application.

Unlike a PC-based browser, BeIA's Opera has no application-specific controls. Its HTML rendering space 
spans the screen edge-to-edge, allowing its controls to be designed and displayed using the same graphic 
resources web designers have come to take for granted. This flexibility is a double-edged sword—a 
HTML-based user interface raises the risk of easy confusion between control and content. Take care to 
choose a look and feel that will readily distinguish between the two.

3   Controls

Depending on your application of BeIA, your control set will obviously vary. Some general guidelines:

• Remember that the elegance of the Internet Appliance comes from its deliberately focused feature set. 
Resist the temptation to make your product a limited PC. Make it a robust appliance instead.

• Ideally, a well-focused Internet Appliance can expose all of its main controls without cluttering or 
confusing the user experience. Notably excepted from this guideline are secondary, seldom-used 
controls (such as settings), which are certainly appropriate to move to a different level (such as a 
different screen). Just ensure that it is easy to get to settings from the main screen, and easy to get 
back to the main screen from settings screens.

• If your BeIA application provides a browser interface allowing your user to view internet content, 
strive to balance the user's need to have clear, simple, and easy to use controls with their desire to 
view content quickly and efficiently. Control size should be generous enough to be comfortably used 
by a wide range of users with varied manual dexterity. Simultaneously, your control area should not 



Be Incorporated — Confidential Information

April 11, 2001 4:14 pm UI Customization :  Design Considerations page 14
preliminary — content subject to change

be so large as to usurp too much valuable screen real estate that the user would prefer to use for 
content viewing. Strive to limit your control-to-content area ratio to a maximum of 15%.

• BeIA is tremendously flexible from a graphic perspective. Designers are encouraged to use this to its 
full aesthetic advantage, but strive to maintain a reliable, functional control language. Graphically tell 
the user what to expect through consistent treatment of object vocabulary and state. Which elements 
are interactive, which provide information, and which are decorative? How do control elements 
behave when clicked, rolled over, or disabled? How does the user know an action has begun or 
completed?

• Controls that fall into natural functional groups should be associated by both proximity and 
appearance (similar size, shape and graphic vocabulary). When possible, further distinguish controls 
through hierarchy by graphically emphasizing important or frequently-used functions. (For example; 
“Play”, “Stop”, “Fast Forward”, and “Rewind” buttons in an MP3 appliance could have the same visual 
style [background and foreground color, etc.], but the “Fast Forward” and “Rewind” buttons could be 
slightly smaller, to emphasize the fact that they are extra, rather than basic, controls.) Conversely, 
beware inadvertent associations between unrelated controls that may share similar appearances or 
groupings.

• While considering the arrangements of your controls, keep basic graphic design principles in mind. 
Establish a layout grid when appropriate, and mind typographic conventions.

3.1   Labels

All controls need some sort of label to identify their function. These labels can be either iconographic or 
text-based, but keep the following caveats in mind:

• Label controls of similar hierarchical importance or function consistently. Example: Don’t label a play 
button with a forward triangle and a stop button with the word “Stop”

• When using text labels, keep in mind that as your UI is translated into other languages, the length of 
your text string could vary greatly.

• When using icons, maintain visual and stylistic similarity to avoid user confusion. This is especially 
true if using photo-realistic icons, which must be carefully managed to be visually consistent with 
each other and other UI elements.

• Remember that an icon that seems “obvious” to you may not seem so obvious to another person in a 
different culture (or might have an obvious meaning different than what you intended). It’s common 
today for photocopiers to ship with only icons on their buttons—and an accompanying “cheat sheet” 
that lists what those “obvious” icons actually mean. Don’t make that mistake. Go to the trouble to 
make sure an icon is really clear, or provide an accompanying text label.

4   Panes

In keeping with the ideal that all relevant information is always available to the user, BeIA interfaces 
seldom use multiple overlapping windows that may obscure content or controls. However, it's often 
necessary to visually and organizationally subdivide the display into discrete areas.

To accomplish this, BeIA makes use of panes, which are technically analogous to frames in a Web page. 
Panes can be opened, closed, expanded, and minimized, via JavaScript automation or user control. The 
chief distinction between windows and panes is that the panes are placed alongside one another, 
expanding and contracting as necessary to fit onscreen. Panes never overlap.

Panes are best used in situations where the user is cross-referencing two (or more) tasks that are at least 
peripherally related, or which make sense to do in parallel, i.e.:



April 11, 2001 4:14 pm UI Customization :  Design Considerations page 15
preliminary — content subject to change

Be Incorporated — Confidential Information

• Listening to an MP3 while browsing the web (having the volume control and playlist always handy 
might be desirable.)

• Adding a bookmark to the “Favorites” list, while continuing to display part of the web page being 
bookmarked, for context.

Using panes to show two completely unrelated tasks clutters the screen and is visually confusing. For 
example, there is little reason to display both an e-mail pane and a web browser pane at the same time. 
The user will most likely be doing one or the other...why clutter the screen with an unused application?

It may be tempting to use panes to allow simultaneous display of more than one web page, but given the 
limited display area of most BeIA devices, this is probably not a good idea in general. BeIA will show 
two web browser panes under certain conditions. When a website spawns a child HTML page (via 
JavaScript), Wagner will split the screen to show the two pages (parent and child) at the same time. The 
child is a read-only HTML display—the navigation bar and history still apply only to the parent. If the 
user clicks a link in a child pane, the link loads as the parent at the top level. The child pane stays 
onscreen until it is dismissed by the user via a close control. This sort of multipane display can be useful 
if, say, the child is a “Table of Contents” or similar listing.

5   Feedback and Alerts

As they become familiar with your interface, users will take comfort in the reassurance that feedback 
provides. Strive to make your UI fast and efficient so users make an immediate connection between 
action and consequence. When a user begins an action that will take some time, provide progress 
information or other feedback so the user still realizes that their request is being addressed.

When more directed feedback is required, it is often necessary to provide alerts with more weight than 
passive feedback can provide. In these circumstances, use non-modal alerts whenever appropriate (in 
other words, if the alert has no bearing on what the user is currently doing, open it in another pane and 
let the user continue to work on his task). Modal alerts are appropriate when the user needs to address 
something immediately, or when the user must proceed through a set series of actions in order.

6   Settings panels

Keeping to the idea that Internet Appliances should not be miniature PCs, minimize the number of 
settings a user must deal with, and keep these controls “intuitive”. Almost everyone can easily understand 
a slider control labeled “Volume”, and almost everyone will want to have control of the volume of their 
machine. On the other hand, fields for data like “Primary DNS” and “Gateway” are reasons people don’t 
want to deal with PCs. Eliminate such fields if you can.

Much of the design of settings panels is simply common sense, but common sense from the point of view 
of the user—not necessarily from the point of view of you, a technically literate engineer. Here are some 
things to think about:

• Consolidate like items, split disparate items. For example, it may make sense to present audio and 
video controls on the same page if they will fit (they are related), but to present them in different 
areas labeled “Audio” and “Video”, because much of the time, a person will not be interested in both; 
an MP3 user is not going to be interested in the video options. On the other hand, splitting network 
settings into “TCP/IP Settings” and “Firewall Configuration” may seem logical from your point of view, 
but not from the user’s; they neither know nor care what TCP or a firewall are. From the point of view 
of both the user and your own technical support department, it may be much better to divide such 
options into “Basic Setup Options” and “Advanced Setup Options (Don’t worry about these at first)”.



Be Incorporated — Confidential Information

April 11, 2001 4:14 pm UI Customization :  Design Considerations page 16
preliminary — content subject to change

• Don’t overload a settings panel by putting too many things on it. It may be tempting to fit all settings 
onto one panel just because you can, with the idea that quick access to all settings will make it easier 
for the user to adjust what they want. However, this is true only if the user changes their settings a 
lot—which is unlikely. In the typical case that the user changes settings infrequently, an “all-in-one” 
settings panel will be intimidating, and will not save any appreciable time.

• It may make sense to have a setting appear on more than one panel. Having a setting labeled 
“Volume” in both the “Audio Playback” panel and the “Video Playback” panel is easy to understand 
and useful.

7   Technical Considerations

• When possible, use “real text” rather than text embedded into graphics. Text that is part of a graphic 
cannot be easily internationalized (you’ll have to do a different version of the graphic for each 
language you ship in), will not gracefully upgrade to different screen sizes, and requires redoing the 
graphic for every change of style in your UI. Also, graphics take up a good deal of memory space.

• Allow for the fact that an Internet Appliance device has very limited resources compared to a typical 
PC, in terms of both storage and speed. Keep your code compact by concentrating on a core feature 
set, and do performance testing to ensure adequate speed on your target device.

• Use C++ plugins for situations where the JavaScript isn't fast enough. You may also wish to use C++ 
for complex plugins even if speed isn’t an issue—JavaScript is not well-suited for large pieces of code.

8   Recommended Reading

Norman: Design of Everyday Things, The Invisible Computer

Cooper: The Inmates are Running the Asylum

Jef Raskin: The Humane Interface



 April 11, 2001 UI Customization :  JavaScript Layout Concepts page 17
preliminary — content subject to change

Be Incorporated — Confidential Information

UI Customization

JavaScript Layout Concepts

BeIA-based devices utilize HTML to present data on-screen, resulting in a great deal of flexibility in how 
data, pictures, and other elements can be displayed. However, working with HTML directly (and in 
particular, generating HTML dynamically, to give the appearance of a flexible and responsive user 
interface) can be difficult. To solve this problem, BeIA includes a JavaScript library which permits you to 
build and work with interface layouts much more easily than would be the case when using HTML 
directly. The following document, along with its companion liblayout reference document, describes the 
use of this library.

1   Prerequisites

In order to use the layout engine, you’ll need a reasonable familiarity with JavaScript, including the 
semantics of JavaScript classes and object-oriented programming with JavaScript. You’ll also find a 
knowledge of HTML frames and framesets to be useful, though such knowledge is not strictly required.

2   Fundamental Concepts

2.1   Abstract the Creation of HTML Markup into HTML-Generating JavaScript Objects

A standard method of creating Web pages is to write the HTML content which defines them, either by 
hand, or using some sort of tool which writes the HTML for you as you manipulate a user interface. In 
either case, you generate the HTML statically; once written, it is never changed.

BeIA functions differently. It generates much of the HTML it uses dynamically, using JavaScript code 
embedded in “stub” HTML files. For example, if the BeIA browser displays a page showing a set of 
controls by referencing a file called Controls.html , it’s likely that much or all of the HTML defining the 
layout and contents of that page is not contained directly in Controls.html , but that instead, 
Controls.html  simply contains a piece of JavaScript code which writes out the appropriate HTML every 
time the Controls.html  document is referenced. This means that the HTML code provided by 
Controls.html  can (potentially) change every time the file is displayed, so as to reflect changes in the 
system state.

However, directly writing JavaScript code which outputs appropriate HTML is even more tedious and 
error-prone than directly writing HTML. To solve this, the BeIA layout engine abstracts the idea of 
onscreen HTML display structures (frames and framesets) into JavaScript objects. Instead of working with 
HTML markup tags, you simply create a JavaScript object of an appropriate type, and insert it into a data 
structure. For example, you might create a JavaScript object which represents a vertically split HTML 
frameset, and then give it two child objects which each represent an HTML frame. Once you’ve created 
this structure, it is the responsibility of the objects in the structure to write out the HTML needed for 
proper onscreen rendering—you never see or work with HTML code. This approach works well because 
the JavaScript code needed to define such structures is much more concise than the amount of HTML 



Be Incorporated — Confidential Information

April 11, 2001 UI Customization :  JavaScript Layout Concepts page 18
preliminary — content subject to change

such code generates. In addition, your code will be checked for many errors by the JavaScript interpreter, 
which also helps to identify mistakes.

2.2   Layout Objects: LayoutFrames and LayoutBags

A layout object is a JavaScript object which represents some element of a web page layout. The BeIA 
JavaScript layout package currently offers two types of layout objects, each defined as a JavaScript class. 
A LayoutFrame  object represents a single rectangular HTML frame displaying some sort of content, such 
as a page of text. A LayoutBag  object is a collection of LayoutFrames; it represents an HTML frameset, 
and displays the contents of its child LayoutFrame s either side-by-side, or stacked one on top of the 
other.

2.3   Features and Modes

A great deal of the UI flexibility of the BeIA system depends on the ability of the layout library to quickly 
and easily hide or show LayoutFrame or LayoutBag objects. For example, in some versions of BeIA, a 
“Bookmarks” frame is always present in the browser window, but is only visible if the user requests it. 
This approach is more reliable and easier to program for than actually modifying the data structure of the 
browser window to include a bookmarks frame. 

The visibility of layout objects can be set directly via their associated visible property, but in general, you 
will probably find it more convenient to control visibility of objects with features and modes.

2.3.1   Features

Features are effectively boolean variables whose state is linked to the visibility of one or more layout 
objects. Often a feature is used to control whether or not a particular feature (in the usual sense of the 
word) of the UI is visible to the user, hence the name.

For example, let’s say that you have a settings screen for setting up some aspect of your device, and that 
contained within that screen is a subframe called advancedSettings, an instance of LayoutFrame. You’d 
like to provide the user the option of clicking a piece of text to show the advanced settings frame. Using 
features, here’s how you could do this:

1) In your HTML text for the main content of the settings window, insert something like 

<H2 ONMOUSEUP="beos.globals.features.Open("settings:advanced"); 
beos.realTop.be_refresh()>Show Advanced Settings</H2>

This ensures that whenever the user click on the heading “Show Advanced Settings” in the main settings 
area, the feature “settings:advanced” will have its associated boolean value set to true. The name of the 
feature is arbitrarily chosen by you; Open()  is a method in the layout library.

2) The relevant portions of the main body of your code will look something like this:

// settingsFrame is a LayoutFrame object youÕve defined earlier in your code; 

// the AddChild method returns its argument as a convenience, so the following line of

// code leaves the new frame stored in the advancedSettings variable.

var advancedSettings = settingsFrame.AddChild(new LayoutFrame(...));

...configure the contents of advancedSettings if necessary...

// Create the new feature to control whether advancedSettings is visible or not. 
Disregard

// the null arguments for the time being.

beos.globals.features.Add("settings:advanced", null, null);



April 11, 2001 UI Customization :  JavaScript Layout Concepts page 19
preliminary — content subject to change

Be Incorporated — Confidential Information

// Now, set how the new feature controls its associated object or objects; in this

// case, we state the that given layout object should be visible when the feature

// is true, and invisible otherwise.

CoupleLayoutObjectToFeature(advancedSettings, "settings:advanced", true);

// Finally, ensure that the features is initially false, so the "Advanced Settings" frame 
is initially

// hidden.

beos.globals.features.Close("settings:advanced");

Once the above setup has been accomplished, you can (as the code associated with ONMOUSEUP does) 
cause the advanced settings frame to appear or disappear simply by manipulating the feature, and then 
calling a screen redraw with beos.realTop.be_refresh().

Using features to control the visibility of screen frames confers a number of advantages: 

• A single feature can control the visibility of multiple layout objects. This frees you from t h
remembering to change the visibility of each layout object manually.

• A feature decouples the conceptual aspect of changing the UI in some way from the details of w
changes are, permitting you to easily alter the changes that take place without altering the i n
which causes these changes. 

• The provision of activation and deactivation hooks (discussed below) means that you can easil y
changes to accomplish tasks in a way which would be much more difficult if your UI-altering co d
wired to your input-related (i.e. ONMOUSEUP and similar) code. 

• With the right feature names, features can also contribute greatly to internal documentation.

2.3.2   Modes and Mode Clusters

A feature is effectively a variable with two states, true or false; elements of the UI are visible or invisible 
dependent on the state of this variable. (In common use, they are visible when the feature is true and 
invisible when false, but that is not required; if the third argument to CoupleLayoutObjectToFeature is 
false, the UI element will be visible when the feature is false and invisible when it is true.)

A mode cluster is just a generalization of a feature; instead of having only two values, a mode cluster can 
take any one of a set of values, each of which is called a mode. The set of modes associated with a mode 
cluster is defined by you, the programmer. The mode-related part of the API is slightly different than the 
feature-related part, but the differences are strictly a result of the fact that a mode cluster can take one of 
many user-defined mode values, while a feature can take one of two predefined boolean values.

As a very quick idea of how a mode cluster would be created and used in code, consider the following:

// The ÔbookmarkBagÕ is going to contain three frames, only one of which will be

// visible at any one time, depending upon the setting of an associated mode cluster.

// someHigherLevelBag is assumed to be a containing LayoutBag previously defined.

var bookmarkBag = new LayoutBag(...); somHigherLevelBag.AddChild(bookmarkBag);

// Create frames that show the bookmarks at high, medium, and low resolutions,

// and add them to the bookmark bag.

var highresBookmarks = new LayoutFrame(...); bookmarkBag.AddChild(highresBookMarks);

var mediumresBookmarks = new LayoutFrame(...); bookmarkBag.AddChild(mediumresBookMarks);

var lowresBookmarks = new LayoutFrame(...); bookmarkBag.AddChild(lowhresBookMarks);

// Create a new mode cluster called "bookmarks:zoomlevel".



Be Incorporated — Confidential Information

April 11, 2001 UI Customization :  JavaScript Layout Concepts page 20
preliminary — content subject to change

beos.globals.modes.AddCluster("bookmarks:zoomlevel");

// Allowable values for this cluster will be "low", "medium", and "high".

beos.globals.modes.AddMode("bookmarks:zoomlevel", "low", null, null);

beos.globals.modes.AddMode("bookmarks:zoomlevel", "medium", null, null);

beos.globals.modes.AddMode("bookmarks:zoomlevel", "high", null, null);

// The ÔhighresBookmarksÕ frame should be visible only when the "bookmarks:zoomlevel"

// mode cluster is set to "high", invisible otherwise. A similar comment applies to the 
other

// two frames.

CoupleLayoutObjectToMode(highresBookmarks, "bookmarks:zoomlevel", "high");

CoupleLayoutObjectToMode(mediumresBookmarks, "bookmarks:zoomlevel", "medium");

CoupleLayoutObjectToMode(lowresBookmarks, "bookmarks:zoomlevel", "low");

// Start off with the bookmarks showing the highest resolution view.

beos.globals.modes.Set("bookmarks:zoomlevel", "high");

The code above sets up part of a user interface which has the ability to display the user’s bookmarks in 
one of three ways; a high-resolution display (which might list all of the bookmarks), a medium-resolution 
display (perhaps showing only the frequently-accessed bookmarks), and a low-resolution display (which 
might show things only at the top level of the bookmark hierarchy, not those contained in folders, for 
example.) This is done by having a bookmark LayoutBag (i.e. HTML frameset) which contains all three of 
these views; the “bookmarks:zoomlevel” mode cluster is set up so that only one of the bookmark frames 
is visible at any given time.

Within each of the bookmark frames would be a button or other control to change the zoom level; for 
example, the highresBookmarks frame might display a button called “Zoom Out”, when pressed, this 
button would simply execute the code:

beos.globals.modes.Set("bookmarks:zoomlevel", "medium"); 

As far as the user is concerned, the apparent effect would be that the high-resolution view of the 
bookmarks is replaced with the medium-resolution view.

2.3.3   The be_refresh() Function

One thing that modes and features do not handle is automatic screen redraws. After changing a mode or 
feature, you’ll need to call beos.globals.realTop.be_refresh() to have the display redraw, and reflect the 
change in the UI. This is done so that you can perform a number of mode and/or feature requests at the 
same time and then redraw the screen only once, greatly diminishing the computational load, and 
increasing the responsiveness of your device. It may be tempting to put a be_refresh() call after every 
mode or feature change, but (unless perhaps you’re debugging) don’t do it. Only call 
beos.globals.realTop.be_refresh() once all of your mode and features changes have been made for a 
particular input event.

2.3.4   Activation and Deactivation Hooks

You may have wondered, in the sections above, about the presence of “null” arguments in methods for 
creating new features and modes, i.e. in lines like

beos.globals.features.Add("feature:something", null, null);

or 

beos.globals.modes.AddCluster("toplevel:choice");



April 11, 2001 UI Customization :  JavaScript Layout Concepts page 21
preliminary — content subject to change

Be Incorporated — Confidential Information

beos.globals.modes.AddMode("toplevel:choice", "choice1", null, null);

These arguments may be used to pass in functions which will be called upon activation or deactivation of 
a mode or feature, if you need to perform certain tasks when a feature or mode is changed. In both the 
Add() method (for features), and the AddMode() method (for modes), the first null above can be 
replaced with an activation function, and the second null can be replaced with a deactivation function.

In both features and modes, an activation function (if provided) is called when the mode or feature is 
about to become active, and a deactivation function (if provided) is called with the mode or feature is 
about to become inactive. A feature becomes active when its value is set to true, and becomes inactive 
when its value is set to false. A mode becomes active when it becomes the value for its associated mode 
cluster, and becomes inactive when it is the value for its mode cluster, and then that mode cluster 
changes to a different value.

Note: Both activation and deactivation functions are called before the value of their 
associated feature or mode cluster has been changed to its new value. This is 
done for the reasons outlined below.

Both activation and deactivation functions are called before the value of their associated feature or mode 
cluster has been changed to its new value. This is because activation/deactivation functions do more than 
just perform some work when a feature or mode change takes place; they may actually veto that feature 
or mode change, as outlined in the subsection below.

2.3.4.1   Activation/Deactivation Function Vetoes

Any function used as an activation or deactivation function should return a boolean value. The normal 
return value is true; this indicates that the function has accomplished what it needs to do, and the mode 
or feature change can proceed. If the function returns a value of false, this indicates that for some reason 
the change in the value of the associated feature or mode cluster should not be changed as was 
requested by the beos.globals.features.Open(...) , beos.globals.features.Close(...) , or 
beos.globals.modes.Set(...)  call which resulted the activation/deactivation function being called. If 
the library code receives a value of false from an activation or deactivation function, it will abort the 
mode or feature change.

As an example of this, consider the following code:

...

beos.globals.modes.Set("toplevel:screen", "bookmarks");

...

and also assume that immediately before this line executes, the “toplevel:screen” mode cluster has the 
value “browser” as its mode. Execution of the line above will then cause the following chain of events.

1. If it exists, the deactivation function associated with mode “browser” in mode cluster 
“toplevel:screen” is executed; if the result is true, go on to the next step, otherwise abort. (Of course, 
if there is no such deactivation function, this step is skipped.)

2. If it exists, the activation function associated with mode “bookmarks” in mode cluster 
“toplevel:screen” is executed; if the result is true, go on to the next step, otherwise abort. (If there is 
no such deactivation function, this step is skipped.)

3. Set the value of the “toplevel:screen” mode cluster to “bookmarks”.

2.4   Hiding and Showing Layout Objects

You can make LayoutFrame  and LayoutBag  objects visible or invisible on the screen through the use of 
their boolean visible  property; when visible  is set to true the associated layout object will appear on 
the screen, and when visible  is false, the associated object will not appear. In general, you will 



Be Incorporated — Confidential Information

April 11, 2001 UI Customization :  JavaScript Layout Concepts page 22
preliminary — content subject to change

probably want use modes or features to control when your object becomes visible or invisible; see See 
“Features and Modes” on page 18..

However, simply hiding a layout object is not quite the end of the story. There are actually two ways in 
which a layout object may be hidden; they both appear the same to the user, but have different 
consequences for the internal state of the JavaScript data they represent. It’s important to understand 
these differences; to explain them fully, we’ll need to take a brief look at how BeIA renders HTML code 
from layout objects.

Consider a LayoutBag  object M, which contains two children, A and B. When both are displayed, they 
are displayed side-by-side, with A on the left and B on the right. However, at various times, B may be 
hidden.

Due to the dynamic nature of BeIA, there is no fixed HTML which defines M, A, and B on the screen; 
instead, whenever M and its contents are displayed, the required HTML code is generated dynamically. 
So, when A and B are both visible, a display of M will result in the generation of HTML code which 
defines a frameset containing two frames, one for A and one for B.

Now, what happens when B is hidden? The obvious answer is to simply change the generated HTML so 
that it defines a frameset containing a single frame, corresponding to A. Any mention of B, and the web 
page it displays, will be omitted from the generated HTML. This is the “standard” method of hiding a 
frame (or frameset).

In general, the standard hiding method works well, but there are some instances where it will cause 
problems. Consider the case where the page referenced by (displayed in) B contains JavaScript code 
which defines data objects or code which is needed by A, even when B is not visible.Under standard 
hiding, B (and therefore its web page) is not referenced in the generated HTML code, and the semantics 
of JavaScript mean that any data or function definitions in that web page are not loaded—they simply do 
not exist. Any attempt by JavaScript code in A’s web page (or from anywhere else) to access such data or 
functions will result in an error, and cause the system to fail or misbehave.

To solve this problem, another method of hiding is available, called zeroPixelHiding. To use this method 
of hiding for a LayoutBag  or LayoutFrame , you simply ensure that when creating that LayoutBag  or 
LayoutFrame , you provide a property of zeroPixelHiding  with a value of true in the properties 
argument object. Once this is done, you can hide and show the object in the regular manner (e.g. by 
using features or modes: See “Features and Modes” on page 18.), and the visual effect will remain the 
same as with standard hiding. However, the HTML that is generated for an object hidden using 
zeroPixelHiding  will be somewhat different than HTML generated for an object hidden in the standard 
manner; instead of any mention of that object being omitted from the generated HTML, the object made 
invisible with zeroPixelHiding  (or more correctly, it’s underlying displayed web page, as given in its 
“location” property) will still be mentioned in the HTML, but will be displayed in a screen area of zero 
dimensions, making it invisible. However, because the object’s web page is mentioned in the HTML, that 
web page will be loaded, and any JavaScript objects or functions defined therein will be available.

This may seem abstract, so let’s take a quick look at a basic example that appears in BeIA; bookmarks. In 
general, the layout object which displays a user’s list of bookmarks is hidden; it is only made visible 
when the user requests it, typically by clicking on the “Favorites” button. However, the user has, at any 
time, the option of adding the site currently being browsed to the list of bookmarks, which means that 
the bookmark data structure, defined within the bookmarks HTML code, must always be available. To 
ensure this, the bookmarks frame is hidden using zeroPixelHiding, rather than standard hiding.

2.5   Sizes

Various layout constructors or functions require you to specify a size. Generally, you can give a size in 
one of several ways:

• Specify a number, which denotes a size (width or height) in screen pixels.



April 11, 2001 UI Customization :  JavaScript Layout Concepts page 23
preliminary — content subject to change

Be Incorporated — Confidential Information

• Specify a string of the form “number%”, such as “10%”; this specifies that the size should be set to the g
percentage of whatever is available in the appropriate dimension (width or height, depending o n

• Specify the size as “*”; this signifies that whatever space is free in the appropriate dimensi
allocated to this size request.

3   A Larger Example: The Flag Demo

Let’s take a look at how the layout library is actually used. We’ll do this through a simple example, which 
I’ve called the flag demo because it produces onscreen pictures similar in appearance to some flags.

3.1   What Does the Flag Demo Do?

The flag demo displays a screen that looks something like this:

The left part of the screen will be static, and contains some text headings which the user can click on to 
change the appearance of the right part of the screen. The right two-thirds or so of the screen displays a 
border which may be made visible or invisible by means of a feature (see xxx), and a central area which 
may be set to display one of various possible content sources by means of a mode (see xxx).  In the 
FlagDemo example, the central area displays either solid red, solid green, solid blue, or a mix of all three 
(like a tricolor flag).

3.2   Where to Start?:  The ui_custom.js File

The first question we need to ask is, where do we put our code? (More correctly, where do we put the 
main body of our code? As we’ll see, we’ll have a small amout of HTML and JavaScript in files created 
specifically for this example.) BeIA is a big system, but fortunately, you need only worry about one file. 
All UI customization starts with xxx/ui_custom.js, which is loaded automatically as part of the BeIA boot 
sequence, after all of the “core” functionality of BeIA has been loaded.



Be Incorporated — Confidential Information

April 11, 2001 UI Customization :  JavaScript Layout Concepts page 24
preliminary — content subject to change

ui_custom.js is composed of a minimum of three functions (of course, you may define further functions 
of your own there); these functions are initUIDefines(), initUILayout(), and initUIState(), which are called 
one after the other during the boot process. You may put anything you want into these functions, but 
their intended usage is as follows:

• initUIDefines():  Used for the definition and creation of those objects which are not layout objects and n
dependent on the pre-existence of layout objects. In practice, this often means the definition of modes an d
features, and specialized objects you create yourself.

• initUILayout():  Used to create the layout objects that define your UI, and to link them to their control 
This is where you’ll create all of your LayoutBag and LayoutFrame objects, and also where you’ll link them 
to be controlled by features or modes.

• initUIState(): Used to initialize the state of your UI to a consistent starting value. Often, initUIState 
simply consist of a number of calls to beos.globals.features.Open()/Close() or beos.globals.modes.Set().

In the current version of BeIA, these functions are simply invoked sequentially. You could, therefore, put 
all of your UI code in (say) initUIDefines, leaving the other two functions empty. However, there are two 
good reasons for following the guidelines above:

1. Future versions of BeIA my perform “behind-the-scenes” work between these function calls, and 
could rely on code being written to the above guidelines.

2. Splitting up your UI code in the manner outlined above can make the code much easier to 
understand and modify. In particular, having all of the feature and mode cluster definitions in 
initUIDefines() makes it easy to understand the various states your UI can assume, and having the 
state initialization code in initUIState() makes it easy to change the initial state of your UI without 
hunting through the (typically much larger) initUILayout() function.

Warning: Even if you do not use one of the above functions, you must include them 
with an empty body. BeIA will not start unless all three of the above functions 
are included in ui_custom.js.

3.3   Auxiliary Files

Not all of the code we’ll write will be in ui_custom.js. When you develop using BeIA’s layout 
functionality, you’ll often find it convenient to define the “lowest level” frames of your UI using HTML, 
and FlagDemo is no exception. First, let’s identify what lowest-level frames are needed for FlagDemo.

We need a frame containing the control text, and the JavaScript code necessary to have that text react to 
mouse clicks. This code will go into a file called “buttons.html”. We’ll get back to this in a bit.

We need frames for the border elements, i.e. the left, right, top, and bottom parts of the border. Each of 
these frames is simply a blank HTML page with a background color of magenta. Since the HTML for each 
of these border parts is identical, we can use the same HTML file for all border parts! We’ll call this file 
“border.html”. It’s contents are very simple; just

xxx

Similarly, we need frames displaying backgrounds of red, green, and blue, so we can display these colors 
in the central part of the display. These files are almost identical to the “border.html” file above. We’ll call 
them “red.html”, “green.html”, and “blue.html”. Below is the text of “red.html”. “green.html” and 
“blue.html” differ only in their background color.

Each of the above files will be referenced by a “location” property of one or more LayoutFrame objects, 
to incorporate the files’ HTML into the final display.



April 11, 2001 UI Customization :  JavaScript Layout Concepts page 25
preliminary — content subject to change

Be Incorporated — Confidential Information

3.3.1   The buttons.html File

The buttons.html file has to do two things:

1. Provide controls by which the user can affect the state of the BeIA system.

2. Link these controls logically so that activating them does actually cause the desired state change.

The first of these can be done in any number of ways; HTML buttons, clickable images, and so on. To 
keep this part of it simple (since layout, and not controls, are our focus here), we’ll just use HTML text 
fragments with the ONCLICK attribute set, as our controls. In a real user interface, you’d probably want to 
do something more visually appealing.

<html>

<body>

<script language="javascript">

function toggleBorder() { 

if (beos.globals.features.Get("flagdemo:border")) {

beos.globals.features.Close("flagdemo:border");

} else {

beos.globals.features.Open("flagdemo:border");

}

beos.realTop.be_refresh();

}

function showColor(color) {

beos.globals.modes.Set("flagdemo:mode", color); 

beos.realTop.be_refresh();

}; 

</script>

<H2 ONMOUSEUP="toggleBorder()">Border</H2>

<br><br><br>

<H2 ONMOUSEUP="showColor(’red’)">Red</H2>

<p>

<H2 ONMOUSEUP="showColor(’green’)">Green</H2>

<p>

<H2 ONMOUSEUP="showColor(’blue’)">Blue</H2>

<p>

<H2 ONMOUSEUP="showColor(’all’)">All</H2>

<p>



Be Incorporated — Confidential Information

April 11, 2001 UI Customization :  JavaScript Layout Concepts page 26
preliminary — content subject to change

</body>

Designing the Layout

The next step to achieving our desired application is designing the layout, using LayoutBag and 
LayoutFrame objects. The easiest way to do this is to sketch out the layout ahead of time on a pad of 
paper, and figure out how everything “fits together”. We do this below for the FlagDemo example.

Our desired UI layout is something like this:

This contains a mix of frames; some are beside one another, while others are above/below one another 
(Note that the border must be split into four rectangular subframes in order to be drawn using frames). 
All of this layout is achieved using LayoutBag objects; however, LayoutBag objects correspond to HTML 
framesets, and as a result, must have either a vertical orientation (i.e. the borders between subframes go 
up and down, meaning the subframes are arranged side-by-side), or a horizontal orientation, with the 
subframes above and below one another. To achieve a display with a mixture of side-by-side and over-
under frame arrangment, we need to use nested LayoutBag objects. 

One possible layout is shown below.  The LayoutBag containers are displayed in various shades of gray, 
while the LayoutFrame objects are shown in white. (“allFrame” is actually a LayoutBag containg three 
further frames, but we display it here as a frame to avoid cluttering up the diagram with too much detail).



April 11, 2001 UI Customization :  JavaScript Layout Concepts page 27
preliminary — content subject to change

Be Incorporated — Confidential Information

When the UI is used, the LayoutBags will be sized to exactly fit their enclosed LayoutFrames; the “extra 
space” they take up around the borders in the above diagram was included only to show the nesting. As 
well, in the central area, only one of redframe, blueframe, greenframe, or allframe will be visible at a 
given time. As a result, the final look will be something like this:

Which is, of course, exactly what is desired.

3.4   The ui_custom.js Functions

It’s finally time to look at the code necessary to achieve our desired UI. This is one place where the 
benefits of splitting the code in ui_custom.js into the three functions initUIDefines(), initUILayout(), and 
initUIState() become obvious; we can easily talk about the “guiding logic” of the UI, without getting into 
the details of the layout until this logic has been presented.



Be Incorporated — Confidential Information

April 11, 2001 UI Customization :  JavaScript Layout Concepts page 28
preliminary — content subject to change

3.4.1   initUIDefines()

In initUIDefines(), we define the features and modes that will control the interface, without specifying 
what specific parts of the interface each will control—that task is left for initUILayout(). initUIDefines() is 
a relatively short function:

function initUIDefines() {

/* Define a "feature" (see the layout library documentation) called

"flagdemo:border". When this feature is true, the border will

be shown; when the feature is false, the border will be

invisible. */

beos.globals.features.Add("flagdemo:border", null, null);

/* Define a "mode cluster" (see the layout library

documentation) called "flagdemo:mode". The setting of this

mode will determine what is shown in the central area

of the screen. */

beos.globals.modes.AddCluster("flagdemo:mode");

/* After defining the mode, we need to define what values that

mode cluster can assume. In this case, the mode cluster can be one of the four

values "all", "red", "green", or "blue". */

beos.globals.modes.AddMode("flagdemo:mode", "all", null, null);

beos.globals.modes.AddMode("flagdemo:mode", "red", null, null);

beos.globals.modes.AddMode("flagdemo:mode", "green", null, null);

beos.globals.modes.AddMode("flagdemo:mode", "blue", null, null);

}

We define one feature, “flagdemo:border”, which will control the visibility of the border area, and one 
mode, “flagdemo:mode”, which can take one of the four values “red”, “green”, or “blue”, “all”. These four 
possible values of the mode determine if the UI’s central area displays a solid primary color, or a 
sublayout showing all three primary colors simultaneously.

Warning: The mode and feature namespaces (i.e. the namespaces which in the 
above contain the names “flagdemo:border” and “flagdemo:mode”) are 
shared across all parts of a BeIA system. In order to avoid potential name 
clashes, you should choose names of features and mode clusters carefully. 
Our recommendation is to use a two-part name for each feature or mode, 
as was done above; “flagdemo:border” names a feature called “border” 
within the “flagdemo” part of the UI. Of course, if your needs are particularly 
complex, you could use names with yet another part, such as 
“mydepartment:mysection:myfeature”.

3.4.2   initUIState()

Let’s skip over initUILayout for a moment, and look at the last of the three ui_custom.js functions to be 
executed; initUIState(). initUIState() has a particularly simple task. It simply ensures that all of the 
features, modes, and other state variables defined in initUIDefines() and initUILayout() are set to a 
consistent, desired starting value. The code for our version of this function is as follows:



April 11, 2001 UI Customization :  JavaScript Layout Concepts page 29
preliminary — content subject to change

Be Incorporated — Confidential Information

function initUIState() {

/* Initialize the "flagdemo:border" feature to a known

initial value; in this case, we choose to Close() (that is, hide)

the border */

beos.globals.features.Close("flagdemo:border");

/* Ensure that "flagdemo:mode" is set to an initial

known state; in this case, we elect to have the example start up

with the "red" flag showing. */

beos.globals.modes.Set("flagdemo:mode", "red");

/* Apply above changes to all layout objects */

beos.globals.topLayout.Refresh(); 

}

This function has just three lines of code; the first line specifies that the border area should initially be 
hidden, the second line specifies that the central area should initially display a solid red frame, and the 
third line simply causes the “top frame” of the entire interface, and everything in it, to be refreshed so as 
to reflect the new layout.

Warning: Always remember to terminate your initUIState() function with the line 
“beos.globals.topLayout.Refresh()”. If you do not do this, you may get 
anomalous behavior, such as some frames or suframes not being displayed 
correctly when your UI first loads.

3.4.3   initUILayout()

initUILayout() is by far the largest function in our ui_custom.js file, as is normally the case with BeIA UIs. 
This code isn’t particularly complex, it simply has to specify a great many details.

We won’t go through the entire function line by line. Instead, we’ll look at some specific parts of the 
function, to illustrate particular points about use of the layout library. These points are discussed in the 
subsections of this section, below. Before we get into those subsections, here is the complete code if 
initUILayout(), for your reference:

function initUILayout() {

/* Define a top layout bag, and make it the top

by setting it as the value of "beos.globals.topLayout" */

var topLayout = beos.globals.topLayout 

= new LayoutBag(MakeObject(

"name", "_be:topLayout",

"orientation", LayoutBag_SPLIT_VERTICAL

));

/********* CONTROLS ************/

/* The "buttons" (actually, just HTML headings with their



Be Incorporated — Confidential Information

April 11, 2001 UI Customization :  JavaScript Layout Concepts page 30
preliminary — content subject to change

ONCLICK property set to a JavaScript function) go into the left

side of the "topLayout" area */

topLayout.AddChild(new LayoutFrame(MakeObject(

"name", "buttons",

"location", "file://$RESOURCES/flagdemo/buttons.html",

"size", "100",

"visible", true,

"scrolling", true

)));

/******** BORDER ************/

/** Define the left and right parts of the border. "midLayout", between

them, will contain everything else, including the top and bottom parts

of the border */

var leftBorder = topLayout.AddChild(new LayoutFrame(MakeObject(

"name", "left_border",

"location", "file://$RESOURCES/flagdemo/border.html",

"size", "25",

"visible", true,

"scrolling", false

)));

var midLayout = topLayout.AddChild(new LayoutBag(MakeObject(

"name", "midLayout",

"orientation", LayoutBag_SPLIT_HORIZONTAL,

"size", "*"

)));

var rightBorder = topLayout.AddChild(new LayoutFrame(MakeObject(

"name", "right_border",

"location", "file://$RESOURCES/flagdemo/border.html",

"size", "25",

"visible", true,

"scrolling", false

)));

/* Now, define the top and bottom parts of the border. */

var topBorder = midLayout.AddChild(new LayoutFrame(MakeObject(

"name", "top_border",

"location", "file://$RESOURCES/flagdemo/border.html",



April 11, 2001 UI Customization :  JavaScript Layout Concepts page 31
preliminary — content subject to change

Be Incorporated — Confidential Information

"size", "25",

"visible", true,

"scrolling", false

)));

var centralLayout = midLayout.AddChild(new LayoutBag(MakeObject(

"name", "flag",

"orientation", LayoutBag_SPLIT_VERTICAL,

"size", "*"

)));

var bottomBorder = midLayout.AddChild(new LayoutFrame(MakeObject(

"name", "bottom_border",

"location", "file://$RESOURCES/flagdemo/border.html",

"size", "25",

"visible", true,

"scrolling", false

)));

/*********** CENTRAL AREA ***********/

/* The centralLayout is the main display area in the screen. It will,

at any one time, display one of a red "flag", a green "flag", a

blue "flag", or a tricolor "flag". These are defined as "redframe",

"greenframe", "blueframe", and "allframe". */

var redframe = centralLayout.AddChild(new LayoutFrame(MakeObject(

"name", "red",

"location", "file://$RESOURCES/flagdemo/red.html",

"size", "*",

"visible", true

)));

var greenframe = centralLayout.AddChild(new LayoutFrame(MakeObject(

"name", "green",

"location", "file://$RESOURCES/flagdemo/green.html",

"size", "*",

"visible", true

)));

var blueframe = centralLayout.AddChild(new LayoutFrame(MakeObject(

"name", "blue",

"location", "file://$RESOURCES/flagdemo/blue.html",



Be Incorporated — Confidential Information

April 11, 2001 UI Customization :  JavaScript Layout Concepts page 32
preliminary — content subject to change

"size", "*",

"visible", true

)));

/* Since "allframe" has multiple sections--three different subframes,

each displaying a different background--it has to be defined as

a LayoutBag. After it is defined, its three subframes are created

and inserted into it. */

var allframe = centralLayout.AddChild(new LayoutBag(MakeObject(

"name", "allcolors",

"orientation", LayoutBag_SPLIT_HORIZONTAL,

"size", "*"

)));

allframe.AddChild(new LayoutFrame(MakeObject(

"location", "file://$RESOURCES/flagdemo/red.html",

"size", "*",

"visible", true

)));

allframe.AddChild(new LayoutFrame(MakeObject(

"location", "file://$RESOURCES/flagdemo/green.html",

"size", "50%",

"visible", true

)));

allframe.AddChild(new LayoutFrame(MakeObject(

"location", "file://$RESOURCES/flagdemo/blue.html",

"size", "*",

"visible", true

)));

/* Tell each of the four parts of the border that they should appear 

when (and only when) the "flagdemo:border" feature is "true". */

CoupleLayoutObjectToFeature(leftBorder, "flagdemo:border", true);

CoupleLayoutObjectToFeature(rightBorder, "flagdemo:border", true);

CoupleLayoutObjectToFeature(topBorder, "flagdemo:border", true);

CoupleLayoutObjectToFeature(bottomBorder, "flagdemo:border", true);

/* Link the defined modes so that they control the visibility

of the flag frames. In this case, the redframe will be visible when

the mode named "flagdemo:mode" has the value "red"; the greenframe

will be visible when the "flagdemo:mode" mode has the value "green";



April 11, 2001 UI Customization :  JavaScript Layout Concepts page 33
preliminary — content subject to change

Be Incorporated — Confidential Information

and so on. */

CoupleLayoutObjectToMode(redframe, "flagdemo:mode", "red");

CoupleLayoutObjectToMode(greenframe, "flagdemo:mode", "green");

CoupleLayoutObjectToMode(blueframe, "flagdemo:mode", "blue"); 

CoupleLayoutObjectToMode(allframe, "flagdemo:mode", "all"); 

}

3.4.3.1   Placing your UI in the BeIA Global Namespace

One part of the above code that is easy to overlook, but that is critical to the proper functioning of your 
UI, is placing the layout object defining the UI into a location where BeIA expects to find it. This is done 
by the lines

var topLayout = beos.globals.topLayout 

= new LayoutBag(MakeObject(...

near the top of the initUILayout() function. BeIA always looks in beos.globals.topLayout for the layout 
object it will display to the screen.

As a side note, it may seem that, given the above piece of knowledge, the easiest way to change from 
one screen in your UI to another would be to reassign the value of beos.globals.topLayout. If you do this, 
you’ll be causing yourself more trouble than you need, and ignoring the convenience of the layout 
library. A better way to do this is to define layout objects for all of your top-level screens, place them all 
into a single layoutBag which goes into beos.globals.topLayout, and then define a mode cluster and 
modes to switch between the top-level screens.

3.4.3.2   Getting the Desired Left to Right Layout at the Top Level

Now let’s take a look at the first phase of actually constructing the layout. If you refer to diagram xxx, 
you’ll see that the top-level layout bag (“topLayout”) contains four child layout objects; in left to right 
order, they are the buttons area, the “leftBorder” object, the “midLayout” object, and the “rightBorder” 
object. In order to get topLayout to display its children in left-to-right order (vs. top-to-bottom), we 
simply need specify in its constructor that it has an orientation of LayoutBag_SPLIT_VERTICAL:

var topLayout = beos.globals.topLayout 

= new LayoutBag(MakeObject(

"name", "_be:topLayout",

"orientation", LayoutBag_SPLIT_VERTICAL

));

Once that’s done, the first object added as a child to topLayout will appear on its left side; the next object 
added will appear just to the right of the first object; and so on. If you look through the code for 
initUILayout() above, you’ll find the following statements which add children to topLayout, in this order:

topLayout.AddChild(new LayoutFrame(MakeObject(

"name", "buttons",

"location", "file://$RESOURCES/flagdemo/buttons.html",

"size", "100",

"visible", true,

"scrolling", true

)));



Be Incorporated — Confidential Information

April 11, 2001 UI Customization :  JavaScript Layout Concepts page 34
preliminary — content subject to change

...

var leftBorder = topLayout.AddChild(new LayoutFrame(MakeObject(

"name", "left_border",

"location", "file://$RESOURCES/flagdemo/border.html",

"size", "25",

"visible", true,

"scrolling", false

)));

var midLayout = topLayout.AddChild(new LayoutBag(MakeObject(

"name", "midLayout",

"orientation", LayoutBag_SPLIT_HORIZONTAL,

"size", "*"

)));

var rightBorder = topLayout.AddChild(new LayoutFrame(MakeObject(

"name", "right_border",

"location", "file://$RESOURCES/flagdemo/border.html",

"size", "25",

"visible", true,

"scrolling", false

)));

Once you’ve added an object to a layoutBag, you can’t change it’s position in that layout bag.

The layouts for midLayout and centralLayout are constructed similarly (though with different 
orientations), as is the layout for the “allFrame” object, which in spite of its name, is a layoutBag rather 
than a layoutFrame.

Note that a layoutBag does not need to be fully initialized before being added to another layout bag. In 
the above code, “midLayout” is added to topLayout before midLayout has had an children of its own 
added. You could add the children of midLayout at any time after it is created, either before or after 
midLayout is placed in topLayout.

3.4.3.3   Controlling the Layout Elements

With the layout fully defined, only one thing remains to do in initUILayout(), to produce our full 
application. We need to couple the visibility of various parts of the layout to the mode and feature we 
defined in initUIDefines() earlier, which are in turn controlled by the controls in “buttons.html”. To do 
this takes just a few lines of code; one for each of the four border parts, and one for each of “redframe”, 
“greenframe”, “blueframe”, and “allframe”. The relevant code appears right at the bottom of initUILayout, 
and is as follows:

/* Tell each of the four parts of the border that they should appear 

when (and only when) the "flagdemo:border" feature is "true". */

CoupleLayoutObjectToFeature(leftBorder, "flagdemo:border", true);

CoupleLayoutObjectToFeature(rightBorder, "flagdemo:border", true);



April 11, 2001 UI Customization :  JavaScript Layout Concepts page 35
preliminary — content subject to change

Be Incorporated — Confidential Information

CoupleLayoutObjectToFeature(topBorder, "flagdemo:border", true);

CoupleLayoutObjectToFeature(bottomBorder, "flagdemo:border", true);

/* Link the defined modes so that they control the visibility

of the flag frames. In this case, the redframe will be visible when

the mode named "flagdemo:mode" has the value "red"; the greenframe

will be visible when the "flagdemo:mode" mode has the value "green";

and so on. */

CoupleLayoutObjectToMode(redframe, "flagdemo:mode", "red");

CoupleLayoutObjectToMode(greenframe, "flagdemo:mode", "green");

CoupleLayoutObjectToMode(blueframe, "flagdemo:mode", "blue"); 

CoupleLayoutObjectToMode(allframe, "flagdemo:mode", "all"); 

As you can see from the feature coupling, a single feature (or mode) can control any number of elements 
in the layout. The converse is not true; if you attempt to have more than one feature or mode cluster 
controlling a single layout object, you may get unexpected behavior. In addition, a layout object may be 
linked to at most one mode in a mode cluster. For example, you might be tempted to try the following 
(incorrect) way of getting a “tri-color flag” defined in the central area:

/* EXAMPLE OF INCORRECT PROGRAMMING! */

CoupleLayoutObjectToMode(redframe, "flagdemo:mode", "red");

CoupleLayoutObjectToMode(greenframe, "flagdemo:mode", "green");

CoupleLayoutObjectToMode(blueframe, "flagdemo:mode", "blue"); 

CoupleLayoutObjectToMode(redframe, "flagdemo:mode", "all");

CoupleLayoutObjectToMode(greenframe, "flagdemo:mode", "all");

CoupleLayoutObjectToMode(blueframe, "flagdemo:mode", "all"); 

The intent here is to have the red subfame displayed when the mode is “red” or “all”, the green subframe 
displayed when the mode is “green” or “all”, and likewise for the blue subframe. Theoretically, then, 
when the mode is “all”, the red, green, and blue subframes would all be displayed. However, under the 
current implementation of the layout library, this will not work. Each of the red, green, and blue frames 
may be controlled by only one mode in “flagdemo:mode” mode cluster.



Be Incorporated — Confidential Information

April 11, 2001 UI Customization :  JavaScript Layout Concepts page 36
preliminary — content subject to change



 April 11, 2001 UI Customization :  JavaScript Layout Engine page 37
preliminary — content subject to change

Be Incorporated — Confidential Information

UI Customization

JavaScript Layout Engine

1   Introduction

The following constitutes the reference documentation for the JavaScript layout functions found in the 
“liblayout.js” javascript code file, included in the standard BeIA distribution. You can find detailed 
examples and explanations of the use of these functions in the JavaScript Layouts Concept Document, 
included in the optional Concepts documentation package.

1.1   Layout Objects: LayoutFrames and LayoutBags

A layout object is a JavaScript object which represents some element of a web page layout. The BeIA 
JavaScript layout package currently offers two types of layout objects, each defined as a JavaScript class. 
A LayoutFrame  object represents a single rectangular HTML frame displaying some sort of content, such 
as a page of text. A LayoutBag  object is a collection of LayoutFrames; it represents an HTML frameset, 
and displays the contents of its child LayoutFrame s either side-by-side, or stacked one on top of the 
other.

By using layout objects, you can avoid the need of working directly with HTML in JavaScript. Layout 
objects will automatically generate all of the HTML needed to correctly display onscreen.

1.2   Visibility, Features and Modes

A great deal of the UI flexibility of the BeIA system depends on the ability of the layout library to quickly 
and easily hide or show LayoutFrame lor LayoutBag objects. For example, in some versions of BeIA, a 
“Bookmarks” frame is always present in the browser window, but is only visible if the user requests it. 
This approach is more reliable and easier to program for than actually modifying the data structure of the 
browser window to include a bookmarks frame. 

The visibility of layout objects can be set directly via their associated SetVisible()  method, but in 
general, you will probably find it more convenient to control visibility of objects with features and modes. 
See below.

Note that in order for changes to be reflected onscreen, you will need to issue a 
beos.realTop.be_refresh()  command.

1.2.1   Zero-Pixel Hiding

When layout objects are made invisible, the normal method of doing this is to simply avoid generating 
the HTML which would display them onscreen. From the point of view of the browser, it starts displaying 
a page of HTML which contains a reference to (for example) a frame called A, and then is passed a 
different page to display, which is the same as the first page except that all mentions of A have been 
removed. A ceases to exist.

However, if A contains JavaScript code which is used by other elements of the interface, it may be 
necessary to hide A but still maintain a reference to it in the HTML, to ensure that it (and its 



Be Incorporated — Confidential Information

April 11, 2001 UI Customization :  JavaScript Layout Engine page 38
preliminary — content subject to change

accompanying JavaScript code) are loaded. This is accomplished by specifying that a layout object should 
be hidden using zeroPixelHiding, in the object’s constructor. See the reference for the LayoutBag  and 
LayoutFrame  constructors for details, and see the Concepts documents for further explanation and 
examples.

1.2.2   Features

Features are effectively boolean variables whose state is linked to the visibility of one or more layout 
objects. Often a feature is used to control whether or not a particular feature (in the usual sense of the 
word) of the UI is visible to the user, hence the name. You can link a number of layout objects to a 
feature, and then simply change that feature to hide or show those layout objects. See the 
CoupleLayoutObjectToFeature() , beos.globals.features.Add() , and related functions for details.

1.2.3   Modes and Mode Clusters

A mode cluster is just a generalization of a feature; instead of having only two values, a mode cluster can 
take any one of a set of values, each of which is called a mode. The set of modes associated with a mode 
cluster is defined by you, the programmer. The mode-related part of the API is slightly different than the 
feature-related part, but the differences are strictly a result of the fact that a mode cluster can take one of 
many user-defined mode values, while a feature can take one of two predefined boolean values.

See the CoupleLayoutObjectToMode() , beos.globals.modes.Add() , and related functions for details.

1.3   Sizes

Various layout constructors or functions require you to specify a size. Generally, you can give a size in 
one of several ways:

• Specify a number, which denotes a size (width or height) in screen pixels.

• Specify a string of the form “number%”, such as “10%”; this specifies that the size should be set to the 
given percentage of whatever is available in the appropriate dimension (width or height, depending 
on the context).

• Specify the size as “*”; this signifies that whatever space is free in the appropriate dimension should 
be allocated to this size request.

2   Class and Function Reference

2.1   Notation

JavaScript is an untyped language, in that variables, function arguments, and function return results may 
be of any type. However, most functions below expect arguments of a certain “type”, e.g. numbers, 
objects of a certain JavaScript class, or strings of a certain format. In order to provide this “type” 
information, the parameters in the functions below, and the return values of the functions, are “typed” 
using notation akin to that found in most typed language, i.e. the return type of a function (if any) is 
indicated by a “returns” note, and the type of a parameter is indicated by putting the type before the 
parameter. This is not part of the JavaScript syntax. For example, 

Foo(char c, int n) returns string



April 11, 2001 UI Customization :  JavaScript Layout Engine page 39
preliminary — content subject to change

Be Incorporated — Confidential Information

indicates a function named Foo, which takes a character as its first argument and an integer as its second 
argument, and returns a string. You may need to exercise a certain amount of judgment in interpreting 
what types mean; there is no “character” type in JavaScript, so what is actually mean by “char” is just a 
single-character string.

2.2   Layout Classes

class LayoutBag

new LayoutBag (Object properties)

Constructor to create a new LayoutBag . The single argument is a JavaScript object which specifies the 
initial properties of the layout bag as a set of name/value pairs. The recognized property names, and 
their possible associated values, are as follows:

• orientation : one of global constants Layout_Bag_SPLIT_HORIZONTAL  or 
Layout_Bag_SPLIT_VERTICAL . Defaults to Layout_Bag_SPLIT_HORIZONTAL . A value of 
Layout_Bag_SPLIT_HORIZONTAL  means that frames in the bag will be separated by horizontal splits, 
and will thus be one above the other; conversely, a value of Layout_Bag_SPLIT_VERTICAL  means 
the frames will be separated by vertical splits, and will thus be side by side.

• name: a string, the global name of this LayoutBag . You should provide this if you want to be able to 
look up your LayoutBag  in the global display hierarchy by name (using the FindChild()  method).

• visible : true if the bag (or more correctly, the HTML frameset it represents) is visible, false if 
invisible, defaults to true.

• size : initial size of this LayoutBag . Exactly what this sizes depends on the orientation of the 
LayoutBag ; a LayoutBag whose orientation is Layout_Bag_SPLIT_VERTICAL  will assume that it 
should fill as much horizontal area (width) as available, and hence will use size to set its height, and 
conversely for a LayoutBag  whose orientation is Layout_Bag_SPLIT_HORIZONTAL . Note, however, 
that LayoutBag s will do a certain amount of resizing automatically to accommodate their context, so 
you may find it more useful to leave LayoutBag sizes undefined for the most part, and instead specify 
the sizes of LayoutFrame s. See “Sizes” on page 38. for notes on what constitutes a “size”.

• framesetArgs : If present, included verbatim in the <FRAMESET...>  markup tag that is generated 
whenever this LayoutBag object is rendered to HTML. For example, if you specified the framesetArgs 
property as the string “ONLOAD=\"foo()\" ”, then the frameset tag for this LayoutBag would be 
rendered as <FRAMESET ONLOAD=\"foo()\"...> . Use this property if you are comfortable with 
HTML frameset markup, and want to accomplish something that can’t be done through any of the 
other LayoutBag  properties.

• zeroPixelHiding : true  or false , depending on the hide method being used. See “Visibility, 
Features and Modes” on page 37.

AddChild (LayoutObject child) returns child

Add a new layout object (i.e. a LayoutFrame  or a LayoutBag ) as a child of this LayoutBag . The order in 
which children are added determines their position onscreen; children which are added first will be 
displayed at the top or left of the LayoutBag ’s frameset (depending on the orientation of the 
LayoutBag ), children added later will be displayed lower or to the right.

This function returns the argument child as a convenience so that you can write code like

var theNewFrame = someLayoutBag.AddChild(new LayoutFrame(...));

and then go on to set properties of the newly created frame, such as mode or feature coupling.



Be Incorporated — Confidential Information

April 11, 2001 UI Customization :  JavaScript Layout Engine page 40
preliminary — content subject to change

FindChild (string name) returns layoutobject

Look up by name a layout object (LayoutBag  or LayoutFrame ) contained in this LayoutBag  and return 
it. Returns null if no such object is found.

RemoveChild (string name)

Remove the child layout object with the given name.

SetSize (size s)

Set the size of this LayoutBag . (The initial size can also be specified via the size  property of the 
argument to the constructor.) See “Sizes” on page 38.

GetSize () returns size

Retrieve the size of this LayoutBag . See “Sizes” on page 38.

SetVisible (boolean visibility)

Set the visibility of this LayoutBag . Note that features and modes often provide a more convenient way 
of managing visibility: See “Visibility, Features and Modes” on page 37. Also note that if a LayoutBag  is 
coupled to a feature or mode, setting the visibility directly may not work as desired.

IsVisible () returns boolean

Returns the visibility setting of this LayoutBag .

DeleteAllChildren ()

Remove all child layout objects of this LayoutBag .

class LayoutFrame

new LayoutFrame (Object properties)

Constructor to create a new LayoutFrame . The single argument is a JavaScript object which specifies the 
initial properties of the layout bag as a set of name/value pairs. The recognized property names, and 
their possible associated values, are as follows:

• location : The URL this frame displays, e.g. “file://$RESOURCES/picture.html ”. See xxx for 
notes on using URLs to reference internal pages in BeIA.

• name: The name of this frame, used by various functions to find or perform operations by name.

• size : Initial size of the frame. The dimension this size refers to depends upon the orientation of the 
enclosing LayoutBag. If the orientation is such that this LayoutFrame  is stacked vertically (i.e. above 
and/or below its sibling frames, meaning that the enclosing LayoutBag  has an orientation of 
Layout_Bag_SPLIT_HORIZONTAL ), then this property will set the height of the frame; in the other 
orientation, this property will set the width of the frame. 

• visible : true  if this frame is visible, false  otherwise, defaults to true . 

• scrolling : true  if this frame should add scrollbars when the content is too large to display in the 
allocated screen area, false  if the frame should never display scrollbars. Defaults to true .

• frameArgs : If present, the string passed in via this property is inserted verbatim into the <FRAME> 
HTML tag. This is similar to the framesetArgs  property of LayoutBag , see the notes for that 
property.



April 11, 2001 UI Customization :  JavaScript Layout Engine page 41
preliminary — content subject to change

Be Incorporated — Confidential Information

• zeroPixelHiding : true if this frame should be hidden using zeroPixelHiding, false if it should be 
hidden using the “normal” method of hiding. See “Visibility, Features and Modes” on page 37 for a 
discussion of the implications of this.

MakeLayoutFrame (string name, URL location, boolean scrolling, size size, boolean 
visible) returns LayoutFrame

This function is a quick way of making layout frames, until the JavaScript interpreter in the Opera 
browser supports JavaScript 1.3 anonymous object creation (i.e. objects specified using a 
“{name:value,...} ” syntax. The current version of Opera does not support this.) This function simply 
creates an object with appropriately named attributes, fills in those attributes with the given arguments, 
and then calls new LayoutFrame()  on the object and returns the new layout frame. Arguments are:

• name:  the name of the layout frame, passed in as the name attribute of the object given to new 

LayoutFrame() .

• location :  the initial URL the layout frame will display, passed in as the location attribute of the 
object given to new LayoutFrame() .

• scrolling :  determines if scrollbars will be shown in the new layout frame, passed in as the scrolling 
attribute of the object given to new LayoutFrame() .

• size :  determines the initial size of the new frame, passed in as the size attribute of the object given 
to new LayoutFrame() .

• visible :  determines if the new frame will initially be visible or invisible, passed in as the visible 
attribute of the object given to new LayoutFrame() .

For more details on these arguments, refer to the documentation for the associated attribute in the 
LayoutFrame  constructor.

SetSize (sizeString s)

Set the size (width or height, depending on orientation of the enclosing LayoutBag ) of this frame. See 
“Sizes” on page 38 for an explanation of what constitutes a legal size string.

GetSize () returns sizeString

Get the size (width or height, depending on orientation of the enclosing LayoutBag ) of this frame. See 
“Sizes” on page 38 for an explanation of what constitutes a legal size string.

SetVisible (boolean visibility)

Set the visibility of this frame; true  for visible, false  for hidden. You do not normally work with layout 
object visibility directly: See “Visibility, Features and Modes” on page 37.

IsVisible () returns boolean

Returns the visibility of this frame; true  if visible, false  if hidden. Note that IsVisible()  may return 
true but the frame might still be hidden on screen, if one of its ancestor LayoutBag s is hidden. You do 
not normally work with layout object visibility directly: See “Visibility, Features and Modes” on page 37.

SetLocation (URLString location)

Set the location of this frame (the URL-formatted string it displays).

GetLocation () returns URL

Get the URL this frame is currently displaying.



Be Incorporated — Confidential Information

April 11, 2001 UI Customization :  JavaScript Layout Engine page 42
preliminary — content subject to change

2.3   Global Layout-Related Functions

Feature-Related API Functions

beos.globals.features.Add (string featureName, function activationFunction, function 
deactivationFunction)

Create a new feature, with the given name, activation function (may be null ), and deactivation function 
(may be null .) After creating a feature and associating it (via CoupleLayoutObjectToFeature() ) with 
one or more layout objects, you should call either the beos.globals.features.Open() or 
beos.globals.features.Close()  function on that feature’s name, to assume the feature and its 
dependencies are in a consistent state.

CoupleLayoutObjectToFeature (LayoutObject obj, string featureName, boolean visibleState)

Set dependencies so that the given layout object (either a LayoutFrame  or a LayoutBag ) will be visible 
only when the named feature is in the given visibleState. After creating the given feature and using this 
function to create dependencies, you should call beos.globals.features.Open()  or 
beos.globals.modes.Close()  with the feature name, to ensure your data structures are in a consistent 
state.

beos.globals.features.Open (string featureName)

Set the boolean value associated with the named feature to true. This will cause the activation function of 
the feature (if any) to be called. The activation function should normally return true ; if it returns false , 
the Open()  will be aborted, and the value of the feature will remain what it previously was.

Note: Calling Open()  on a feature that already happens to be set to true will result 
in an execution of the feature’s activation function.

beos.globals.features.Close (string featureName)

Set the boolean value associated with the named feature to false. This will cause the deactivation function 
of the feature (if any) to be called. The deactivation function should normally return true ; if it returns 
false , the Close()  will be aborted, and the value of the feature will remain what it previously was.

Note: Calling Close() on a feature that already happens to be set to false will result 
in an execution of the feature’s deactivation function.

beos.globals.features.Get (string featureName) returns boolean

Return the boolean value currently associated with the named feature.

Mode API Functions

beos.globals.modes.AddCluster (string clusterName)

Create a new mode cluster under the given name. You will then need to use 
beos.globals.modes.AddMode()  to define mode values which this new mode cluster may assume.

beos.globals.modes.AddMode (string clusterName, string modeName, function 
activationHook, function deactivationHook)

Define modeName as one of the mode values that the mode cluster named by clusterName can assume. 
The activationHook and deactivationHook functions may be null ; if one or both are provided, they will be 
called immediately before mode changes. (The activation hook for a mode will be called immediately 



April 11, 2001 UI Customization :  JavaScript Layout Engine page 43
preliminary — content subject to change

Be Incorporated — Confidential Information

before the associated mode cluster is set to that mode; the deactivation hook for a mode will be called 
immediately before the associated mode cluster is set to some other mode.) activationHook and 
deactivationHook should normally return true ; they can return false  to indicate that the mode change 
should not be carried out.

CoupleLayoutObjectToMode (LayoutObject obj, string clusterName, string modeName)

Set dependencies so that the given layout object (either a LayoutFrame  or a LayoutBag ) will be visible 
only when the named mode cluster has the mode value indicated by modeName. After creating the mode 
cluster and associated modes and using this function to create dependencies, you should call 
beos.globals.modes.Set() with this cluster name and an appropriate mode name, to ensure your 
data structures are in a consistent state.

beos .globals.modes.Set (string clusterName, string modeName)

Change the mode associated with the named mode cluster to the named mode. This will cause the 
deactivation function of the previous mode (if any) to be called, and then the activation function of the 
new mode (if any) to be called, before the cluster’s mode value is actually changed. If either of those 
functions returns false, the mode change will be aborted.

Note: Setting a mode cluster to the mode it already happens to be in will still cause 
that mode’s activation/deactivation functions to be called.

beos.globals.modes.Get (string clusterName) returns string

Return the name of the mode the named cluster is currently set to.

Miscellaneous Related Functions

beos.realTop.be_refresh ()

This function needs to be called so that any changes made in the displayed frames or framesets will 
actually be drawn to the screen. For example, you can do any number of mode or feature changes, URL 
changes, or calls to SetVisible()  methods, but until you explicitly issue a beos.realTop.be_refresh() 
command, none of those changes will be reflected on the screen. This allows you to make many changes 
but perform only one (computationally expensive) redraw.



Be Incorporated — Confidential Information

April 11, 2001 UI Customization :  JavaScript Layout Engine page 44
preliminary — content subject to change



 April 11, 2001 4:14 pm UI Customization :  The Toolbar page 45
preliminary — content subject to change

Be Incorporated — Confidential Information

UI Customization

The Toolbar

The toolbar (or navigation bar) of the BeIA interface is the bar which appears at the bottom of the BeIA 
screen, and lets the user control the browser. A typical toolbar might appear as shown below:

Within the BeIA interface, the toolbar is always present in the screen, so that the user always has onscreen 
controls available for navigating the web:



Be Incorporated — Confidential Information

April 11, 2001 4:14 pm UI Customization :  The Toolbar page 46
preliminary — content subject to change

You can modify aspects of the toolbar in various ways, as described in the sections below.

1   Changing the Appearance of the Toolbar

The appearance of the toolbar may be changed in one of two general ways:

• You can use different images for the toolbar controls. This will affect not only the way buttons are 
“normally” displayed, but also the way they are highlighted.

• You can edit $RESOURCES/Toolbar/toolbar.html to change the layout of the toolbar, and the 
appearance of those parts of it not defined by images.

1.1   Changing the Appearance of Toolbar Buttons

Note:   See xxx for a general discussion of changing button appearances in BeIA.

Like other parts of the BeIA interface, the appearance of the toolbar buttons is defined by images 
associated with each button. In the case of the toolbar, these images are stored in 
$RESOURCES/Toolbar/images  (see xxx for details of how the $RESOURCES environment variable is 
resolved to a file path), under the following filenames.

• home.gif , home-over.gif , home-down.gif

• forward.gif , forward-over.gif , forward-down.gif

• back.gif , back-over.gif , back-down.gif

• goto.gif , goto_active.gif , goto_active-over.gif , goto_active-down.gif

• reload.gif , reload-over.gif , reload-down.gif

• magnify.gif , magnify-over.gif , magnify-down.gif

• stop.gif , stop-over.gif , stop-down.gif

• favorites.gif , favorites_active.gif , favorites_active-down.gif, favorites_active-

over.gif

The alternative versions of each button (eg., the -over , and -down  versions of the forward  button) define 
the appearance of the button when the mouse cursor is over the button, and when the button is being 
clicked. For button which have an explicit disabled state, such as the goto  button, the _active  part of 
the image name denotes an image which may be used when the button is clickable, while the base name 
(such as goto.gif ) denotes the button in its disabled state. In functional terms, the home, forward , back , 
reload  and stop  buttons are the standard controls found on any browser, clicking on the magnify  
button switches the content frame between various levels of magnification, clicking on the favorites  
button toggles the bookmark display open or closed, and clicking the goto  button causes the browser to 
go to whatever page is entered in the URL text box shown in the toolbar. The status  images simply 
provide feedback as to the connection status of the device.

While these image files are currently GIF images, they may be converted in the future to PNG images, in 
which case the file names will be of the form imagename.png .

Note:   The dimensions of the button images are hardcoded in the HTML layout code 
within $RESOURCES/Toolbar/toolbar.html , using the HEIGHT and WIDTH 
attributes of the IMG markup tag. If you replace the default button images with 
other images of differing dimensions, you will need to change the corresponding 
HEIGHT and WIDTH values within the HTML markup. See section 1.2    for details 
of the toolbar.html  file.



April 11, 2001 4:14 pm UI Customization :  The Toolbar page 47
preliminary — content subject to change

Be Incorporated — Confidential Information

1.2   Changing Toolbar Layout and Other Appearance Properties with the “toolbar.html” File

The basic layout of the toolbar, along with some other properties such as background color, are 
determined by the HTML code in $RESOURCES/Toolbar/toolbar.html  The following are the changes 
you are most likely to wish to make.

• The toolbar elements are laid out in an HTML table, and by editing this table, you can rearrange the 
order of the elements, or change the layout in more significant ways.

• The entry box for user-typed URLs is just a standard HTML text input field, and you can use any tags 
applicable to this field to change its properties.

• The background color of the toolbar is set by the BGCOLOR attribute of the BODY markup tag. You can 
change this to alter the color of the toolbar behind the buttons.

Note: Button images are, of necessity, square, and the default button images achieve 
the appearance of round buttons by filling in the corners of the images with the 
background color. Thus, if you wish to change the background color used with 
these buttons, you will need to alter the button images also.

Refer to any recent HTML reference for details on editing the above HTML elements. Aside from the 
above points, there is little in the way of “simple” changes you can make within the toolbar—functional 
changes (altering the behavior of toolbar controls, or adding new controls) requires an understanding of 
JavaScript, and sometimes of the BeIA “plugin architecture” which supports the browser.



Be Incorporated — Confidential Information

April 11, 2001 4:14 pm UI Customization :  The Toolbar page 48
preliminary — content subject to change



 April 11, 2001 4:15 pm UI Customization :  Bookmarks page 49
preliminary — content subject to change

Be Incorporated — Confidential Information

UI Customization

Bookmarks

The bookmarks interface is the list of folders and bookmarks, and associated behavior, that is presented to 
the user when he or she wishes to add, delete, rename, or otherwise manage web site bookmarks.

You can do a number of things to modify aspects of this interface:

• The appearance of controls can be altered by providing alternate images for them; see 2.1   Changing 
the Appearance of Bookmark Controls

• Colors and fonts used in the bookmarks interface can be changed by editing the HTML file defining 
the general layout of the interface. See section 2.3   Changing Bookmark Layout and Other 
Appearance Properties with the “index.html” File.

• A predefined list of bookmarks and bookmark folder can be provided for the user. In addition, you 
can mark particularly important bookmarks (such as bookmarks back to your company’s technical 
support site) as non-deletable. See section 3   Preconfiguring the Favorites List.

These topics are discussed in the following sections. We begin with an overview of how the bookmark 
interface functions.

1   How the Bookmarks Interface Works

The bookmarks interface is displayed at the request of the user, by clicking on the “Favorites” button 
displayed in the BeIA toolbar:

When such an event occurs, the browser is presented with an internal HTML page which displays the 
bookmarks interface within a frame. The presentation of the bookmarks interface within this frame is 
defined by the $RESOURCES/Bookmarks/index.html  file.

The bookmarks interface consists of several buttons, and a list of bookmarks and bookmark folders. The 
buttons are implemented using HTML IMG tags and event attributes which cause appropriate JavaScript 
calls to be invoked in response to mouseovers or clicks on the buttons. The list of bookmarks and folders 
is not implemented by HTML/JavaScript, but by a BeIA-provided C++ plugin, which allows editing of 
names and URLs, selection of parent folders via a popup menu, and a few other things. You cannot 
modify the C++ code for this plugin; however, the plugin does respect various attributes of the HTML 
<EMBED> tag which embeds the plugin into the bookmark interface, and editing these attributes will 
allow you to change the appearance of the editing list.



Be Incorporated — Confidential Information

April 11, 2001 4:15 pm UI Customization :  Bookmarks page 50
preliminary — content subject to change

2   Changing the Appearance of the Bookmarks Interface

The appearance of the bookmark interface may be changed in one of two general ways:

• You can use different images for the bookmark interface controls. This will affect not only the way 
buttons are “normally” displayed, but also the way they are highlighted.

• You can edit $RESOURCES/Bookmarks/index.html to change the layout of the bookmarks interface, 
and the appearance of those parts of it not defined by images.

2.1   Changing the Appearance of Bookmark Controls

Like most parts of the BeIA user interface, the appearance of the bookmarks interface can easily be 
changed by providing a different set of graphical images for use as the controls of the interface. Although 
some of the bookmark controls are not standard buttons, most still use graphics to change their 
appearance in response to user actions, and so their appearance can be changed by substituting the 
desired graphics images, as with standard buttons. The bookmark control images are all located in 
$RESOURCES/Bookmarks/index.html .

Note:   For a description of how to change the appearance of standard buttons, see xxx.

2.1.1    Names and Locations of the Bookmark Controls Image Files

The appearance of virtually all of the bookmark-related controls can be changed in this manner 
described above. Below is a diagram assigning names to the different controls; following it is a list of the 
image files associated with each control. Simply replace the images with ones of your own design, to 
change the appearance of a given control.

Except where noted, all of the image files mentioned will be found in $RESOURCES/Bookmarks.

Note:   Some of these images may be in PNG (Portable Network Graphics) format; if this is the case, you must
provide any substitute images in this same format. If your graphics program does not save in PNG format,
you can use BeOS (desktop version) to convert from any supported graphics format (a BeOS translator is
availailable for GIF images, though it does not ship with BeOS) to PNG format, which is supported by a built-
in BeOS translator.

• “Add Favorite” button :  addbookmark.gif , addbookmark_over.gif , addbookmark_active.gif



April 11, 2001 4:15 pm UI Customization :  Bookmarks page 51
preliminary — content subject to change

Be Incorporated — Confidential Information

• “New Folder” button : addfolder.gif , addfolder_over.gif , addfolder_active.gif

• Folder icon : folder.png , folder_closed.png

• Edit Info icon : info.png , info_over.png , info_on.png , info_onover.png , info_outside.png

• Bookmark icon : bookmark.png

• Delete icon : delete.png , delete_over.png , delete_outside.png

• Accept changes icon : this is just one of the image alternatives for the Edit Info icon .

• Name and Number of Entries : The appearance of these text elements depends on which font is used by 
the C++ bookmark plugin. This font can be changed by editing the listfont  attribute of the 
<EMBED> definition in the $RESOURCES/Bookmarks/index.html  file. See section 2.3   

Note:   If you change the appearance of the bookmarks elements, you may also want to change the appearance
of the toolbar button which toggles the bookmarks open and closed. See xxx for information on changing
the appearance of toolbar elements.

2.2   How to Change the Look of Buttons—Advanced

The current “look behavior” of buttons (i.e. the use of separate images for normal, mouse-over, and 
pressed states) is determined by the JavaScript code found in $RESOURCES/scripts/buttons.js . If you 
wished to achieve more advanced visual effects with buttons—such as, for example, having highlighting 
fade in and out, rather than simply appearing and disappearing when the mouse cursor moves over a 
button—you could conceivably modify this code.

2.3   Changing Bookmark Layout and Other Appearance Properties with the “index.html” File

The basic layout of the favorites list, along with some other properties such as background color, 
highlight color, text font, and so forth, are determined by the HTML code in 

$RESOURCES/Bookmarks/index.html . Through judicious editing of this file, you can change certain basic 
visual aspects of the appearance of the favorites list.

Note:   $RESOURCES/Bookmarks/index.html  also contains a significant amount of code which affects the
behavior of bookmarks; this is primarily JavaScript code, and event tags associated with control elements, which
define JavaScript functions to be called when certain events take place. You should not modify such code.

There are three places within the index.html  file you might want to make changes:

• The <body...>  markup tag which starts the body of the HTML code defines the default background 
color attribute for the bookmarks list and controls. You will want to change this attribute if you elect 
to change the color scheme. Various other attributes associated with <body>  in the HTML standard 
may also be applied.

• A <table...>  definition defines the layout of the bookmark buttons at the left of the favorites list. 
(The “Add Favorite” button and the “New Folder” button: See section 2.1.1   ) You can change this 
table to change the layout of the buttons. In addition, if you use your own set of graphics for the 
button images (See section 2.1   ), and these graphics differ in size from the default button graphics, 
you should alter the WIDTH and HEIGHT attribute values of the corresponding IMG markup tags within 
the table, to reflect this difference.

• The <EMBED...>  definition which constitutes approximately the last one-third of index.html  is used 
to define the appearance of the C++ plugin which provides the bookmark list and list managment 
interface. The plugin uses attributes associated with the <EMBED> tag to set many of its visual 
properties. Under the current version of BeIA, all of these attributes control various colors in the 
favorites list, except for the listfont  attribute, which defines the font used in the favorites list. [The 
buttonfont  attribute is nonfunctional and will at some point be removed.]



Be Incorporated — Confidential Information

April 11, 2001 4:15 pm UI Customization :  Bookmarks page 52
preliminary — content subject to change

The various colors controlled by the <EMBED> attributes should be reasonably apparent from their names. 
If in doubt, simply play around with the hexadecimal color attribute values, restart your browser (to clear 
the cache), and go to the favorites screen to view the result. Here is the aesthetically disastrous result I 
got by changing some values at random:

3   Preconfiguring the Favorites List

You may wish to ship your BeIA units with a set of bookmarks and folders preconfigured for the 
convenience of the user. All bookmark data resides in the file 
/boot/home/config/settings/Favorites . You can generate or modify this file in one of two ways:

• Simply browse to the desired sites on a working BeIA device, using the BeIA interface to create and 
add folders and bookmarks as desired. Then copy the resulting Favorites  data file into your 
distribution filesystem.

• Edit the Favorites  data file by hand. This is more error-prone (make sure to check, after doing this, 
that the bookmarks you’ve entered work properly from the BeIA interface), but it does let you do 
some things which cannot be done by simply using the BeIA interface to generate the Favorites  file. 
The format of the Favorites  file is discussed below.

3.1   “Favorites” File Format

Before going into the details of the Favorites  file format, you should understand a few of the 
assumptions made by the BeIA favorites interface:

• Folders will never be nested within folders; “folders of favorites” can only appear at the top level of 
the favorites list, and can only contain bookmarks.

• A user’s list of favorites will be presented as an alphabetized list of folders, followed by an 
alphabetized list of top-level bookmarks. Within each folder, all of the bookmarks in that folder will 
be shown alphabetically. This ordering is defined in the C++ bookmark plugin (see See section 1   ), 
and cannot be changed except by changing the plugin, or using a different plugin. As a result, the 
order of entries in the Favorites  file is not necessarily the order in which they will appear to the 
user.

With that in mind, here is a sample Favorites  file:



April 11, 2001 4:15 pm UI Customization :  Bookmarks page 53
preliminary — content subject to change

Be Incorporated — Confidential Information

@Favorites 1
Folder Financial

Favorite Yahoo
URL=http://www.yahoo.com

Folder Technical
Favorite BeOS+Binaries
URL=http://www.bebits.com/
Favorite Java+Home
URL=http://java.sun.com/
NoDelete=true

Folder Weather
Favorite Home+Page
URL=file://$RESOURCES/Home/start.html

and here is the the resulting favorites list:

Even if the user passes the cursor over the “Java Home” entry, no trash can symbol will be shown in that 
entry, and so the user cannot delete “Java Home”. This is the result of the occurrence of the tag 
NoDelete=true  in the Favorites  file, under the “Java Home” entry. This will be discussed in more 
detail shortly.

These are the rules for the Favorites  file format:

• The Favorites  file begins with the line “@Favorites 1 ”.

• The remainder of the Favorites  file is a list of favorite entries. Each such entry may define either a 
folder or a bookmark.

• If an entry defines a folder, it will consist of a single line, starting with the word “Folder ”, and with 
the remainder of the line giving the name the user will see associated with the folder. The bookmark 
entries in the folder follow immediately after, and all of the lines which make up the folder’s 
bookmarks begin with a <tab> character.

• If an entry defines a bookmark, it consists of multiple lines. The first line of a bookmark entry starts 
with the word “Favorite ” (including a leading <tab> , if the bookmark is contained within a folder), 
followed by the name the user will see for the bookmark. The next line is of the form 
“URL=location ”, where location  is a fully defined web address (including the correct protocol 
identifier at the beginning, such as “http:”, “ftp:”, etc.) Any further lines are optional, and set 
additional properties for the bookmark. At this time, the only additional option is a line of the form 
“NoDelete=true ”, which will prevent the user from removing the bookmark.

• The names associated with folders or bookmarks must be given in an “HTML-escaped” format, i.e. as 
if they were text to be displayed in an HTML document. This means that “+” should be used in place 
of spaces in the names, and that various other characters associated with HTML markup must be 
given via an HTML escape sequence, rather than entered directly in the name. See any introductory 
HTML book for details.



Be Incorporated — Confidential Information

April 11, 2001 4:15 pm UI Customization :  Bookmarks page 54
preliminary — content subject to change

• Any lines in the Favorites  file which are associated with a top-level folder or bookmark should be 
entered with no leading whitespace. Any lines associated with a bookmark contained in a folder 
should be entered with a single leading <tab> character.

• The last line of the Favorites  file should end with a linefeed, otherwise it may not be read in 
correctly by the BeIA system. 



 April 11, 2001 4:15 pm UI Customization :  Buttons page 55
preliminary — content subject to change

Be Incorporated — Confidential Information

UI Customization

Buttons

Almost all buttons in  BeIA have an appearance which is provided by a pre-rendered image or images. By 
substituting your own button images in place of the default images provided in BeIA, you can change the 
appearance of the interface, without writing a single line of code. This section discusses the details of this 
process.

1   An Example of Button Images in Action

To see how button images work in the actual BeIA interface, consider the example of the “forward” 
button in the toolbar. Here’s a screenshot showing the forward  button (and a bit of the surrounding 
buttons, for context) in its “normal” state:

This screen image is produced by drawing a dark blue background in the HTML frame the forward  button 
will appear in, and then, in the position of the forward  button, drawing the image found in the BeIA file 
/boot/custom/Resources/en/Toolbar/images/forward.gif . As it happens, the image found in that 
GIF file is just this:

When the mouse cursor moves over the position of the forward  button, a slightly different image is used 
to draw the button on the screen; this image is found in 
/boot/custom/Resources/en/Toolbar/images/forward-over.gif , and looks like this:

On screen, this produces the apprearance that whenever the mouse moves onto the button, the green 
circle around the button turns red. If the user then clicks the mouse button, a third image, 
/boot/custom/Resources/en/Toolbar/images/forward-down.gif , is used for as long as the user holds 
down the mouse button. In the case of the forward  button, it looks exactly the same as the forward-

over.gif  image, but it is a seperate image and could be different:



Be Incorporated — Confidential Information

April 11, 2001 4:15 pm UI Customization :  Buttons page 56
preliminary — content subject to change

Together, these three files constitute define the appearance of the forward  button. By replacing them with 
images of your own design, you can change the appearance of the forward button in almost any way you 
wish.

2   The General Button Image Schema

2.1   Location of Button Image Files

In the example above, the four button images were forward.gif , forward-over.gif , and forward-

active.gif , all in the folder /boot/custom/Resources/en/Toolbar/images . In general, the images for 
the buttons you might be interested in will be in different folders depending on what part of the interface 
the buttons are associated with. So, the images for all of the buttons associated with the toolbar are in 
$RESOURCES/Toolbar/images , while the images for the bookmarks list buttons are in 
$RESOURCES/Bookmarks. $RESOURCES is an environment variable which expands out into the proper path 
for resources in a given locale—see xxx for details. For full descriptions of button image locations and 
names, see the BeIA technical documentation describing the relevant part of the BeIA interface.

2.2   Button Image File Formats and Suffixes

Buttom images may be either GIF images (with a .gif  suffix) or PNG images (with a .png  suffix). Most 
buttons used in BeIA use GIF images, but in the future, it is expected that BeIA will use only PNG buttom 
images, due to the advantages associated with this format. See the section below on PNG images for 
details. If you replace BeIA button images with images of your own design, you should replace PNG 
images with PNG images, and GIF images with GIF images.

2.3   Button Image Names

For a given button, the names of the images for that button generally follow the same pattern. If the 
button is named button , then the following image files, or files with similar names, may be present:

• button.gif  (or .png ):  The “normal” button image.

• button-over.gif  (or .png ):  The image used when the mouse is over the button.

• button-active.gif  (or .png ):  The image used when the button is being pressed.

If the button has a disabled state, a different naming scheme may apply:

• button.gif  (or .png ):  The “disabled” button image.

• button _active.gif  (or .png ): The button in its enabled (clickable) state.

• button_active-over.gif  (or .png ):  The image used when the mouse is over the button.

• button_active-down.gif  (or .png ):  The image used when the button is being pressed.

For historical and technical reasons, slightly different naming schemes may apply to various buttons. 
When in doubt, simply inspect the button image, and check on a running IAD device to find out when 
that button image is used (i.e. when the mouse is over the button, clicking the button, etc.)



April 11, 2001 4:15 pm UI Customization :  Buttons page 57
preliminary — content subject to change

Be Incorporated — Confidential Information

You need only replace files that exist, to change the appearance of a button; you do not have to supply 
images (such as a “disabled” image) that are not in the default BeIA distribution.

3   Button Sizes

For efficiency reasons when drawing onscreen, the sizes of the BeIA buttons are all “hard-coded” into the 
HTML which defines the user interface elements the user sees. When using other images for buttons, we 
suggest you use images that are exactly the same dimensions (pixel width by pixel height) as the button 
images you are replacing. If you do this, you will not need to alter any HTML code.

If you decide to use button images that differ in dimension from the default BeIA buttons, you will need 
to alter the button size in the HTML code defining that part of the interface. The technical documentation 
describing the details of each part of the interface will direct you to the appropriate HTML file or files. As 
an example, though, consider this snippet of code from the HTML file which defines the layout of the 
toolbar (depending on the version of BeIA you are working with, the toolbar HTML file may not contain 
exactly this text, but it will have something similar):

<TABLE BORDER=0 WIDTH=800 CELLPADDING=0 CELLSPACING=0>
<TR>

<TD WIDTH=110>
<IMG onClick="top.be_goto_home();" SRC="logo.gif" HEIGHT=57 WIDTH=110 BORDER=0>

</TD>
<TD WIDTH=12 HEIGHT=49 NOWRAP VALIGN=TOP></TD>
<TD WIDTH=41><!--Back Button-->

<IMG NAME="back" SRC="back.gif" WIDTH=41 HEIGHT=41 BORDER=0
   ONMOUSEOVER="doOverSound('back');"
   ONMOUSEOUT="doOut('back');"
   ONMOUSEDOWN="doDown('back');"
   ONMOUSEUP="if(doUp('back')) top.be_back();">

</TD>
<TD WIDTH=12 HEIGHT=49 NOWRAP VALIGN=TOP></TD>
<TD WIDTH=41><!--Forward Button-->

<IMG NAME="forward" SRC="forward.gif" WIDTH=41 HEIGHT=41 BORDER=0
   ONMOUSEOVER="doOverSound('forward');"
   ONMOUSEOUT="doOut('forward');"
   ONMOUSEDOWN="doDown('forward');"
   ONMOUSEUP="if(doUp('forward')) top.be_forward();">

This HTML code defines part of the table which makes up the toolbar (each button is in its own table 
cell, and cells are also used for spacing.) The definitions of three buttons—the home , back , and forward  
buttons—are shown. In each case, the sizes of the associated button images are given by the values of 
the WIDTH and HEIGHT attributes of the IMG markup tags. If you change the sizes of the button images, 
you must also change the values associated with these attributes. Note that for any given button, such as 
the forward  button, the sizes of all images for that button (i.e. the “normal” image, the -over  image, etc.) 
must be the same.

Note:   Depending on the part of the interface you are working with, using differently sized buttons may require
more complex changes than this, due to the fact that if button images grow too large, you may need to change
their layout on the screen so the user can see everything. Making buttons smaller is less likely to cause problems
than making them larger.

4   PNG vs. GIF Button Images

Although most of the button images used in BeIA are currently in the GIF image format, it is expected 
that in the future, Be, Inc. will shift to using PNG images for buttons throughout BeIA, due to the alpha 
transparency ability of the PNG format. This section briefly discusses this feature.



Be Incorporated — Confidential Information

April 11, 2001 4:15 pm UI Customization :  Buttons page 58
preliminary — content subject to change

Consider again the default button image for the toolbar’s forward button:

We’ll assume that the intended interpretation is various shades of gray over a white background. Note 
that the background is actually part of the image; this means that the background of the button must be 
coordinated with the background color of the surrounding HTML frame. In particular, this means that 
simply changing the background color of the toolbar necessitates not only a change to the HTML code 
defining the toolbar’s default background color, but also requires redoing all of the button images so that 
they use an appropriate background color. This is because GIF images do not support transparency. 
(More correctly, GIF images do not support transparency sufficiently well to produce a good appearance 
under most circumstances—pixels in a GIF image cannot be partially transparent, and so cannot be 
antialiased smoothly against the background color).

However, the PNG format does support full alpha transparency. Using PNG format, the above button 
image could be defined in such a way that what appears white could be defined as transparent, with the 
edges of the gray areas defined as partially transparent to achieve a smooth, antialiased appearance 
regardless of the background. The white background would not appear in this PNG image, and you 
could easily change the background of your HTML frame without changing any of the button images.

Note:   To produce button images with transparency, you will need to use an image editor or paint program
which supports transparency and which can save transparency information to PNG files.



 April 11, 2001 4:15 pm UI Customization :  Alerts page 59
preliminary — content subject to change

Be Incorporated — Confidential Information

UI Customization

Alerts

Alerts and dialog panels are HTML pages that are created on-the-fly by a cgi-bin script (the alert script).  The 
script creates the new HTML page by merging an alert template (a “text-less” HTML file) with some alert 
content (the text that will appear on the page).  

You can’t customize the alert script, but you can provide your own alert templates and alert content.  In the 
sections below, we look at the format of the alert template and alert content, and describe how to invoke the 
alert script.

This document considers “alerts” and “dialog panels” to be the same thing, and refers to all such entities as 
“alerts.”

1   The Alert Template 

An alert template is an HTML file that’s used as the basis for an alert that’s displayed by the browser.  You 
can supply as many different templates as you want, and they can be as explicit (i.e. as hard-coded) as 
you want.  

Typically, an alert template defines the form of the alert—how many buttons, where the alert content is 
positioned, how the reply is handled—without hard-coding any actual text.  The alert content (i.e. the 
text that the alert displays) is supplied as “arguments” to the template; a template accepts as many as ten 
text arguments.  These arguments are referred to, within the template, by the variables %0 through %9.  
(How you supply the arguments is discussed under “3   Invoking the Alert Script,” below.)

1.1   A One Button Alert

As a simple example, here’s a template that displays a centered line of text and a titled “button” (i.e. a 
link):

content-type: text/html
<TITLE></TITLE>
<BODY BGCOLOR=0000ff TEXT=ffffff LINK=ff0000 VLINK=ff0000 ALINK=ffbfbf>
<P ALIGN=CENTER>%0<BR>
<A HREF=
 "file://$SCRIPTS/htmlalertreply?i32-msgid=0x00000000&i32-
realwhat=0x00000000">%1</A>

The template expects two content arguments, which it refers to as %0 and %1.  When passed the 
arguments “File not found.” and “Okay”, for example, the constructed alert would look something like 
this:

<<illo>>

The file reference in the last line...

 "file://$SCRIPTS/htmlalertreply?i32-msgid=0x00000000&i32-realwhat=0x00000000"



Be Incorporated — Confidential Information

April 11, 2001 4:15 pm UI Customization :  Alerts page 60
preliminary — content subject to change

... points to a cgi-bin program that’s invoked when the user clicks the Okay  link.  The parts of the 
reference are:

• $SCRIPTS is a global variable that points to the directory that contains cgi-bin programs.  For rules 
governing this variable, see <x>.

• htmlalertreply  is the cgi-bin script that’s invoked when the link is clicked.

• msgid  is a unique 32-bit integer identifier for the alert panel. 

• realwhat  is a 32-bit integer that encodes the “create a new alert” request. 

1.2   A Two Button Alert

<<TK>>

2   The Alert Content

<<TK>>

3   Invoking the Alert Script

There are three ways to invoke the alert script:  Through C++ code (the TellTellBrowser()  function), 
through JavaScript code, and through the TellBrowser comand line program. 

3.1   Through C++

To invoke the alert script through C++ code, you create a TB_OPEN_ALERT message and send it to the 
system through the TellTellBrowser()  function.

The TB_OPEN_ALERT message has four fields.  Two of the fields, “itemplate” and “template”, specify the 
location of the alert template file that you want to use.  The “content” field identifies the alert content file 
you want to use.  The final field, “data”, lets you pass arguments to the templates:

Field Type code Description

“itemplate” B_STRING_TYPE The path to the alert name mapping file.  This is a text file that maps alert 
template names (delimited by whitespace) to the files that contain the 
templates’ HTML code, in this format:

template_name_1 branch/template_file_1
template_name_2 branch/template_file_2
template_name_3 branch/template_file_3
...

“template” B_STRING_TYPE The name of the template you want to use.  The “template” value must 
appear as a template name given in the “itemplate” file.



April 11, 2001 4:15 pm UI Customization :  Alerts page 61
preliminary — content subject to change

Be Incorporated — Confidential Information

As an example, the following code is the BMessage definition that’s used by the print server to create a 
“There’s no printer” alert: 

/* Define the TB_OPEN_ALERT message. */
BMessage msg_alert(TB_OPEN_ALERT);
BMessage reply;
msg_alert.AddString("itemplate","Alerts/indirect.txt");
msg_alert.AddString("template","print_no_printer");
msg_alert.AddString("content","Alerts/printer.txt");
msg_alert.AddString("data","errnoprt");
msg_alert.AddString("data","BUY_URL");
msg_alert.AddString("data","BUY");
msg_alert.AddString("data","NO");
error=TellTellBrowser(&msg_alert,&reply);

3.2   Through JavaScript

<<TK>>

3.3   Through TellBrowser

<<TK>>

“content” B_STRING_TYPE The path to the alert content file.  This is a text file (similar in form to the 
alert name mapping file) that maps arbitrary, whitespace-delimited 
symbols to text strings:

symbol_1 Error message one.
symbol_2 Error message two.
symbol_3 Error message three.
...  

“data” B_STRING_TYPE An array of the symbols (as listed in the alert content file) that you want 
to use in your alert.  The “data” array can contain as many as nine 
symbols.  You refer to a symbol through the $N variable, where N is the 
index of the symbol in the “data” array. 

Field Type code Description



Be Incorporated — Confidential Information

April 11, 2001 4:15 pm UI Customization :  Alerts page 62
preliminary — content subject to change



 April 11, 2001 4:15 pm UI Customization :  Special Keys page 63
preliminary — content subject to change

Be Incorporated — Confidential Information

UI Customization

Special Keys

BeIA lets you hard-wire any of the keyboard keys to specific commands, such as “volume up”, “sleep,” or 
“go to URL”.  This feature is meant to be used in keyboards that have special physical keys that are 
specifically designed to provide the user with “one touch” shortcuts.  It’s not meant to be used to arbitrarily 
remap the “regular” keys on the keyboard.

This document describes how special keys are mapped to particular actions, and how you can augment or 
modify the default map.

1   The Special Key Mapping File

The /boot/custom/special_keys/map  file contains the special key-to-action map.  The file is plain text 
that you can easily modify.  Each line in the file describes a single key mapping in this format:

key_number action [ arg ] done

The key_number is a hardware-defined hexadecimal number that identifies the physical key.  action 
describes the action that the key, when pressed, performs, as described in the next section.  arg lets you 
pass an argument to the action (if required).  All entries in the map file must end with the done  keyword.

2   Actions

The action part of a map file entry can be one of the built-in BeIA commands, an invocation of a shell 
script, or an invocation of the be_special_keys()  JavaScript function.

2.1   Built-in Commands

There are three built-in commands, all of which pertain to the system audio volume:

• volume_up  turns the system audio volume up one “tick.”

• volume_down  turns the volume down a tick. 

• toggle_mute  toggles the system audio mute.

For example, the default map file maps keys 0x100002, 0x200004, and 0x200005 to these actions:

0x100002 toggle_mute done
0x200004 volume_up done
0x200005 volume_down done

2.2   Shell Scripts

You can map a special key to a shell script through the exec  action, passing the name of the shell script 
as an argument:



Be Incorporated — Confidential Information

April 11, 2001 4:15 pm UI Customization :  Special Keys page 64
preliminary — content subject to change

key_number exec script done

Note that you can’t pass any arguments to the script through a map entry.  If you want to invoke a script 
with arguments, create a script “wrapper” that invokes the desired script (with arguments), and then 
invoke the wrapper from the map file.  As a convenience, BeIA provides a set of script wrappers in the 
/boot/custom/special_keys  directory.  The wrapper files are numbered (and named) 0 through 16.   
For example, the default map maps script 16 (print) to the key 0x100010:

0x100010 exec 16 done

Currently, the only scripts that BeIA provides that you’ll want to use—and that you shouldn’t overwrite or 
modify—are 13 and 16.  Script 13 toggles the device’s sleep mode:  It puts the machine to sleep when it’s 
awake, and wakes it up when it’s asleep.  Script 16, as mentioned above, prints the currently displayed 
page.

2.3   JavaScript

The top-level $RESOURCES/index.html  file defines the function be_special_keys() .  This function takes 
a single argument that represents a pre-defined operation.  To invoke the be_special_keys()  function 
from a map entry, pass javascript as the action and the name of the desired operation as the arg:

key_number javascript operation done

For example, the default map declares that key 0x200001 will navigate the browser to the previous web 
page:

0x10000e javascript back done

The list of available operations is given below.

3   Modifying Special Keys Mappings and Functionality

You can modify the special key mappings simply by editing the map file.  The only thing you mustn’t do 
is get rid of the file altogether.

Operation Meaning

back Navigates (the browser) to the previous page

forward Navigates to the next page

bookmarks Brings up the bookmarks list

home Navigates to the device’s home page

settings Brings up the menu of settings panels

news Navigates to the preferred news site

shopping Navigates to the preferred shopping site

email Brings up the email client (possibly navigating to an email site

search Navigates to the preferred search engine

rocket Navigates to the preferred financial site

lightbulb Navigates to the preferred entertainment site



April 11, 2001 4:15 pm UI Customization :  Special Keys page 65
preliminary — content subject to change

Be Incorporated — Confidential Information

To add functionality to the special keys you can:

• Create (and map to) a new shell script, possibly covering the script with a wrapper.  Note that you 
don’t have to use the numered wrappers in the special_keys  directory.  They’re provided simply as 
a convenience.

• Add an operation name to the be_special_keys()  function (in $RESOURCES/index.html ).  The 
function, as provided by BeIA, is essentially just a switch statement that invokes a particular JavaScript 
function given an operation name.  You can add your own operations by creating an operation name, 
a function to go with it, and tying them together in a new branch in the be_special_keys()  function.



Be Incorporated — Confidential Information

April 11, 2001 4:15 pm UI Customization :  Special Keys page 66
preliminary — content subject to change



 April 11, 2001 4:15 pm UI Customization :  Errors and UI Strings page 67
preliminary — content subject to change

Be Incorporated — Confidential Information

UI Customization

Errors and UI Strings

This document lists the error conditions (and other events) that are reported in alert panels, and the strings 
(including button labels) that are used to describe each condition.  

Except for the browser, BeIA components report their errors through the alerts system.  The system creates a 
new alert page by filling in an HTML template file (the alert template) with some descriptive text taken from 
an alert content file.  Each text string in an alert content file is indexed by an alert constant.  The template and 
content files are stored in $RESOURCES/Alerts .  See “Alerts” for more information on how alerts works. 

In the sections below, the errors are grouped by BeIA component and enumerated by their alert constants.  
Browser error reporting is described in the browser section, immediately below. 

Note:   All descriptive text shown below is taken literally from the BeIA interface code (HTML pages, text files,
etc.).  Typos, grammatical errors, and confusing or inconsistent wording will be corrected. 

1   Browser

The browser uses pre-defined alert files to report errors; each of these files corresponds to a particular 
sort of browser error, as listed below.  Strings given as text are passed to the files as arguments.

1.1   Bad beos:// URL

Errors/beos.html

The web page URL is invalid.
Tell me more...

1.2   Bad file:// URL

Errors/file.html

The local file filename could not be shown because the following problem ocurred: message.
Tell me more...

1.3   Bad http:// URL

Errors/connect.html

A connection could not be made to the remote host host because the following problem ocurred: message.
Tell me more...

Errors/hostclosed.html

The web site host unexpectedly closed its connection.
Tell me more...

Errors/hostrefused.html

The web site host refused your connection. Usually this occurs when the site is temporarily down.  Try your request 



Be Incorporated — Confidential Information

April 11, 2001 4:15 pm UI Customization :  Errors and UI Strings page 68
preliminary — content subject to change

again later.
Tell me more...

Errors/hostunknown.html

The web site host could not be found.  If you have entered the web address manually, please make sure that you 
have typed it correctly.
Tell me more...

Errors/http.html

While requesting your page, the web site returned an error message: message (code).
Tell me more...

Errors/timeout.html

Your attempt to access host failed because the server took too long to respond.  This could be due to to server being 
too busy right now.  Try your request again later.
Tell me more...

1.4   Unsupported Content or Scheme

Errors/content.html

This device can not display data of type type.
Tell me more...

Errors/scheme.html

The requested page could not be shown because the network protocol scheme is unknown.
Tell me more...

1.5   Password Request

The Errors/password.html  template file is filled in and displayed when a server requests a password 
but doesn’t supply its own password window.

You must enter a password to see this page.
Username
Password
Cancel
Login

2   General Errors

Alerts/content.txt  is an alert content file that contains strings that are generally useful in an error 
panel.  The strings are listed below by the error codes to which they correspond.

error

An error occured.

OK

OK

ign

ignore



April 11, 2001 4:15 pm UI Customization :  Errors and UI Strings page 69
preliminary — content subject to change

Be Incorporated — Confidential Information

3   The Update Mechanism

Alerts/doupgrade.txt  contains the strings that the update mechanism displays in the alert panel that’s 
presented to the user during and after a major update (or “upgrade”).  Each string is represented by a 
code (“query ”, “defer ”, “doupgrade ”, etc). 

Note that minor updates don’t interrupt the user with alert panels.  For more on the update mechanism, 
see “The Update Mechanism” in the BeIA Support chapter.

query

A system software upgrade is available. Would you like to install the upgrade now? If you defer, you will be given the 
option to upgrade again before the machine goes to sleep.

defer

Defer

doupgrade

Upgrade Now

ok

OK

status-updating  
Downloading update... This may take a few minutes.

status-install  
Installing update: -- WARNING -- interrupting your machine at this time may render it unbootable!

success  
The upgrade was successful. Your machine will reboot automatically in 10 seconds...

error-install  
A serious error has occured while installing the upgrade. Initiating recovery in 10 seconds...

error-verify  
The downloaded upgrade package is damaged. Another upgrade attempt will be made later.

error-download  
An error has occured while attempting to download the upgrade package. Another upgrade attempt will be made later.

error-memory  
There is not enough memory available to perform the upgrade. Another upgrade attempt will be made later. If this 
problem persists, you may need to use the recovery mechanisim to install the upgrade.

4   Midi

Alerts/midiErrors.txt  enumerates the MIDI error codes:

midioverload  
MIDI can’t handle this many instruments.

Note:   The Alerts/midiErrors.txt  file doesn’t currently exist.

5   Printer

Alerts/printer.txt  enumerates the printer’s error codes:



Be Incorporated — Confidential Information

April 11, 2001 4:15 pm UI Customization :  Errors and UI Strings page 70
preliminary — content subject to change

errnoprt  
No printer connected!.

errbusy  
Printer busy! Please wait the end of the current printing.

errio  
The printer does not respond. Please check the connections.

errpaper  
Paper out.

errink  
Ink out.

errjam  
Paper jam.

OK 
OK

CANCEL 
Cancel

YES 
Yes

NO 
No

RETRY 
Retry

6   RealPlayer

6.1   Clip Info

Alerts/realplayerclipinf.html  is the template for the RealPlayer clip information page.  It contains 
the following (hard-coded) text: 

About this Presentation: 
Clip:

The fields are filled in through arguments to the template.

6.2   Authentication

Alerts/realplayerauth.html  is the RealPlayer authentication page:

User Name and Password Required
User Name
Password
Submit
Cancel



April 11, 2001 4:15 pm UI Customization :  Errors and UI Strings page 71
preliminary — content subject to change

Be Incorporated — Confidential Information

6.3   Error Templates

Alerts/realplayer[1234].txt  are error templates that are used to display RealPlayer error text, 
mapped from the codes listed in the next section.  The error page may also display the URL of the faulty 
clip, the server name, and a “More info:” URL.  The realplayer3.txt  and realplayer4.txt  files contain 
this hard-coded string:

More info:

6.4   Error codes

Alerts/realplayer.txt  enumerates RealPlayer’s error codes:

failedload  
Failed to load the ’rmacore.so.6.0’ shared library.

failedinit  
Failed to initialize - not enough memory or resources.

cantopen  
Can’t open URL.

OK 
OK

CANCEL 
Cancel

YES 
Yes

NO 
No

RETRY 
Retry

CLOSE 
Close

NOINFO 
No information available

ITITLE  
Title:

IAUTHOR 
Author:

ICOPY 
Copyright:

SPACE 
‘ ‘ (single whitespace character)

INFO 
Contact your vendor.

PNR_FAIL

General error. An error occurred.

PNR_OUTOFMEMORY

Out of memory. You may need to close some other applications to play this content.



Be Incorporated — Confidential Information

April 11, 2001 4:15 pm UI Customization :  Errors and UI Strings page 72
preliminary — content subject to change

PNR_INVALID_PARAMETER

Invalid parameter. Unable to process request.

PNR_INVALID_OPERATION

Invalid operation. Cannont process request.

PNR_NOT_INITIALIZED

Not initialized.

PNR_INVALID_FILE

RealPlayer cannot play this type of document.

PNR_INVALID_VERSION

Invalid file version number.

PNR_DOC_MISSING

Requested file not found. The link you followed may be outdated or inaccurate.

PNR_BAD_FORMAT

Unknown data format.

PNR_NET_SOCKET_INVALID

Invalid socket error.

PNR_NET_CONNECT

Connection to server could not be established. You may be experiencing network problems.

PNR_BIND

An error occurred binding to network socket.

PNR_SOCKET_CREATE

An error occurred while creating a network socket.

PNR_INVALID_HOST

Unable to establish a connection with the server.

PNR_INVALID_PATH

Requested URL is not valid.

PNR_NET_READ

An error occurred while reading data from the network.

PNR_NET_WRITE

An error occurred while writing data to the network.

PNR_NET_UDP

Cannot receive UDP data packets. You may wish to try the TCP data option in the Network Preferences. You may 
also want to configure RealPlayer to use a firewall proxy. Please contact your system administrator for more 
information.

PNR_HTTP_CONNECT

Could not connect to Server using HTTP

PNR_SERVER_TIMEOUT

Connection to server has timed out. You may be experiencing network problems.

PNR_SERVER_DISCONNECTED

Connection to server has been lost. You may be experiencing network problems.

PNR_DNR

Unable to locate server. This server does not have a DNS entry. Please check the server name in the URL and try 
again.



April 11, 2001 4:15 pm UI Customization :  Errors and UI Strings page 73
preliminary — content subject to change

Be Incorporated — Confidential Information

PNR_OPEN_DRIVER

Cannot open the network drivers.

PNR_BAD_SERVER

This server is not using a recognized protocol.

PNR_ADVANCED_SERVER

This version of RealPlayer G2 cannot access this server.

PNR_OLD_SERVER

Connection closed. The host’s version of the RealNetworks server is too old for this client.

SERVER_ALERT

Server alert.

PNR_DEC_NOT_FOUND

File compression not supported. Cannot locate the requested RealPlayer decoder.

PNR_DEC_INVALID

The requested RealPlayer decoder is not valid.

PNR_DEC_TYPE_MISMATCH

Decoder type mismatch. Cannot load the requested decoder.

PNR_DEC_INIT_FAILED

Requested RealPlayer decoder cannot be found or cannot be used on this machine.

PNR_DEC_NOT_INITED

RealPlayer Decoder was not initialized before attempting to use it.

PNR_DEC_DECOMPRESS

RealPlayer was unable to decompress this content.

PNR_NO_CODECS

No codecs have been installed on your system.

PNR_PROXY

Proxy status error.

PNR_PROXY_RESPONSE

Proxy invalid response error.

PNR_ADVANCED_PROXY

This version of RealPlayer G2 cannot access this proxy.

PNR_OLD_PROXY

Connection closed. The proxy is too old for this client.

PNR_AUDIO_DRIVER

Cannot open the audio device. Another application may be using it.

INVALID_PROTOCOL

Invalid protocol specified in URL. URLs should typically start with ““rtsp://””, ““pnm://””, or ““http://””

PNR_INVALID_URL_OPTION

Invalid option specified in URL.

INVALID_URL_HOST

Invalid host string in requested URL.

PNR_INVALID_URL_PATH

Invalid resource path string in requested URL.



Be Incorporated — Confidential Information

April 11, 2001 4:15 pm UI Customization :  Errors and UI Strings page 74
preliminary — content subject to change

PNR_GENERAL_NONET

Cannot find network services. 

PNR_PERFECTPLAY_NOT_SUPPORTED

Requested server does not support PerfectPlay.

PNR_NO_LIVE_PERFECTPLAY

PerfectPlay not supported for live streams.

PNR_PERFECTPLAY_NOT_ALLOWED

PerfectPlay not allowed on this clip.

PNR_MULTICAST_JOIN

An error occurred attempting to join multicast session.

PNR_GENERAL_MULTICAST

An error occurred accessing a multicast session.

PNR_MULTICAST_UDP

Cannot receive audio data from this multicast session.

PNR_SLOW_MACHINE

Your CPU is unable to decode this content in real time. Try selecting content that needs less bandwidth in order to 
receive less complex content.

PNR_INVALID_HTTP_PROXY_HOST 
Invalid hostname for HTTP proxy.

PNR_INVALID_METAFILE

Invalid Metafile

PNR_NO_FILEFORMAT

No file-format is available to provide playback of this file type on your system.

NO_RENDERER

This version of RealPlayer G2 cannot play the clip you are trying to play.

PNR_MISSING_COMPONENTS

Some components are not available to provide playback of this presentation on your system.

PNR_BAD_TRANSPORT

Bad Transport

NOT_AUTHORIZED

Access Denied

NOTENOUGH_BANDWIDTH

You cannot receive this content. You do not have enough network bandwidth.

PNR_ENC_INVALID_VIDEO

The file contains an unsupported video format. The needed codec is not installed on your system.

PNR_ENC_INVALID_AUDIO

The file contains an unsupported audio format. The needed codec is not installed on your system.

PNR_NOTIMPL

This file is not supported.

PNR_INVALID_REVISION

Invalid revision number in RealAudio file.

PNR_UNEXPECTED

Unexpected data. Cannot continue.



April 11, 2001 4:15 pm UI Customization :  Errors and UI Strings page 75
preliminary — content subject to change

Be Incorporated — Confidential Information

PNR_NO_DATA

There is no data waiting to be processed.

PNR_RETRY

Attempting to reconnect to the RealAudio server.

PNR_AT_END

Arrived at the end of the document.

PNR_RECORD_WRITE

An error occurred while recording clip to file.

PNR_TEMP_FILE

An error occurred while accessing a temp file.

FILE_NOT_FOUND

Error: File not found.

PNR_REDIRECTION

Client redirected to new server

HTTP_CONTENT_NOT_FOUND

Content not found by HTTP.

PNR_EXPIRED

Player license has expired. Contact your vendor.

PNR_INVALID_INTERLEAVER

Cannot locate the requested interleaver.

PNR_CHUNK_MISSING

RealAudio file is missing the requested data chunk.

PNR_INVALID_STREAM

Invalid .rm stream.

PNR_UPGRADE

This version of RealPlayer G2 cannot play this clip.

PNR_INVALID_WAV_FILE

File is not a RIFF WAV file.

PNR_NO_SEEK

Seek is not possible.

PNR_ENC_FILE_TOO_SMALL

File is too small.

PNR_ENC_UNKNOWN_FILE

Unknown file type.

PNR_ENC_BAD_CHANNELS

Invalid number of encoder channels.

PNR_ENC_BAD_SAMPSIZE

Invalid encoder sample size.

PNR_ENC_BAD_SAMPRATE

Invalid encoder sample rate.

PNR_ENC_INVALID

Invalid encoder.



Be Incorporated — Confidential Information

April 11, 2001 4:15 pm UI Customization :  Errors and UI Strings page 76
preliminary — content subject to change

PNR_ENC_NO_OUTPUT_FILE

Output file not found.

PNR_ENC_NO_INPUT_FILE

Input file not found.

PNR_ENC_NO_OUTPUT_PERMISSIONS

Encoder output permission error.

PNR_ENC_BAD_FILETYPE

Input file type not supported.

PNR_ENC_NO_VIDEO_CAPTURE

Unable to initialize the video capture device.

PNR_ENC_INVALID_VIDEO_CAPTURE

The video capture device format is unsupported.

PNR_ENC_NO_AUDIO_CAPTURE

Unable to initialize the video capture device.

PNR_ENC_INVALID_AUDIO_CAPTURE

The audio capture device format is unsupported.

PNR_ENC_TOO_SLOW_FOR_LIVE

Not enough resources to maintain live encoding.

PNR_ENC_ENGINE_NOT_INITIALIZED

The encoding engine is not initialized.

PNR_ENC_CODEC_NOT_FOUND

The requested codec was not found.

PNR_ENC_CODEC_NOT_INITIALIZED

Codec initialization failed.

PNR_ENC_INVALID_INPUT_DIMENSIONS

Invalid input video frame dimensions

SMILDUPID

SMIL: Duplicate ID

SMILDOCERR

SMIL: Document Error

UNKNOWN

An unknown error was detected.

7   SmartCard

Alerts/smartcard.txt  enumerates the SmartCard error codes:

cardunnkown

Card unknown.  Please insert another smartcard.

wrongway

The card is inserted the wrong way.

OK

OK



April 11, 2001 4:15 pm UI Customization :  Errors and UI Strings page 77
preliminary — content subject to change

Be Incorporated — Confidential Information

8   Error-less Components

The following BeIA components don’t report errors:

• Flash doesn’t report any errors.

• Java doesn’t report any errors.  However, individual Java applets may report errors by creating their 
own alert windows.

• MediaPlayer doesn’t report any errors.

• The BeIA kernel.  Kernel errors aren’t reported to the user through the browser.  If something bad 
happens in the kernel, the machine reboots itself.

• Data decoders.  Except for the “unsupported content error” (see 1.4   Unsupported Content or 
Scheme), the BeIA data decoders don’t report specific errors.



Be Incorporated — Confidential Information

April 11, 2001 4:15 pm UI Customization :  Errors and UI Strings page 78
preliminary — content subject to change



 April 11, 2001 UI Customization :  User Interface Files page 79
preliminary — content subject to change

Be Incorporated — Confidential Information

UI Customization

User Interface Files

This document lists and describes the files that make up the BeIA user interface.

1   /boot/custom/cgi-bin/

errorgen , htmlalertgen , htmlalertreply

cgi-bin scripts used internally by BeIA to generate error and alert pages, and to process user 
responses to such pages.

2   /boot/custom/resources/$LANGUAGE/

The LANGUAGE value is stored in the beos.binder.service.locale.language  Binder property.

firstboot.html

Welcome page that’s displayed when the device is booted in firstboot bootmode (i.e. the first time the 
user boots the device).  See “Boot Mode” in the BeIA Support chapter.

index.html

The main entry point for UI configuration, as described in the “The Entry Point Files” in the 
“Introduction” to this chapter.

login.html

Login panel that’s displayed when the device is booted in normal  mode.   See “Boot Mode” in the 
BeIA Support chapter.

recover.html

“Invisible” page that’s used to restore the last-visited page when the browser comes back up after a 
crash.

scripts

2.1   /boot/custom/resources/$LANGUAGE/Alerts/

For a general explanation of the alert system, see “Alerts” in this chapter.

alert1.html , alert2.html

Templates for basic one- and two-button alert panels.

alert_reply.js

JavaScript functions used by the JavaScript alert templates (js_alert.html , js_confirm.html , and 
js_prompt.html ).

content.txt

Default alert panel text strings.



Be Incorporated — Confidential Information

April 11, 2001 UI Customization :  User Interface Files page 80
preliminary — content subject to change

doupgrade.txt

Text strings used in the update alert panel.  See “The Update Mechanism” in the BeIA Support chapter.

indirect.txt

Maps error codes to alert templates.

javascript.txt

Text strings for JavaScript alerts.

js_alert.html , js_confirm.html , js_prompt.html

JavaScript alert panel templates.

printer.txt

Printer error text strings.

realplayer.txt

RealPlayer error text strings.

realplayer1.html , realplayer2.html , realplayer3.html , realplayer4.html

RealPlayer alert templates.

realplayer_i.txt

Maps RealPlayer error codes to RealPlayer alert templates.

realplayerauth.html

RealPlayer login panel for server-requested passwords.

realplayerclipinf.html

RealPlayer clip info panel (clip name, length.

redirect1.html , redirect2.html

Templates for one- and two-button alerts that redirect the user to a Web site.

smartcard.txt

Smartcard error text strings.

upgradeinfo.html

Template for system upgrade alert panel.  See “The Update Mechanism” in the BeIA Support chapter.

2.2   /boot/custom/resources/$LANGUAGE/Bookmarks/

See “UI Customization” in this chapter for a description of the bookmarks UI.

addbookmark.gif , addbookmark_active.gif , addbookmark_over.gif

Add Favorites  button graphic (in various modes) at the top of the Favorites list.

addfolder.gif , addfolder_active.gif , addfolder_over.gif

New Folder  button graphic (in various modes) at the top of the Favorites list.

alloutside.png

bookmark.png

Bookmark icon in the Favorites list.

BookmarkDefs.js

bottom.html

bottomtab.gif

closebox.png , closebox_active.png

Close box icon (in various modes) at the top of the Favorites list.



April 11, 2001 UI Customization :  User Interface Files page 81
preliminary — content subject to change

Be Incorporated — Confidential Information

delete.png , delete_outside.png , delete_over.png

Trash can icon (in various modes) in the Favorites list.

edge.html

edit.html

folder.png , folder_closed.png

Open and closed folder icons in the Favorites list.

gutterbg.gif

index.html

Page that defines the bookmarks settings panel.

info.html , info_on.html , info_onover.html , info_outside.html , info_over.html , 
Info button icons (in various modes) in the Favorites list.

list.html

listbg.gif

top.html

toptab.gif

2.3   /boot/custom/resources/$LANGUAGE/Cursors/

cursor.png

Default cursor icon.

ibeam_cursor.png

Icon that’s displayed when the cursor is above editable text.

link_cursor.png

Icon that’s displayed when the cursor is above a hypertext link.

wait_cursor0.png , wait_cursor1.png , wait_cursor2.png , wait_cursor3.png , 
Series of icons (0 through 3) that are displayed when the browser is waiting for data to download.

2.4   /boot/custom/resources/$LANGUAGE/Days/

0.gif , 1.gif , 2.gif , 3.gif , 4.gif , 5.gif , 6.gif

Icons that name (abbreviated) the days-of-the-week; 0.gif  (“Sun”) through 6.gif  (“Sat”).

2.5   /boot/custom/resources/$LANGUAGE/Errors/

The files in Errors  are HTML templates for alert panels that describe browsing errors and other situations 
that require the user’s attention .  See “Errors and UI Strings” in this chapter for more information.

beos.html

connect.html

content.html

file.html



Be Incorporated — Confidential Information

April 11, 2001 UI Customization :  User Interface Files page 82
preliminary — content subject to change

hostclosed.html

hostrefused.html

hostunknown.html

http.html

password.html

scheme.html

timeout.html

2.5.1   /boot/custom/resources/$LANGUAGE/Errors/template/

erroricon.incl

footer.incl

haiku_default.incl , haiku_post.incl , haiku_pre.incl

title.incl

2.6   /boot/custom/resources/$LANGUAGE/glyphs/

0.gif , 0x.gif , 1.gif , 1x.gif , 2.gif , 2x.gif , 3.gif , 3x.gif , 4.gif , 4x.gif , 5.gif , 5x.gif , 6.gif , 
6x.gif , 7.gif , 7x.gif , 8.gif , 8x.gif , 9.gif , 9x.gif

Numerals against two different background colors.

bar_active.gif , bar_inactive.gif

blank.gif , blankx.gif

checkbox_active.gif , checkbox_inactive.gif

endcapleft_active.gif , endcapleft_inactive.gif , endcapright_active.gif , 
endcapright_inactive.gif

left.gif , left_active.gif

radio_active.gif , radio_inactive.gif

right.gif , right_active.gif

2.7   /boot/custom/resources/$LANGUAGE/Home/

background.gif

email.gif , email-down.gif , email-over.gif

entertainment.gif , entertainment-down.gif , entertainment-over.gif

Home.html

news.gif , news-down.gif , news-over.gif

search.gif , search-down.gif , search-over.gif



April 11, 2001 UI Customization :  User Interface Files page 83
preliminary — content subject to change

Be Incorporated — Confidential Information

2.8   /boot/custom/resources/$LANGUAGE/Intro/

blankwhite.html

connectionprogress.html

introtutorial.html

regform.html

registrationp1.html , registrationp1.5.html , registrationp2.html , registrationp3.html , 
registrationp4.html , registrationp5.html , registrationp5.5.html

Regp1.html , Regp1.5.html , Regp2.html , Regp3.html , Regp4.html , Regp5.html

returnpolicy.html

termsandconditions.html

WelcomeBG.gif

Background watermark-type image for the welcome page.

welcomepage.gif

2.8.1   /boot/custom/resources/$LANGUAGE/Intro/WelcomeImages/

welcomepage_new_06.gif , welcomepage_new_15.gif , welcomepage_new_18.gif , 
welcomepage_new_20.gif , welcomepage_new_22.gif , welcomepage_new_24.gif , 
welcomepage_new_26.gif , welcomepage_new_33.gif , welcomepage_new_35.gif , 
welcomepage_new_37.gif , welcomepage_new_42.gif

2.9   /boot/custom/resources/$LANGUAGE/MediaBar/

The Media bar is used to control the playing of sounds, animations, etc. See xxx for details.

closebox.png

Graphic for the button used to close the media bar.

endcap_left.png , endcap_right.png

Left and right endcap graphics for the media bar.

intersect.png

main.html

JavaScript code that constructs a media bar page.

pause.png , pause_active.png , pause_over.png

Various graphics for the “Pause” button in the media bar.

play.png , play_active.png , play_over.png

Various graphics for the “Play” button in the media bar.

progressbar.png

Small graphic used in constructing a progress bar.

remainbar.png

Small graphic used in construction a progress bar (the part showing what’s left to play).



Be Incorporated — Confidential Information

April 11, 2001 UI Customization :  User Interface Files page 84
preliminary — content subject to change

2.10   /boot/custom/resources/$LANGUAGE/Months/

0.gif , 1.gif , 2.gif , 3.gif , 4.gif , 5.gif , 6.gif , 7.gif , 8.gif , 9.gif , 10.gif , 11.gif

Icons that name the months, from 0.gif  (“January”) through 11.gif  (“December”).

2.11   /boot/custom/resources/$LANGUAGE/PopUpDecor/

Window pane control.

BottomPaneClose.gif , BottomPaneClose_over.gif

Graphics for the button that closes the bottom pane, in a two-pane horizontally oriented display.

LeftPaneClose.gif , LeftPaneClose_over.gif

Graphics for the button that closes the left pane, in a two-pane vertically oriented display.

PanebarHorz.html

HTML layout code for a two-pane horizontally oriented display.

PanebarVert.html

HTML layout code for a two-pane horizontally oriented display.

RightPaneClose.gif , RightPaneClose_over.gif

Graphics for the button that closes the right pane, in a two-pane vertically oriented display.

TopPaneClose.gif , TopPaneClose_over.gif

Graphics for the button that closes the top pane, in a two-pane horizontally oriented display.

2.12   /boot/custom/resources/$LANGUAGE/Settings/

Advanced.html

DateTime.html

General.html

Languages.html

Network-ethernet.html

Network-modem.html

Printing.html

Security.html , SecurityBadPass.html , SecurityControl.html , SecurityMessage.html , 
SecurityMismatch.html , SecuritySuccess.html

security.gif , security_active.gif , security_over.gif

Settings.html

The main “BeIA” Settings page.

settingsicon.gif

Small graphic displayed in each settings subpage, to identify it as a settings page.

switch-ethernet.gif , switch-modem.gif

2.12.1   /boot/custom/resources/$LANGUAGE/Settings/widgets/

checkbox.checked.gif , checkbox.gif

Images of a generic settings checkbox control, in various states.



April 11, 2001 UI Customization :  User Interface Files page 85
preliminary — content subject to change

Be Incorporated — Confidential Information

down.gif , down_active.gif

Small triangular down arrow in normal and active states.

left.gif , left_active.gif

Small triangular left arrow in normal and active states.

radiobutton.checked.gif , radiobutton.gif

Images of a generic settings radio button, in various states.

right.gif , right_active.gif

Small triangular right arrow, in normal and active states.

slider.endcap.left.filled.gif , slider.endcap.left.gif , slider.endcap.right.filled.gif , 
slider.endcap.right.gif , slider.middle.filled.gif , slider.middle.gif

Images used to construct the appearance of a slider control. The slider will be entirely empty 
(representing, for example, volume turned down all the way), or will have some portion of the slider 
filled from the left (which may constitute all of the slider, if the control is set to its maximum level).

up.gif , up_active.gif

Small triangular up arrow, in normal and active states.

2.13   /boot/custom/resources/$LANGUAGE/SoftKeyboard/

The files in the SoftKeyboard directory are used by the soft (touch-screen) keyboard and foreign language 
input methods.  For more information on the soft keyboard, see <<>>.

jim.html

The HTML file that loads the plug-in for the Japanese input method.

main.html

The HTML file that loads the plug-in for the soft keyboard.

qwerty.kbd

Keyboard layout file for the soft keyboard.

SoftKeyboardClose.gif, SoftKeyboardClose_over.gif

Close button images displayed by the soft keyboard.

2.13.1   /boot/custom/resources/$LANGUAGE/SoftKeyboard/key_graphics

key_87_UD.png , key_97_UD.png , key_98_UD.png , key_99_UD.png

Non-default key images displayed by the soft keyboard.

2.14   /boot/custom/resources/$LANGUAGE/Time/

am.gif

Text image AM.

colon.gif

Character image : (colon).

pm.gif

Text image PM.

2.15   /boot/custom/resources/$LANGUAGE/Toolbar/

toolbar.html

HTML code that assembles the graphics in this directory into the toolbar seen by the user.



Be Incorporated — Confidential Information

April 11, 2001 UI Customization :  User Interface Files page 86
preliminary — content subject to change

2.15.1   /boot/custom/resources/$LANGUAGE/Toolbar/Images

back.gif , back-down.gif , back-over.gif

The toolbar’s go-back-one-page button, in various states.

favorites.gif , favorites_active.gif , favorites-down.gif , favorites-over.gif

The toolbar’s favorites button, in various states.

forward.gif , forward-down.gif , forward_over.gif

The toolbar’s go-forward-one-page button, in various states.

goto.gif , goto-down.gif , goto-over.gif , goto_active.gif , goto_active-down.gif , goto_active-

over.gif , goto_area.gif , goto_area-active.gif

The toolbar’s load-page button, in various states.

home.gif , home-down.gif , home-over.gif

The toolbar’s go-to-home button, in various states.

left_edge.gif

magnify.gif , magnify-down.gif , magnify-over.gif

The toolbar’s text magnification button, in various states.

reload.gif , reload-down.gif , reload-over.gif

The toolbar’s reload-page button, in various states.

right_edge.gif

settings.gif , settings_active.gif , settings-down.gif , settings-over.gif

The toolbar’s go-to-settings button, in various states.

spacer.gif

status_busy.gif . status_connected.gif . status_offline.gif

The connection status icon, in various states.

stop.gif , stop-down.gif , stop-over.gif

The toolbar’s stop-loading button, in various states.

3   /boot/custom/resources/scripts/

buildprefs.js

Very small JavaScript fragment used when starting up.

buttons.js

JavaScript functions to let images act as buttons; includes such things as highlighting when the mouse 
passes over a button.

network.js

Network-related JavaScript functions; includes functions to find information about the network 
configuration, and glue function which request the underlying OS to make or break dialup 
connections.

widgets.js

JavaScript code to handle the behavior of widgets other than buttons, such as checkboxes and sliders.



April 11, 2001 UI Customization :  User Interface Files page 87
preliminary — content subject to change

Be Incorporated — Confidential Information

4   /boot/custom/sounds/

BeBeep.wav

General beep sound.

cache.ini

List of sounds (and some default amplitude adjustments) that are loaded into RAM at boot time. Also 
defines the startup sound.

MouseDown.wav

Sound used when the mouse button is pressed.

MouseEnter.wav

Sound used when the mouse cursor enters a button.

MouseEnterTool.wav

MouseLeave.wav

MouseUp.wav

Sound used when a clicked button is released.

MuteToggle

Sound used when audio mute is toggled.

PageLoaded.wav

Sound used when a page finishes loading.

PowerDown.wav

Sound used when the device is powered up.

PowerUp.wav

Sound used after the machine is powered up, to let the user know it is ready to use.

VolumeDown

Sound played when the volume is adjusted, so the user can hear the new volume.

VolumeUp

Sound played when the volume is adjusted, so the user can hear the new volume.

WindowActivated

Sound used to indicate a window has been activated.

5   /boot/custom/special_keys/

The files in the special_keys directory map specific keys on the keyboard to certain pre-defined operations 
(toggle the volume mute, put the device to sleep, etc.)  For more information, see “Special Keys” in this 
chapter.

0-16

Shell scripts that are designed to be invoked from the special keys.  Currently, only scripts 13 
(sleep/wake) and 16 (print) are used.

map

Keycodes-to-actions map for the special keys. The actions are either shell executions of one of the 



Be Incorporated — Confidential Information

April 11, 2001 UI Customization :  User Interface Files page 88
preliminary — content subject to change

files described above (or any other shell script), calls to built-in functions, or calls to the JavaScript 
be_special_key()  function (defined in $RESOURCES/index.html ).

6   /boot/home/config/settings/

The files in /boot/home/config/settings  set the values of certain device parameters.  In addition to the 
references given below, the files are (generally) described in “Settings Files.” 

beia-bootmode

Defines the environment (developer, test, user, etc.) that the device will boot into.  See “Boot Mode” 
in the BeIA Support chapter.

RealNetworks_RealMediaSDK_60

RealPlayer configuration and plug-in registration list.


	Introduction
	1��� Programming Languages and Formats
	2��� Sample Configuration
	3��� Directory Structure
	3.1��� Sharing Files Between Configurations

	4��� Configuration Variables
	4.1��� The LANGUAGE Variable
	4.2��� The RESOURCES Variable

	5��� Localization
	6��� The Entry Point Files
	7��� The Content Area
	7.1��� Creating the Content Frame
	7.2��� Special Treatment of the Content Frame
	7.2.1��� References to the Top Frame from within HTML
	7.2.2��� References to the Top Frame from within JavaScript


	8��� Alerts

	Design Considerations
	1��� The Audience
	2��� The Browser
	3��� Controls
	3.1��� Labels

	4��� Panes
	5��� Feedback and Alerts
	6��� Settings panels
	7��� Technical Considerations
	8��� Recommended Reading

	JavaScript Layout Concepts
	1��� Prerequisites
	2��� Fundamental Concepts
	2.1��� Abstract the Creation of HTML Markup into HTML-Generating JavaScript Objects
	2.2��� Layout Objects: LayoutFrames and LayoutBags
	2.3��� Features and Modes
	2.3.1��� Features
	2.3.2��� Modes and Mode Clusters
	2.3.3��� The be_refresh() Function
	2.3.4��� Activation and Deactivation Hooks

	2.4��� Hiding and Showing Layout Objects
	2.5��� Sizes

	3��� A Larger Example: The Flag Demo
	3.1��� What Does the Flag Demo Do?
	3.2��� Where to Start?: The ui_custom.js File
	3.3��� Auxiliary Files
	3.3.1��� The buttons.html File

	3.4��� The ui_custom.js Functions
	3.4.1��� initUIDefines()
	3.4.2��� initUIState()
	3.4.3��� initUILayout()



	JavaScript Layout Engine
	1��� Introduction
	1.1��� Layout Objects: LayoutFrames and LayoutBags
	1.2��� Visibility, Features and Modes
	1.2.1��� Zero-Pixel Hiding
	1.2.2��� Features
	1.2.3��� Modes and Mode Clusters

	1.3��� Sizes

	2��� Class and Function Reference
	2.1��� Notation
	2.2��� Layout Classes
	class LayoutBag
	class LayoutFrame
	2.3��� Global Layout-Related Functions
	Feature-Related API Functions
	Mode API Functions
	Miscellaneous Related Functions


	The Toolbar
	1��� Changing the Appearance of the Toolbar
	1.1��� Changing the Appearance of Toolbar Buttons
	1.2��� Changing Toolbar Layout and Other Appearance Properties with the “toolbar.html” File


	Bookmarks
	1��� How the Bookmarks Interface Works
	2��� Changing the Appearance of the Bookmarks Interface
	2.1��� Changing the Appearance of Bookmark Controls
	2.1.1��� Names and Locations of the Bookmark Controls Image Files

	2.2��� How to Change the Look of Buttons—Advanced
	2.3��� Changing Bookmark Layout and Other Appearance Properties with the “index.html” File

	3��� Preconfiguring the Favorites List
	3.1��� “Favorites” File Format


	Buttons
	1��� An Example of Button Images in Action
	2��� The General Button Image Schema
	2.1��� Location of Button Image Files
	2.2��� Button Image File Formats and Suffixes
	2.3��� Button Image Names

	3��� Button Sizes
	4��� PNG vs. GIF Button Images

	Alerts
	1��� The Alert Template
	1.1��� A One Button Alert
	1.2��� A Two Button Alert

	2��� The Alert Content
	3��� Invoking the Alert Script
	3.1��� Through C++
	3.2��� Through JavaScript
	3.3��� Through TellBrowser


	Special Keys
	1��� The Special Key Mapping File
	2��� Actions
	2.1��� Built-in Commands
	2.2��� Shell Scripts
	2.3��� JavaScript

	3��� Modifying Special Keys Mappings and Functionality
	1��� Browser
	1.1��� Bad beos:// URL
	1.2��� Bad file:// URL
	1.3��� Bad http:// URL
	1.4��� Unsupported Content or Scheme
	1.5��� Password Request

	2��� General Errors
	3��� The Update Mechanism
	4��� Midi
	5��� Printer
	6��� RealPlayer
	6.1��� Clip Info
	6.2��� Authentication
	6.3��� Error Templates
	6.4��� Error codes

	7��� SmartCard
	8��� Error-less Components

	User Interface Files
	1��� /boot/custom/cgi-bin/
	2��� /boot/custom/resources/$LANGUAGE/
	2.1��� /boot/custom/resources/$LANGUAGE/Alerts/
	2.2��� /boot/custom/resources/$LANGUAGE/Bookmarks/
	2.3��� /boot/custom/resources/$LANGUAGE/Cursors/
	2.4��� /boot/custom/resources/$LANGUAGE/Days/
	2.5��� /boot/custom/resources/$LANGUAGE/Errors/
	2.5.1��� /boot/custom/resources/$LANGUAGE/Errors/template/

	2.6��� /boot/custom/resources/$LANGUAGE/glyphs/
	2.7��� /boot/custom/resources/$LANGUAGE/Home/
	2.8��� /boot/custom/resources/$LANGUAGE/Intro/
	2.8.1��� /boot/custom/resources/$LANGUAGE/Intro/WelcomeImages/

	2.9��� /boot/custom/resources/$LANGUAGE/MediaBar/
	2.10��� /boot/custom/resources/$LANGUAGE/Months/
	2.11��� /boot/custom/resources/$LANGUAGE/PopUpDecor/
	2.12��� /boot/custom/resources/$LANGUAGE/Settings/
	2.12.1��� /boot/custom/resources/$LANGUAGE/Settings/widgets/

	2.13��� /boot/custom/resources/$LANGUAGE/SoftKeyboard/
	2.13.1��� /boot/custom/resources/$LANGUAGE/SoftKeyboard/key_graphics

	2.14��� /boot/custom/resources/$LANGUAGE/Time/
	2.15��� /boot/custom/resources/$LANGUAGE/Toolbar/
	2.15.1��� /boot/custom/resources/$LANGUAGE/Toolbar/Images


	3��� /boot/custom/resources/scripts/
	4��� /boot/custom/sounds/
	5��� /boot/custom/special_keys/
	6��� /boot/home/config/settings/


